DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI- 6 HIGHER SECONDARY SECOND YEAR EXAMINATION - MARCH – 2024 PHYSICS KEY ANSWER

NOTE:

- 1. Answers written with Blue or Black ink only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
- 3. For answers in Part II , Part III , Part IV like reasoning , explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

TOTAL MARKS: 70

PART-I

Answer all the Questions:

15×1=15

	7 1110 1101	an the Questions.			15~1=15
Q.NO	OPTION	TYPE-A	Q.NO.	OPTION	TYPE-B
1	а	Photo Voltaic action	1	С	1.1 eV
2	С	900 Vm ⁻¹	2	С	480 W
3	С	480 W	3	а	Q/√2
4	а	3	4	d	3750 A ⁰
5	С	Polarisation	5	d	6 μF
6	а	Q/√2	6	а	Photo Voltaic action
7	d	$3/\pi P_m$	7	d	Its Wavelength
8	d	Its Wavelength	8	С	900 Vm ⁻¹
9	b	$\pi/4$	9	d	$3/\pi P_m$
10	а	More than before	10	b	$\pi/4$
11	d	6 μF	11	а	More than before
12	d	3750 A ⁰	12	а	3
13	а	Plane polarized	13	С	Polarisation
14	а	Albert Einstein	14	а	Plane polarized
15	С	1.1 eV	15	а	Albert Einstein

PART-II Answer any Six Questions : Q.No. 24 is Compulsory.

$6 \times 2 = 12$	2
-------------------	---

Q.No	ANSWER	MAI	RKS
16	The Phenomenon of lagging of magnetic induction behind the magnetic field.	2	0
	(or)		2
	Hysteresis means 'lagging behind'	1	
17	When a beam of plane polarized light of Intensity I_0 is incident on an analyser, the intensity of light I transmitted from the analyser varies directly as the square of the cosine of the angle θ between	2	0
	the transmission axes of polarizer and analyser. (or)		2
40	$I = I_0 \cos^2 \theta$ (Equation only)	1	
18	Electric potential at a point is equal to the work done by an external force to bring a unit positive charge with constant velocity from infinity to the point in the region of the external Electric field.	2	2
	(or)		_
	$V_p = -\int_{\infty}^p \overrightarrow{E} \cdot \overrightarrow{dr}$ (or) $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	1	
19	$\varepsilon = \frac{d\phi}{dt}$	1/2	
		1/2	
	$= \frac{4 \times 10^{-3}}{0.4}$	/2	2
	$=10\times 10^{-3}V\ (or)10mV$	1	
	(If unit is not mentioned reduce ½ mark)		
20	Thermo electric generators		
	2. In automobiles to increase fuel efficiency	2	2
	3. Thermocouples and thermopiles (Any two points)		
21	$\lambda = \frac{0.6931}{}$		
	$A = \frac{T_{\frac{1}{2}}}{T_{\frac{1}{2}}}$	1/2	
	$=\frac{0.6931}{5.01 + 0.01}$	1/_	
	$-5.01 \times 24 \times 60 \times 60$	1/2	
	$= 1.6 \times 10^{-6} s^{-1}$	1	
	(or)		
	$\lambda = \frac{0.6931}{T_{\frac{1}{2}}}$	1/2	2
	$=\frac{0.6931}{5.04}$	1/2	
	$\frac{-5.01 days}{5.01 days}$		
	$= 0.1383 \ days^{-1}$	1	
	(If unit is not mentioned reduce ½ mark)	(2)	

..(2)..

22	Electromagnetic waves are non-mechanical waves which move	2	
	with speed equals to the speed of light in vacuum.		2
	(or)		_
	If any one property of electromagnetic waves is mentioned	1	
23	Biasing means providing external energy to charge carriers to overcome the barrier potential and make them move in a particular direction.	1	
	Two types of biasing 1) Forward bias 2) Reverse bias	1	
	(or) The application of suitable DC Voltages across the transistor terminals is called biasing.	1	2
	Modes of biasing 1) Forward active 2) Saturation 3) Cut off	1	
24	$P = \frac{1}{f}$	1/2	
	$P = \frac{1}{1.5}$ (or) $\frac{1}{150 \times 10^{-2}}$ (or) $P = \frac{100}{150}$	1/2	
	$P = 0.67 D$ (or) $P = \frac{2}{3} D$	1	2
	(If unit is not mentioned reduce ½ mark)		

PART III

Answer Any Six Questions : Q.No. 33 is Compulsory 6×3=18

Q.No	Answer	Ма	rks
25	Atomic number decreases by one and mass number remains same	1	
	$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + e^{+} + \nu$	1/2	
	$P \rightarrow n + e^+ + \nu$ (or) Explanation	1/2	
	$^{22}_{11}Na \rightarrow ^{22}_{10}Ne + e^+ + \nu$ (or) Sodium is converted into neon	1	3
	through β^+ decay (or) any other correct example		
26	$I = neAV_d$ (or) $V_d = \frac{I}{nAe}$	1	
	0.2		
	$= \frac{1}{8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 0.5 \times 10^{-6}}$	1	3
	$V_d = 0.03 \times 10^{-3} ms^{-1}$	1	
	(If unit is not mentioned reduce ½ mark)		

..(3)..

27	Diagram with Explanation	1	
	$\frac{1}{\mathbf{v}'} - \frac{1}{u} = \frac{1}{f_1}$	1/2	
	$\frac{1}{v} - \frac{1}{v'} = \frac{1}{f_2}$	1/2	
	$\frac{1}{\mathbf{v}} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$	1/2	3
	$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$	1/2	
28	The deflection produced per unit current flowing through the galvanometer. Current sensitivity of galvanometer increased by	1	
	Increasing number of turns N Increasing magnetic induction B	4×½	
	3. Increasing the area of the coil A	77/2	3
	 decreasing couple per unit twist of the suspension wire K (or) 		
	(Equation only: $I_s = \frac{\theta}{I} (or) \frac{NAB}{K} (or) \frac{I}{G}$)	1	
29	$N = \frac{HH}{E} = \frac{P\lambda}{hc}$	1	
	$50 \times 10^{-3} \times 640 \times 10^{-9}$		
	$= \frac{1}{6.626 \times 10^{-34} \times 3 \times 10^8}$	1	3
	$N = 1609.8 \times 10^{14} s^{-1}$		
	(or) $N = 1.61 \times 10^{17} s^{-1}$		
	(If unit is not mentioned reduce ½ mark)	1	
30	Diagram (or) explanation	1	
	$B = \mu_0 ni$ (or) $\phi_B = BA = (\mu_0 ni)A$	1/2	
	$N\phi_B = \mu_0 n^2 A l i$	1/2	3
	$N\phi_B = L i$	1/2	5
	$L = \mu_0 n^2 A l$	-	
	(or)	1/2	
	$L = \mu n^2 A l$	(4)	

..(4)..

31					
		Interference	Diffraction		
	1	Equally spaced bright and dark	Central bright is double		
		fringes	the size of other fringes		
	2	Equal intensity for all bright	Intensity falls rapidly for	3×1	3
		fringes	higher order fringes		
	3	Large number of fringes are	Less number of fringes		
		obtained	are obtained		
32	Diagr	am (or) explanation		1/2	
	,		E		
	$\Phi_{\rm E} = 9$	$\oint \vec{E} \cdot \overrightarrow{dA} \text{ (or) } \phi_{E} = \oint E \text{ dA cos } \theta$	dÃ	1/2	
			•	1/2	3
		$_{\rm E} = \oint {\rm EdA} ({\rm or}) \phi_{\rm E} = {\rm E} \oint {\rm dA}$			
	$\phi_{-} =$	$E_E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \times 4\pi r^2 \text{ (or) } E = \frac{Q}{4\pi\varepsilon_0 r^2} \text{ and } \oint dA = 4\pi r^2$			
	$\boldsymbol{\varphi}_E =$	<u> </u>		1	
		<u> </u>		1.	
33	$E_g =$	$\frac{hc}{\lambda}$ (or) $\lambda = \frac{hc}{E_a}$		1/2	
		\mathcal{G}		1/2	3
	$\lambda = \frac{1}{2}$	$\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.875 \times 1.6 \times 10^{-19}}$		/ _	3
		60nm (If unit is not mention	ned reduce ½ mark)	1	
		colour light is emitted	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	

PART – IV

Answer all the Questions

5×5=25

Q. No	ANSWER			rks
34 (a)	Simple microscope Explanation	Eye focussed on near point	1	
	Near point focusing - Diagram Explanation	F	1/2 1/2	
	Upto m = 1 + $\frac{D}{f}$		1	_
	Normal focusing - Diagram Explanation	b S S S S S S S S S S S S S S S S S S S	1/2 1/2	5
	Upto $m = \frac{D}{f}$	South addings	1	
	(OR)			

..(5)..

(b)	Diagram Explanation	C G G G G G G G G G G G G G G G G G G G	1	
	$\frac{P}{Q} = \frac{R}{S} = \frac{r. AJ}{r. JB}$	A Religion of the state of the	1	5
	$\frac{Q}{P} = \frac{AJ}{JB} = \frac{l_1}{l_2}$		1	5
	$\overline{Q} = \overline{JB} = \overline{l_2}$			
35	$P = Q. \frac{l_1}{l_2}$		1	
(a)	Diagram Explanation of Diagram and component splitting $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \vec{dl} \times \hat{r}}{r^2}$ (or) $dB = \frac{\mu_0}{4\pi} \frac{I dl \sin \theta}{r^2}$ If $\theta = 90^\circ$ $dB = \frac{\mu_0}{4\pi} \frac{I dl}{r^2}$ From $\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{dl}{r^2} \sin \emptyset \hat{k}$ upto $\vec{B} = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + Z^2)^{3/2}} \hat{k}$ (OR)		1 1	5
	$\vec{B} = \frac{\mu_0 NI}{2} \frac{R^2}{(R^2 + Z^2)^{3/2}} \hat{k}$ $Z = 0, \vec{B} = \frac{\mu_0 NI}{2R} \hat{\gamma}$ (OR)		1	
(b)	Diagram and Explanation	ÂA	1	
	upto $d = (i_1 + i_2) - (r_1 + r_2)$ upto $d = (i_1 + i_2) - A$	P B C	1 ½	
	If $i_1 = i_2 = i$, $r_1 = r_2 = r$ (or) Graph	(b) 60,000 (c) 100,000 (c) 100	1/2	5
	$i = \frac{A+D}{2}$ $r = \frac{A}{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
	By applying in Snell's law $n = \frac{\sin\left(\frac{A+D}{2}\right)}{\sin\left(\frac{A}{2}\right)}$		1	
			(6).	•

36	Diagram		1	
(a)	Photon energy = work function+kinetic energy	E = hv	1	
	(or) Explanation	$ \begin{cases} $		
	$h \nu = \emptyset_0 + \frac{1}{2} m v^2$	Metal Metal	1	5
	At $v = v_0$ (threshold frequency), Kinetic energy	(a) (b)		5
	of electron is Zero		1	
	$hv_0 = \emptyset_0$			
	$hv = hv_0 + \frac{1}{2} mv^2$ (or) Equivalent Equation	,	1	
	(OR)		ı	
(b)	Diagram and Explanation		. 1	
(5)	$V = V_m \sin \omega t$			
	di		1	
	$\left \varepsilon = -L \frac{di}{dt} \right $			
	$di = \frac{V_m}{I} \sin \omega t \not \parallel_{\mathcal{L}}^{\mathcal{L}} t$	$v = v_{\mathbf{m}} \sin \omega t$	1/2	5
	$i = \frac{V_m}{\omega L} \sin(\omega t - \pi/2)$		72	
	$I = \frac{1}{\omega L} \sin (\omega t - v^2/2)$			
	(or)	0 V AI V I	1	
	upto i = $I_m \sin(\omega t - \pi/2)$	A A A A A A A A A A A A A A A A A A A		
	Current lags behind voltage by $\pi/2$ or 90°	Ki o d d d d d d d d d d d d d d d d d d	1/2	
	Phasor Diagram and wave Diagram	(g = l _m)	1/2+1/2	
37	Merits			
(a)	Decrease in noise [or] increase in signal noise raOperating range is large	·uo		
	High transmission efficiency		04	
	Broad bandwidth		3 × 1	5
	Better quality	(Any Three)		5
	LimitationsRequires wider channel			
	FM transmitter and receiver are more complex			
	Costly		2*1	
	Compared to AM, FM covers less area	(Any Two)	Z ^ 1	
	(OR)		<u> </u>	
(b)	Diagram or explanation	/ P		
	∫ ⇒ →			
	$ \oint \vec{B} \cdot \vec{dl} = \mu_0 i_c $	+q -q	1	
	Diagram or explanation	+ I - V		
	}		1	
	$ \oint \vec{B} \cdot \vec{dl} = 0 $			
	Diagram or explanation	1c +q -q 1c		
	$\phi_E = \oint \vec{E} \cdot \vec{dA} = EA = \frac{q}{\epsilon_0}$	+ 1 - 1	1	
	$upto \ i_d = \varepsilon_0 \frac{d\phi_E}{dt} \ \text{Or definition of displacement current}$	·	4	
	$ \oint \vec{B} \cdot \vec{dl} = \mu_0(i_c + i_d) \text{(or)} $	P S_2 i_d		5
		E.		
	$=\mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$ (or)	1 _c	1	
	$= \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d}{dt} \oint \vec{E} \cdot \vec{dA}$			
	$=\mu_0\iota_c+\mu_0\varepsilon_0\frac{dt}{dt}\Psi E.dA$			
			(7).	

38	Diagram and Explanation	4-1418	1		
(a)	$\vec{E}_{+} = \frac{1}{4\pi\epsilon_{0}} \frac{q}{(r-a)^{2}} \hat{P}$ $\vec{E}_{-} = \frac{-1}{4\pi\epsilon_{0}} \frac{q}{(r+a)^{2}} \hat{P}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		
	$ec{E}_{Tot} = ec{E}_+ + ec{E}$		1/2	5	
	Upto $\vec{E}_{Tot} = \frac{q}{4\pi\epsilon_0} \left[\frac{4ra}{(r^2 - a^2)^2} \right] \hat{P}$		1		
	$ec{E}_{Tot} = rac{2ec{P}}{4\pi\epsilon_0 r^3}$	< 2	1		
	\vec{P} = 2aq \hat{P}		1/2		
		(OR)			
(b)	Nuclear reactor Nuclear reactor is a system in which nuclear fission takes place in a self-sustained controlled manner.				
	Moderator It is a material used to convert fast neutrons into slow neutrons. Eg: water, D_2O , graphite (any one)				
	Control rods It is used to control the rate of the reaction. (or absorb excess neutrons produced in a reaction) Eg: Cadmium or Boron (any one)				
	Cooling System Absorbs the heat – transfers to heat exchanger – steam produced – rotates turbine – produces electricity. Eg: water, heavy water, liquid sodium. (any one)				

..(8)..