DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI- 6 HIGHER SECONDARY SECOND YEAR EXAMINATION - MARCH - 2024

PHYSICS KEY ANSWER

NOTE:

1. Answers written with Blue or Black ink only to be evaluated.
2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
3. For answers in Part - II, Part - III, Part - IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

TOTAL MARKS : 70
PART-I
Answer all the Questions:
$15 \times 1=15$

Q.NO	OPTION	TYPE-A	Q.NO.	OPTION	TYPE-B
1	a	Photo Voltaic action	1	c	1.1 eV
2	c	$900 \mathrm{Vm}^{-1}$	2	c	480 W
3	c	480 W	3	a	$\mathrm{Q} / \sqrt{ } 2$
4	a	3	4	d	$3750 \mathrm{~A}^{0}$
5	c	Polarisation	5	d	$6 \mu \mathrm{~F}$
6	a	Q/V 2	6	a	Photo Voltaic action
7	d	$3 / \pi \mathrm{P}_{\mathrm{m}}$	7	d	Its Wavelength
8	d	Its Wavelength	8	c	$900 \mathrm{Vm}^{-1}$
9	b	$\pi / 4$	9	d	$3 / \pi \mathrm{P}_{\mathrm{m}}$
10	a	More than before	10	b	$\pi / 4$
11	d	$6 \mu \mathrm{~F}$	11	a	More than before
12	d	3750 A	12	a	3
13	a	Plane polarized	13	c	Polarisation
14	a	Albert Einstein	14	a	Plane polarized
15	c	1.1 eV	15	a	Albert Einstein

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.com

Answer any Six Questions: Q.No. 24 is Compulsory.
$6 \times 2=12$

\begin{tabular}{|c|c|c|c|}
\hline Q.No \& ANSWER \& \multicolumn{2}{|l|}{MARKS} \\
\hline 16 \& \begin{tabular}{l}
The Phenomenon of lagging of magnetic induction behind the magnetic field. \\
Hysteresis means 'lagaing (or) \\
Hysteresis means 'lagging behind'
\end{tabular} \& \[
2
\]
\[
1
\] \& 2 \\
\hline 17 \& \begin{tabular}{l}
When a beam of plane polarized light of Intensity \(\mathrm{I}_{0}\) is incident on an analyser, the intensity of light I transmitted from the analyser varies directly as the square of the cosine of the angle \(\theta\) between the transmission axes of polarizer and analyser. \\
(or)
\[
I=I_{0} \cos ^{2} \theta \quad \text { (Equation only) }
\]
\end{tabular} \& 2

1 \& 2

\hline 18 \& | Electric potential at a point is equal to the work done by an external force to bring a unit positive charge with constant velocity from infinity to the point in the region of the external Electric field. |
| :--- |
| (or) $V_{p}=-\int_{\infty}^{p} \vec{E} \cdot \overrightarrow{d r} \quad \text { (or) } \quad \mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$ | \& 2

1 \& 2

\hline 19 \& | $\begin{aligned} & \varepsilon=\frac{d \phi}{d t} \\ & =\frac{4 \times 10^{-3}}{0.4} \\ & \left.=10 \times 10^{-3} \mathrm{~V} \text { (or }\right) 10 \mathrm{mV} \end{aligned}$ |
| :--- |
| (If unit is not mentioned reduce $1 / 2$ mark) | \& | $1 / 2$ |
| :--- |
| $1 / 2$ |
| 1 | \& 2

\hline 20 \& | 1. Thermo electric generators |
| :--- |
| 2. In automobiles to increase fuel efficiency |
| 3. Thermocouples and thermopiles |
| (Any two points) | \& 2 \& 2

\hline 21 \& | $\begin{aligned} & \lambda=\frac{0.6931}{T_{\frac{1}{2}}} \\ & =\frac{0.6931}{5.01 \times 24 \times 60 \times 60} \\ & =1.6 \times 10^{-6} s^{-1} \end{aligned}$ |
| :--- |
| (or) $\begin{aligned} & \lambda=\frac{0.6931}{T_{\frac{1}{2}}} \\ & =\frac{0.6931}{5.01 \text { days }^{2}} \\ & =0.1383 \text { days }^{-1} \end{aligned}$ |
| (If unit is not mentioned reduce $1 / 2$ mark) | \& $1 / 2$

$1 / 2$
1
$1 / 2$
$1 / 2$
$1 / 2$
1 \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 22 \& \begin{tabular}{l}
Electromagnetic waves are non-mechanical waves which move with speed equals to the speed of light in vacuum. \\
(or) \\
If any one property of electromagnetic waves is mentioned
\end{tabular} \& 2

1 \& 2

\hline 23 \& | Biasing means providing external energy to charge carriers to overcome the barrier potential and make them move in a particular direction. |
| :--- |
| Two types of biasing |
| 1) Forward bias |
| 2) Reverse bias |
| (or) |
| The application of suitable DC Voltages across the transistor terminals is called biasing. |
| Modes of biasing |
| 1) Forward active |
| 2) Saturation |
| 3) Cut off | \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 | \& 2

\hline 24 \& | $\begin{aligned} & \mathrm{P}=\frac{1}{f} \\ & \mathrm{P}=\frac{1}{1.5} \\ & \text { (or) } \frac{1}{150 \times 10^{-2}} \\ & \mathrm{P}=0.67 \mathrm{D} \\ & \text { (or) } \mathrm{P}=\frac{100}{150} \\ & \text { (or) } \quad \mathrm{P}=\frac{2}{3} \mathrm{D} \end{aligned}$ |
| :--- |
| (If unit is not mentioned reduce $1 / 2$ mark) | \& $1 / 2$

$1 / 2$
1 \& 2

\hline
\end{tabular}

PART III

Answer Any Six Questions: Q.No. 33 is Compulsory
$6 \times 3=18$

Q.No	Answer	Marks	
25	Atomic number decreases by one and mass number remains same ${ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+v$ $P \rightarrow \mathrm{n}+\mathrm{e}^{+}+v$ (or) Explanation ${ }_{11}^{22} \mathrm{Na} \rightarrow{ }_{10}^{22} \mathrm{Ne}+e^{+}+v$ (or) Sodium is converted into neon through β^{+}decay (or) any other correct example	$\begin{gathered} 1 \\ 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$	3
26	$\begin{aligned} & I=n e A V_{d} \quad \text { (or) } \quad V_{d}=\frac{\mathrm{I}}{\mathrm{nAe}} \\ & =\frac{0.2}{8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 0.5 \times 10^{-6}} \\ & V_{d}=0.03 \times 10^{-3} \mathrm{~ms}^{-1} \end{aligned}$ (If unit is not mentioned reduce $1 / 2$ mark)	1 1 1	3

..(3)..

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.com

..(4)..

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.com

PART - IV

Answer all the Questions

$5 \times 5=25$

Q. No	ANSWER		Marks	
34	Simple microscope		1	
(a)	Explanation			
	Near point focusing - Diagram		1	
	Explanation		$1 / 2$	
	Upto $m=1+\frac{\mathrm{D}}{\mathrm{f}}$		$1 / 2$	5
	Normal focusing - Diagram		$1 / 2$	
	Explanation		1	
	Upto $m=\frac{\mathrm{D}}{\mathrm{f}}$			

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.com

(b)	Diagram Explanation $\begin{aligned} & \frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{R}}{\mathrm{~S}}=\frac{\mathrm{r} \cdot \mathrm{AJ}}{\mathrm{r} \cdot \mathrm{JB}} \\ & \frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{AJ}}{\mathrm{JB}}=\frac{l_{1}}{l_{2}} \\ & \mathrm{P}=\mathrm{Q} \cdot \frac{l_{1}}{l_{2}} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	5
$\begin{aligned} & 35 \\ & \text { (a) } \end{aligned}$	Diagram Explanation of Diagram and component $\left\{\begin{array}{l} \text { splitting } \\ d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} \mathrm{~d} \times \hat{r}}{\mathrm{r}^{2}} \\ (\text { or) } \\ \mathrm{dB}=\frac{\mu_{0}}{4 \pi} \\ \text { If } \frac{\mathrm{Id} \sin \theta}{\mathrm{r}^{2}} \\ \text { If } \theta=90^{\circ} \mathrm{dB}=\frac{\mu_{0}}{4 \pi} \\ \frac{\mathrm{Idl}}{\mathrm{r}^{2}} \end{array}\right\}$ $\left.\begin{array}{l}\text { From } \overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{4 \pi} \int \frac{\mathrm{dl}}{\mathrm{r}^{2}} \sin \emptyset \hat{\mathrm{k}} \\ \text { upto } \overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2} \frac{R^{2}}{\left(R^{2}+Z^{2}\right)^{3 / 2}} \hat{k} \\ (\mathrm{OR}) \\ \overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{NI}}{2} \frac{R^{2}}{\left(R^{2}+Z^{2}\right)^{3 / 2}} \hat{k}\end{array}\right\}$ $Z=0, \vec{B}=\frac{\mu_{0} \mathrm{NI}}{2 R} \zeta$		1 1	5
	(OR)			
(b)	Diagram and Explanation upto $d=\left(i_{1}+i_{2}\right)-\left(r_{1}+r_{2}\right)$ upto $d=\left(i_{1}+i_{2}\right)-A$ If $i_{1}=i_{2}=i, r_{1}=r_{2}=r$ (or) Graph $\left.\begin{array}{l} i=\frac{A+D}{2} \\ r=\frac{A}{2} \end{array}\right\}$ By applying in Snell's law $\mathrm{n}=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin (A / 2)}$		$\begin{gathered} \hline 1 \\ 1 \\ 1 / 2 \end{gathered}$ $1 / 2$ 1 1	5

..(6)..

Kindly Send me Your Key Answer to Our email id - Padasalai.net @ gmail.com

$\begin{aligned} & \hline 36 \\ & \text { (a) } \end{aligned}$	Diagram Photon energy = work function+kinetic energy (or) Explanation $\mathrm{h} v=\emptyset_{0}+\frac{1}{2} \mathrm{mv}^{2}$ At $v=v_{0}$ (threshold frequency), Kinetic energy) of electron is Zero $h v_{0}=\emptyset_{0}$ $h \nu=h v_{0}+\frac{1}{2} m v^{2}$ (or) Equivalent Equation		1 1 1 1 1 1	5
(OR)				
(b)	Diagram and Explanation $\left.\begin{array}{l}\mathrm{V}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \\ \varepsilon=-L \frac{d i}{d t}\end{array}\right\}$ $\mathrm{di}=\frac{V_{m}}{L} \sin \omega t$ 脘 t $\mathrm{i}=\frac{V_{m}}{\omega L} \sin (\omega t-\pi / 2)$ (or) $\text { upto } i=I_{m} \sin (\omega t-\pi / 2)$ Current lags behind voltage by $\pi / 2$ or 90° Phasor Diagram and wave Diagram			5
$\begin{aligned} & 37 \\ & \text { (a) } \end{aligned}$	Merits - Decrease in noise [or] increase in signal noise rati - Operating range is large - High transmission efficiency - Broad bandwidth - Better quality Limitations - Requires wider channel - FM transmitter and receiver are more complex - Costly - Compared to AM, FM covers less area	(Any Three) (Any Two)	3×1 2×1	5
(OR)				
(b)			1 1 1 1 1	5

38 (a)	Diagram and Explanation $\left\{\begin{array}{l} \vec{E}_{+}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{(r-a)^{2}} \hat{P} \\ \vec{E}_{-}=\frac{-1}{4 \pi \epsilon_{0}} \frac{q}{(r+a)^{2}} \hat{P} \end{array}\right\}$ Upto $\vec{E}_{\text {Tot }}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{4 r a}{\left(r^{2}-a^{2}\right)^{2}}\right] \hat{P}$ $\vec{E}_{\text {Tot }}=\frac{2 \vec{P}}{4 \pi \epsilon_{0} r^{3}}$ $\vec{P}=2 \mathrm{aq} \hat{P}$	1 $1 / 2$ 1 1 $1 / 2$	5
(OR)			
(b)	Nuclear reactor Nuclear reactor is a system in which nuclear fission takes place in a self-sustained controlled manner. Moderator It is a material used to convert fast neutrons into slow neutrons. Eg: water, $D_{2} O$, graphite (any one) Control rods It is used to control the rate of the reaction. (or absorb excess neutrons produced in a reaction) Eg: Cadmium or Boron (any one) Cooling System Absorbs the heat - transfers to heat exchanger - steam produced - rotates turbine - produces electricity. Eg: water, heavy water, liquid sodium. (any one)	2 1 1 1 1	5

