www.TrbTnpsc.Com

www.TrbTnpsc.Com

16(c) 0^0-180^0 17a)118(d)The breaking of the covalent bond19(a)Amplitude modulation20(b)Bottom up approachQ.NSECTION-II21Electric field due to an electric dipole at points on the axial line	1 1 1 1 MARKS	
18 (d) The breaking of the covalent bond 19 (a) Amplitude modulation 20 (b) Bottom up approach Q.N SECTION-II I Electric field due to an electric dipole at points on the axial line	1 1 1	
19 (a) Amplitude modulation 20 (b) Bottom up approach Q.N SECTION-II I Electric field due to an electric dipole at points on the axial line I	1	
20 (b) Q.N SECTION-II Electric field due to an electric dipole at points on the axial line	1	
Q.N SECTION-II Electric field due to an electric dipole at points on the axial line	1 MARKS	
Electric field due to an electric dipole at points on the axial line	MARKS	
 Consider an electric dipole placed on the x-axis as shown in Figure. A point C is located at a distance of r from the midpoint O of the dipole along the axial line. A Friend B Axial line E E E E E E E E E E E E E E E E E E E		
 The electric field at a point C due to -q is		

www.TrbTnpsc.Com

• Similarly, if the light from the carbon arc is made to pass through sodium vapour, a continuous spectrum of carbon arc with two dark lines in the yellow region of sodium vapour is obtained.

www.TrbTnpsc.Com

that the applied voltage leads the current by ϕ (or current lags behind voltage by ϕ). The circuit is inductive.

$$\therefore \upsilon = V_m \sin \omega t; \ i = I_m \sin \left(\omega t - \phi \right)$$

(ii) If $X_L < X_C$, $(X_L - X_C)$ is negative and ϕ is also negative. Therefore current leads voltage by ϕ and the circuit is capacitive.

$$\therefore \upsilon = V_m \sin \omega t; \ i = I_m \sin (\omega t + \phi)$$

(iii) If $X_L = X_C$, ϕ is zero. Therefore current and voltage are in the same phase and the circuit is resistive.

$$\therefore \upsilon = V_m \sin \omega t; \quad i = I_m \sin \omega t$$

(OR)

- Let YY' be an infinitely long straight conductor and I be the steady current through the conductor.
- To calculate magnetic field at a point P which is at a distance a from the wire, let us consider a small line element dl (segment AB).

The magnetic field at a point P due to current element Idl can be calculated from Biot Savart's law which is

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Idl\sin\theta}{r^2} \,\hat{n}$$

• Where \hat{n} is the unit vector which points into the page at P, θ is the angle between current element Id*l* and line joining d*l* and the point P.

• Let r be the distance between line element at A to the point P.

In triangle
$$\triangle ABC$$
, $\sin \theta = \frac{AC}{AB}$
 $\Rightarrow AC = AB\sin \theta$
But $AB = dl \Rightarrow AC = dl\sin \theta$
i.e. $\langle APB = \langle BPC = d\phi \rangle$

www.TrbTnpsc.Com

In a triangle $\triangle APC$, $\sin(d\phi) = \frac{AC}{AP}$ Since, $d\phi$ is very small, $\sin(d\phi) \simeq d\phi$ But $AP = r \Rightarrow AC = rd\phi$ \therefore AC = $dl \sin \theta = r d\phi$ $\therefore d\vec{B} = \frac{\mu_0}{4\pi} \frac{I}{r^2} (rd\phi) \,\hat{n} = \frac{\mu_0}{4\pi} \frac{Id\phi}{r} \,\hat{n}$ $\cos\phi = \frac{OP}{BP} = \frac{a}{r}$ $\Rightarrow r = \frac{a}{\cos \phi}$ $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I}{a/\cos\phi} d\phi \,\hat{n}$ $\Rightarrow d\vec{B} = \frac{\mu_0 I}{4\pi a} \cos\phi d\phi \,\hat{n}$ The total magnetic field at point P due to conductor YY' is $\vec{B} = \int_{-\phi_1}^{\phi_2} d\vec{B} = \int_{-\phi_1}^{\phi_2} \frac{\mu_0 I}{4\pi a} \cos\phi d\phi.\hat{n}$ $=\frac{\mu_0 I}{4\pi a}[\sin\phi]_{-\phi_1}^{\phi_2}\hat{n}$ $\vec{B} = \frac{\mu_0 I}{4\pi a} (\sin \phi_1 + \sin \phi_2) \,\hat{n}$ For infinitely long conductor, $\phi_1 = \phi_2 = 90^{\circ}$ $\therefore \vec{B} = \frac{\mu_0 I}{4\pi a} \times 2 \,\hat{n} \Rightarrow \vec{B} = \frac{\mu_0 I}{2\pi a} \,\hat{n}$ An important application of Kirchhoff's rules is the Wheatstone's bridge. 23 It is used to compare resistances and also helps in determining the 5 unknown resistance in electrical network. The bridge consists of four resistances P, Q, R and S connected as shown in Figure. A galvanometer G is connected between the points B and D. The battery is connected between the points A and C. The current through the galvanometer is I_G and its resistance is G. Applying Kirchhoff's current rule to junction B $I_1 - I_C - I_3 = 0$

	(OR)			
	• The circuit consists of a transformer, a p-n junction diode and a resistor.			
	• In a half wave rectifier circuit, either a positive half or the negative			
	half of the AC input is passed through while the other half is blocked.			
	• Only one half of the input wave reaches the output. Therefore, it is			
	called half wave rectifier. Here, a p-n junction diode acts as a			
	rectifying diode.			
	• During the positive half cycle When the positive half cycle of the ac			
	input signal passes through the circuit, terminal A becomes positive			
	with respect to terminal B.			
	• The diode is forward biased and hence it conducts. The current flows			
	through the load resistor $R_{\rm L}$ and the AC voltage developed across $R_{\rm L}$			
	constitutes the output voltage V_0 and the waveform of the diode			
	current is shown in Figure			
	• During the negative half cycle When the negative half cycle of the ac			
	input signal passes through the circuit, terminal A is negative with			
	respect to terminal B. Now the diode is reverse biased			
	and does not conduct and hence no current passes through R_L . The reverse saturation current in a diode is negligible. Since there is no			
	reverse saturation current in a diode is negligible. Since there is no voltage drop across R_L , the negative half cycle of ac supply is			
	suppressed at the output.			
C	AC Input Vpeak (a) Vpeak Vpeak			
	0 (b) Time			
	• Efficiency (η) is the ratio of the output dc power to the ac input power			
	supplied to the circuit. Its value for half wave rectifier is 40.6 %			

$$hv_0 = \phi_0$$

where v_0 is the threshold frequency. Byrewriting the equation

$$hv = hv_0 + \frac{1}{2}mv^2$$
(2)

• The equation is known as **Einstein's photoelectric equation**.

• If the electron does not lose energy by internal collisions, then it is emitted with maximum kinetic energy K_{max} . Then

$$K_{\rm max} = \frac{1}{2}mv_{\rm max}^2$$

where v_{max} is the maximum velocity of the electron ejected. Equation (1) becomes

www.TrbTnpsc.Com

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R}$$

• For the refracting surface (1), the light goes from n_1 to n_2 .

$$\frac{n_2}{v'} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R_1}$$

• For the refracting surface (2), the light goes from medium n_2 to n_1 .

$$\frac{n_1}{v} - \frac{n_2}{v'} = \frac{(n_1 - n_2)}{R_2}$$

• Adding the above two equations

$$\frac{n_1}{v} - \frac{n_1}{u} = (n_2 - n_1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

• Further simplifying and rearranging,

$$\frac{1}{v} - \frac{1}{u} = \left(\frac{n_2 - n_1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$\frac{1}{v} - \frac{1}{u} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right),$$

If the object is at infinity, the image is formed at the focus of the lens.
 Thus, for u = ∞, y = f. Then the equation becomes.

$$\frac{1}{f} - \frac{1}{\infty} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

• If the refractive index of the lens is n_2 and it is placed in air, then $n_2 = n$ and $n_1 = 1$. So the equation becomes,

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

The above equation is called the *lens maker's formula*, because it tells the lens manufactures what curvature is needed to make a lens of desired focal length with a material of particular refractive index. This formula holds good also for a concave lens.

(a) Lyman series 25 Electron jumps from any outer orbit to first orbit • 5 n = 1 and m = 2,3,4... The wave number or wavelength of spectral lines of Lyman series which lies in ultra-violet region is $\overline{v} = \frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{m^2}\right)$ (b) Balmer series Electron jumps from any outer orbit to second orbit lines of Balmer series which lies in visible region is $\overline{v} = \frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{m^2} \right)$ (c) Paschen series Electron jumps from any outer orbit to third orbit • n = 3 and m = 4,5,6.... The wave number or wavelength of spectral lines of Paschen series which lies in infra-red region (near IR) is $\overline{v} = \frac{1}{\lambda} = R \left(\frac{1}{3^2} - \frac{1}{m^2} \right)$ (d) Brackett series Electron jumps from any outer orbit to fourth orbit n = 4 and m = 5,6,7... The wave number or wavelength of spectral lines of Brackett series which lies in infra-red region (middle IR) is $\overline{v} = \frac{1}{\lambda} = R \left(\frac{1}{4^2} - \frac{1}{m^2} \right)$ (e) Pfund series Electron jumps from any outer orbit to fifth orbit n = 5 and m = 6,7,8... The wave number or wavelength of spectral lines of Pfund series which lies in infra-red region (far IR) is

$$\overline{\nu} = \frac{1}{\lambda} = R \left(\frac{1}{5^2} - \frac{1}{m^2} \right)$$

(OR)

INTRODUCTION

 Robert Van de Graaff designed a machine which produces a large amount of electrostatic potential difference, up to several million volts (10⁷ V).

PRINCIPLE

• This Van de Graff generator works on the principle of electrostatic induction and action at points.

CONSTRUCITON

- A large hollow spherical conductor is fixed on the insulating stand as shown in Figure.
- A pulley B is mounted at the center of the hollow sphere and another pulley C is fixed at the bottom.
- A belt made up of insulating materials like silk or rubber runs over both pulleys. The pulley C is driven continuously by the electric motor.
- Two comb shaped metallic conductors E and D are fixed near the pulleys.
- The comb D is maintained at a positive potential of 10^4 V by a power supply.
 - The upper comb E is connected to the inner side of the hollow metal sphere.

WORKING

- Due to the high electric field near comb D, air between the belt and comb D gets ionized.
- The positive charges are pushed towards the belt and negative charges are attracted towards the comb D.
- The positive charges stick to the belt and move up. When the positive charges reach the comb E,

www.TrbTnpsc.Com

www.TrbTnpsc.Com

- The direction of \overline{dB} is perpendicular to the cuttent element $I\overline{dl}$ and CP. It is therefore along PR perpendicular to CP.
- The magnitude of magnetic field at P due to current element at D is the same as that for from the coil. But its direction is along PS
- The magnetic field dB due to each current element is resolved into two components: dB cos Φ along y direction and dB sin Φ along z direction.
- The horizontal components cancel out while the vertical components along contribute to the net magnetic field \vec{B} at the point P.

$$= \frac{\mu_0 I}{4\pi} \int \frac{dl}{r^2} \sin \phi \,\hat{k}$$
$$\vec{B} = \int d\vec{B} = \int dB \sin \phi \,\hat{k}$$

From $\triangle OCP$,

$$\sin \phi = \frac{R}{\left(R^2 + z^2\right)^{\frac{1}{2}}}$$
 and $r^2 = R^2 + z^2$

substituting these in the above equation

$$\vec{B} = \frac{\mu_0 I}{4\pi} \frac{R}{\left(R^2 + z^2\right)^{\frac{3}{2}}} \hat{k} \left(\int dl\right)$$
$$\vec{B} = \frac{\mu_0 I}{2} \frac{R^2}{\left(R^2 + z^2\right)^{\frac{3}{2}}} \hat{k}$$

If the circular coil contains N turns, then the magnetic field is

$$\vec{B} = \frac{\mu_0 NI}{2} \frac{R^2}{\left(R^2 + z^2\right)^{3/2}} \hat{k}$$

The magnetic field at the centre of the coil is

$$\vec{B} = \frac{\mu_0 NI}{2R} \hat{k}$$
 since $z = 0$

(OR)

• At any instant *t*, the number of decays per unit time, called rate of decay is proportional to the number of nuclei (dN / dt) at the same instant.

$$\frac{dN}{dt} \propto N$$
$$\frac{dN}{dt} = -\lambda N$$

$dN = -\lambda N dt$

at time t = 0 s, the number of nuclei present in the radioactive sample is N_0

$$\frac{dN}{N} = -\lambda dt$$
$$\int_{N_0}^{N} \frac{dN}{N} = -\int_{0}^{t} \lambda dt$$
$$\left[\ln N\right]_{N_0}^{N} = -\lambda t$$
$$\ln\left[\frac{N}{N_0}\right] = -\lambda t$$

- Taking exponentials on both sides, we get $N = N_0 e^{-\lambda t}$
- This Equation is called the law of radioactive decay.
- Here *N* denotes the number of undecayed nuclei present at any time *t* and *N₀* denotes the number of nuclei at initial time *t=0*. The number of atoms is decreasing exponentially over the time. Time taken for all the radioactive nuclei to decay will be infinite.

PREPARATORY TEST - 3

CLASS : 12 SUBJECT: PHYSICS	MARKS: 50 TIME : 2 Hrs.	
PART – A	. (ANSWER ALL) $20 \times 1 = 20$	
 Which charge configuration produ (a) point charge (c) uniformly charged infinite plan 	(b) infinite uniform line charge	
2. If voltage applied on a capacito conclusion.	or is increased from V to $2V$, choose the correct	
(a) Q remains the same, C is doub	led (b) Q is doubled, C doubled	
(c) C remains same, Q doubled	(d) Both Q and C remain same	
 3. What is the value of resistance of (a)100 k Ω (c) 1k Ω 	of the following resistor? (b)10 k Ω (d)1000 k Ω	
Then	tive the resistivities $\rho_1 \Omega$ m and $\rho_2 \Omega$ m respectively.	
(a) $\rho_1 > \rho_2$ (b) $\rho_1 < \rho_2$	(c) $\rho_1 = \rho_2$ (d) $\frac{\rho_2}{\rho_1} = \alpha$	
5. The magnetic field at the centre O of the following current loop is		
	(a) $\frac{\mu_{\circ}I}{4r} \otimes$ (b) $\frac{\mu_{\circ}I}{4r} \odot$ (c) $\frac{\mu_{\circ}I}{2r} \otimes$ (d) $\frac{\mu_{\circ}I}{2r} \odot$	
 6. The vertical component of Earth's component. What is the value of a (a) 45° (b) 30° 	s magnetic field at a place is equal to the horizontal angle of dip at this place? (c) 90° (d) 60°	
 7. A thin semi-circular conducting rifalling with its plane vertical in a lifield B, as shown in the figure. The developed across the ring when its (a) Zero (b) <u>Bvπr²</u> and P is at higher pote 2 (c) πrBv and R is at higher potential 	horizontal magnetic le potential difference s speed v, is x + x + x + x + x + x + x + x + x + x +	
8. Resonance occurs in an AC circui (a) $Z = R$ (b) $Z = wL - y$	t when $\frac{1}{wc}$ (c) L = R (d) None of the above	

9. In an electromagnetic wave travelling in free space the rms value of the electric field is 3 V m⁻¹. The peak value of the magnetic field is (a) 1.414×10^{-8} T (b) $1.0 \times 10^{-8} \text{ T}$ (c) 2.828×10^{-8} T (d) 2.0×10^{-8} T

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.com

Ν

www.TrbTnpsc.Com

- 10. Green house effect is due to (a) Ultra violet (b) Gamma rays (c) X-rays (d) Radio waves
- 11. For light incident from air on a slab of refractive index 2, the maximum possible angle of refraction is (a) 30° (b) 45° (c) 60° (d) 90°
- 12. Light refracted through pile of plates is found to be (a) partially polarised (b) unpolarised (c) plane polarised (d) elliptically polarised
- 13. The wavelength λ_e of an electron and λ_p of a photon of same energy E are related by (c) $\lambda_p \alpha \frac{1}{\sqrt{\lambda e}}$ (b) $\lambda_p \alpha \sqrt{\lambda_e}$ (d) $\lambda_p \alpha \lambda_e^2$ (a) $\lambda_p \alpha \lambda_e$
- 14. In a hydrogen atom, the electron revolving in the fourth orbit, has angular momentum equal to

(a) h (b)
$$\frac{h}{\pi}$$
 (c) $\frac{4h}{\pi}$ (d) $\frac{2h}{\pi}$

15. A radioactive nucleus (initial mass number A and atomic number Z) emits two α -particles and 2 positrons. The ratio of number of neutrons to that of proton in the final nucleus will be

(a)
$$\frac{A-Z-4}{Z-2}$$
 (b) $\frac{A-Z-2}{Z-6}$ (c) $\frac{A-Z-4}{Z-6}$ (d) $\frac{A-Z-12}{Z-4}$

16. If a positive half -wave rectified voltage is fed to a load resistor, for which part of a cycle there will be current flow through the load? (a) $0^{0}-90^{0}$ (b) $90^{\circ}-180^{\circ}$ (c) 0^{0} – 180⁰ (d) 0^{0} -360⁰

(c) A

- 17. $\bar{A} + A = ?$
 - (a) 1
- 18. Doping a semiconductor results in
 - (a) The decrease in mobile charge carriers

(b) 0

- (b) The change in chemical properties
- (c) The change in the crystal structure
- (d) The breaking of the covalent bond
- 19. The variation of amplitude of the carrier wave with respect to the amplitude of the modulating signal is called
 - (a) Amplitude modulation
 - 9c) Phase modulation

(b) Frequency modulation

(d) \overline{A}

- (d) Pulse width modulation
- 20. The method of making nanomaterial by assembling the atoms is called
 - (a) Top down approach

(c) Cross down approach

- (b) Bottom up approach (d) Diagonal approach
- Kindly Send me Your Key Answer to Our email id Padasalai.net@gmail.com

www.TrbTnpsc.Com

PART - D

$6 \ge 5 = 30$

Answer ALL the questions.

21. Calculate the electric field due to a dipole on its axial line plane.

(OR)

Explain the types of absorption spectrum.

22. Derive an expression for phase angle between the applied voltage and current in a series RLC circuit.

(OR)

Deduce the relation for the magnetic field at a point due to an infinitely long straight conductor carrying current.

23. Obtain the condition for bridge balance in Wheatstone's bridge.

(OR)

Draw the circuit diagram of a half wave rectifier and explain its working.

24. Obtain Einstein's photoelectric equation with necessary explanation.

(OR)

Obtain lens maker's formula and mention its significance.

25. Discuss the spectral series of hydrogen atom.

(OR)

Explain in detail the construction and working of a Van de Graaff generator.

26. Obtain a relation for the magnetic field at a point along the axis of a circular coil carrying current.

(OR)

Obtain the law of radioactivity.
