# DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI- 6 HIGHER SECONDARY SECOND YEAR EXAMINATION - MARCH – 2024 PHYSICS KEY ANSWER

#### NOTE:

- 1. Answers written with Blue or Black ink only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
- 3. For answers in Part II, Part III, Part IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

**TOTAL MARKS: 70** 

### PART-I

Answer all the Questions:

15×1=15

| Q.NO | OPTION | TYPE-A               | Q.NO. | OPTION | TYPE-B               |
|------|--------|----------------------|-------|--------|----------------------|
| 1    | а      | Photo Voltaic action | 1 1   | C      | 1.1 eV               |
| 2    | C      | 900 Vm <sup>-1</sup> | 2     | С      | 480 W                |
| 3    | C      | 480 W                | 3     | а      | Q/√2                 |
| 4    | а      | 3                    | 4     | d d    | 3750 A <sup>0</sup>  |
| 5    | C      | Polarisation         | 5     | d      | 6 µF                 |
| 6    | а      | Q/√2                 | 6     | а      | Photo Voltaic action |
| 7    | · d    | 3/π P <sub>m</sub>   | 7     | d      | Its Wavelength       |
| 8    | d      | Its Wavelength       | 8     | C      | 900 Vm <sup>-1</sup> |
| 9    | b      | $\pi/4$              | 9     | d      | 3/π P <sub>m</sub>   |
| 10   | а      | More than before     | 10    | b      | π/4                  |
| 11   | d      | 6 μF                 | 11    | a      | More than before     |
| 12   | d      | 3750 A <sup>0</sup>  | 12    | а      | 3                    |
| 13   | а      | Plane polarized      | 13    | С      | Polarisation         |
| 14   | а      | Albert Einstein      | 14    | а      | Plane polarized      |
| 15   | С      | 1.1 eV               | 15    | а      | Albert Einstein      |

|                                  | ANSWER                                                                                                                                |            |       |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| Q.No                             |                                                                                                                                       | MA         | RKS   |
| 16                               | The Phenomenon of lagging of magnetic induction behind the                                                                            | 2          |       |
|                                  | magnetic field. (or)                                                                                                                  |            | 2     |
|                                  | Hysteresis means 'lagging behind'                                                                                                     |            | 4     |
| 17                               | When a beam of plane polarized light of Intensity Io is incident on                                                                   | 1_         |       |
| 1 "                              | an analyser, the intensity of light I transmitted from the analyser                                                                   | 1          |       |
|                                  | varies directly as the square of the cosine of the angle $\theta$ between                                                             | 2          |       |
|                                  | the transmission axes of polarizer and analyser.                                                                                      | 14.        | 2     |
|                                  | (or)                                                                                                                                  |            |       |
|                                  | $I = I_0 \cos^2 \theta \qquad \text{(Equation only)}$                                                                                 | 1          |       |
| 18                               | Electric potential at a point is equal to the work done by an external                                                                | 2          |       |
|                                  | force to bring a unit positive charge with constant velocity from infinity to the point in the region of the external Electric field. |            | - 1.2 |
|                                  | (or)                                                                                                                                  |            | 2     |
|                                  | HT (18 - 19 10) (18 - 19 12 - 19 13 - 19 14 - 19 15 - 19 15 - 19 15 - 19 16 16 16 16 16 16 16 16 16 16 16 16 1                        | The Assert |       |
|                                  | $V_p = -\int_{\infty}^p \overrightarrow{E} \cdot \overrightarrow{dr}$ (or) $V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$              | 1          |       |
| 19                               | $d\phi$                                                                                                                               | 1/2        |       |
|                                  | $arepsilon=rac{d\phi}{dt}$                                                                                                           | /2         |       |
|                                  | $-4 \times 10^{-3}$                                                                                                                   | 1/2        |       |
|                                  | $=\frac{4\times10}{0.4}$                                                                                                              |            | 2     |
|                                  | 어느 하다 내가 하는 이 경우를 다면 보고 있으니 이 이렇게 하나가 하는 이렇게 되어 가장 하는 것이 하는 것이 하는 것이 되었다.                                                             |            |       |
|                                  | $= 10 \times 10^{-3} V (or) 10 mV$                                                                                                    | 1          |       |
|                                  | (If unit is not mentioned reduce ½ mark)                                                                                              |            |       |
| 20                               | 1. Thermo electric generators                                                                                                         | 8          |       |
| en de                            | In automobiles to increase fuel efficiency                                                                                            | 0          |       |
| i Te galaini.<br>Andrea — Angria | 3. Thermocouples and thermopiles                                                                                                      | 2          | 2     |
| 24                               | (Any two points)                                                                                                                      |            |       |
| 21                               | $\lambda = \frac{0.6931}{\pi}$                                                                                                        |            |       |
|                                  | $T_{rac{1}{2}}$                                                                                                                      | 1/2        |       |
|                                  | 0.6931                                                                                                                                |            |       |
|                                  | $\overline{5.01 \times 24 \times 60 \times 60}$                                                                                       | 1/2        |       |
| Consultation of the              | $= 1.6 \times 10^{-6} s^{-1}$                                                                                                         |            |       |
|                                  |                                                                                                                                       | 1          |       |
|                                  | (or)                                                                                                                                  |            |       |
|                                  | _ 0.6931                                                                                                                              | 1/2        | 2     |
|                                  | $T_{\underline{1}}$                                                                                                                   | /2         |       |
|                                  |                                                                                                                                       | -          |       |
|                                  | 0.6931                                                                                                                                | 1/2        |       |
|                                  | 5.01 <i>days</i>                                                                                                                      | 1          |       |
|                                  | 0.1383ndaysnīd me your key Answers to our email id - padasalai.net@gmail.com                                                          |            |       |
|                                  | (If unit is not mentioned reduce ½ mark)                                                                                              |            |       |
|                                  | (II UIIILIS HOLIHIGHIGG 1944-1944)                                                                                                    | 121        |       |

| 22 | Electromagnetic waves are non-mechanical waves which move with speed equals to the speed of light in vacuum.  (or)  If any one property of electromagnetic waves is mentioned | 2   | 2 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 23 | Biasing means providing external energy to charge carriers to overcome the barrier potential and make them move in a particular direction.                                    | 1   |   |
|    | Two types of biasing 1) Forward bias 2) Reverse bias (or)                                                                                                                     | 1   | 2 |
|    | The application of suitable DC Voltages across the transistor terminals is called biasing.                                                                                    | 1   |   |
|    | Modes of biasing 1) Forward active 2) Saturation 3) Cut off                                                                                                                   | 1   |   |
| 24 | $P = \frac{1}{f}$ $P = \frac{1}{15}  \text{(or)}  \frac{1}{150 \times 10^{-2}}  \text{(or)}  P = \frac{10}{150}$                                                              | 1/2 |   |
|    | $P = 0.67 D$ (or) $P = \frac{2}{3} D$                                                                                                                                         | 1   | 2 |
|    | (If unit is not mentioned reduce ½ mark)                                                                                                                                      |     |   |

## PART III

Answer Any Six Questions : Q.No. 33 is Compulsory

6×3=18

| n <u>. 1.11</u> | Answer                                                                                                                                        |           | Marks |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|--|
| Q.No<br>25      | Atomic number decreases by one and mass number remains same ${}^{A}_{Z}X \rightarrow {}_{Z-1}{}^{A}Y + e^{+} + \nu$                           | 1 1/2 1/2 |       |  |
| Š.              | $P \rightarrow n + e^+ + \nu$ (or) Explanation                                                                                                |           |       |  |
| 2               | $^{22}_{11}Na \rightarrow ^{22}_{10}Ne + e^+ + \nu$ (or) Sodium is converted into neon through $\beta^+$ decay (or) any other correct example | -1        | 3     |  |
| 26              | $I = neAV_d$ (or) $V_d = \frac{1}{nAe}$                                                                                                       | 1         |       |  |
|                 | 0.2                                                                                                                                           | 1         | 3     |  |
|                 | $= \frac{1}{8.4 \times 10^{28} \times 1.6 \times 10^{-19} \times 0.5 \times 10^{-6}}$                                                         | 1         |       |  |
|                 | $V_d = 0.03 \times 10^{-3} ms^{-1}$ (If unit is not mentioned reduce ½ mark)                                                                  | (3).      |       |  |

| $\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1}$ $\frac{1}{v} - \frac{1}{v} = \frac{1}{f_2}$ $\frac{1}{v} - \frac{1}{v} = \frac{1}{f_1} + \frac{1}{f_2}$ $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$ $\frac{1}{f_2} = \frac{1}{f_1} + \frac{1}{f_2}$ $$       | 27 Diagram with Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| $\frac{1}{v} - \frac{1}{v'} = \frac{1}{f_2}$ $\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$ $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$ $\frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{f_2} + \frac$ | $\left  \frac{1}{v'} - \frac{1}{v} = \frac{1}{\varepsilon} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     |            |
| $\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$ $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$ $\frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2}$ $\frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2}$ $\frac{1}$     | 1 1 A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2   | er,-       |
| $ \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} $ $ \frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2} $ $ \frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2} $ $ \frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2} $ $ \frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2} + \frac{1}{f_2} $ $ \frac{1}{f_2} = \frac{1}{f_2} + \frac{1}{$                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2   | 10 E. X. 1 |
| The deflection produced per unit current flowing through the galvanometer. Current sensitivity of galvanometer increased by 1. Increasing number of turns N 2. Increasing magnetic induction B 3. Increasing the area of the coil A 4. decreasing couple per unit twist of the suspension wire K (Equation only: $I_s = \frac{\theta}{I} (or) \frac{NAB}{K} (or) \frac{I}{G}$ ) 1 $I_s = \frac{P\lambda}{I} (or) \frac{NAB}{K} (or) \frac{I}{G}$ 1 $I_s = \frac{50 \times 10^{-3} \times 640 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}}$ 1 $I_s = \frac{50 \times 10^{-3} \times 640 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}}$ 1 $I_s = \frac{50 \times 10^{-3} \times 640 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}}$ 1 $I_s = \frac{1}{I} (or) \frac{I_s}{I} (o$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2   | 3          |
| 2. Increasing number of turns N 2. Increasing magnetic induction B 3. Increasing the area of the coil A 4. decreasing couple per unit twist of the suspension wire K  (Equation only: $I_s = \frac{\theta}{l}$ (or) $\frac{NAB}{K}$ (or) $\frac{l}{g}$ ) $N = \frac{IB}{E} = \frac{P\lambda}{hc}$ $= \frac{50 \times 10^{-3} \times 640 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}}$ $N = 1609.8 \times 10^{14} s^{-1}$ (or) $N = 1.61 \times 10^{17} s^{-1}$ 1  30 Diagram (or) explanation $B = \mu_0 ni$ (or) $\phi_B = BA = (\mu_0 ni)A$ $N\phi_B = \mu_0 n^2 Ali$ $N\phi_B = Li$ $L = \mu_0 n^2 Al$ (or) $L = \mu n^2 Al$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 The deflection production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2   |            |
| 4. decreasing couple per unit twist of the suspension wire K (Equation only: $I_S = \frac{\theta}{I}$ (or) $\frac{NAB}{K}$ (or) $\frac{I}{G}$ ) $N = \frac{29}{E} = \frac{P\lambda}{hc}$ $= \frac{50 \times 10^{-3} \times 640 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}}$ $N = 1609.8 \times 10^{14} s^{-1}$ (or) $N = 1.61 \times 10^{17} s^{-1}$ 1  3  Diagram (or) explanation $B = \mu_0 ni \text{ (or) } \phi_B = BA = (\mu_0 ni)A$ $N\phi_B = \mu_0 n^2 Al i$ $N\phi_B = L i$ $L = \mu_0 n^2 Al$ (or) $L = \mu n^2 Al$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. Increasing magnetic induction B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |            |
| 29 $N = \frac{g}{E} = \frac{P\lambda}{hc}$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. decreasing couple per unit build a full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4×1/2 | 3          |
| 29 $N = \frac{\mathcal{E}}{E} = \frac{P\lambda}{hc}$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (or)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 3          |
| $N = \frac{1}{E} = \frac{N}{hc}$ $= \frac{50 \times 10^{-3} \times 640 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^{8}}$ $N = 1609.8 \times 10^{14} s^{-1}$ (or) $N = 1.61 \times 10^{17} s^{-1}$ $B = \mu_{0} ni \text{ (or) } \phi_{B} = BA = (\mu_{0} ni)A$ $N \phi_{B} = \mu_{0} n^{2} Al i$ $N \phi_{B} = L i$ $L = \mu_{0} n^{2} Al$ (or) $L = \mu n^{2} Al$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Equation only: $I_s = \frac{\theta}{r} (or) \frac{NAB}{r} (or) \frac{I}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N = \frac{\mathcal{R}}{F} = \frac{P\lambda}{hc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-50 \times 10^{-3} \times 640 \times 10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | D<br>10    |
| $N = 1609.8 \times 10^{14} s^{-1}$ $(or)$ $N = 1.61 \times 10^{17} s^{-1}$ $Diagram (or) explanation$ $B = \mu_0 ni (or) \phi_B = BA = (\mu_0 ni)A$ $N\phi_B = \mu_0 n^2 Al i$ $L = \mu_0 n^2 Al$ $(or)$ $L = \mu n^2 Al$ $1$ $3$ $V = 1.61 \times 10^{14} s^{-1}$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $6.626 \times 10^{-34} \times 3 \times 10^{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            |
| (or) $N = 1.61 \times 10^{17} s^{-1}$ Obligation $B = \mu_0 ni \text{ (or) } \phi_B = BA = (\mu_0 ni)A$ $N\phi_B = \mu_0 n^2 Al i$ $L = \mu_0 n^2 Al$ (or) $L = \mu n^2 Al$ (If unit is not mentioned reduce ½ mark)  1  1  1  1  1  1  1  1  1  1  1  1  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $N = 1609.8 \times 10^{14} s^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 2          |
| Diagram (or) explanation $B = \mu_0 ni \text{ (or) } \phi_B = BA = (\mu_0 ni)A$ $N\phi_B = \mu_0 n^2 Al i$ $L = \mu_0 n^2 Al$ $(or)$ $L = \mu n^2 Al$ $(1 \text{ unit is not mentioned reduce } \frac{1}{2} \text{ mark}$ $\frac{1}{2} \text{ mark}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (or)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 3          |
| $B = \mu_0 ni \text{ (or) } \phi_B = BA = (\mu_0 ni)A$ $N\phi_B = \mu_0 n^2 Al i$ $L = \mu_0 n^2 Al$ $(or)$ $L = \mu n^2 Al$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $N = 1.61 \times 10^{17} s^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |
| $B = \mu_0 ni \text{ (or) } \phi_B = BA = (\mu_0 ni)A$ $N\phi_B = \mu_0 n^2 Al i$ $L = \mu_0 n^2 Al$ $(or)$ $L = \mu n^2 Al$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (If unit is not mentioned reduce ½ mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.    |            |
| $N\phi_{B} = \mu_{0}n^{2}Al i$ $N\phi_{B} = L i$ $L = \mu_{0}n^{2}Al$ $(or)$ $L = \mu n^{2}Al$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $B = \mu_0 ni$ (or) $\phi_B = BA = (\mu_0 ni)A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.    |            |
| $N\phi_{B} = L i$ $L = \mu_{0}n^{2}Al$ (or) $L = \mu n^{2}Al$ (or)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N\phi_B = \mu_0 n^2 A l i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2   |            |
| $L = \mu_0 n^2 A l$ (or) $L = \mu n^2 A l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |            |
| $L = \mu n^2 A l$ (or)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /2    | 3          |
| $L = \mu n^2 A l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [THE FIRST CONTROL OF SELECTION OF THE SERVICE OF SELECTION OF SERVICE OF SE | 1/2   | i e i di   |
| 1/2 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 그 그 나는 아이들이 아는데, 그 것으로 그리고 하는데, 아이들은 이 아이들은 이 아이들이 중에 하는 것이 되는데, 하는데 이 사람이 되었다면 하는데 모르겠다면 그 그 그 없다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2   | 125        |

| 31 |                              |                                                                                                                 |                                                    | y Tues  |   |
|----|------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|---|
|    |                              | Interference                                                                                                    | Diffraction                                        |         |   |
|    | T-                           | Equally spaced bright and dark fringes                                                                          | Central bright is double the size of other fringes |         |   |
|    | 2                            | Equal intensity for all bright fringes                                                                          | Intensity falls rapidly for higher order fringes   | 3×1     | 3 |
|    | 3                            | Large number of fringes are obtained                                                                            | Less number of fringes are obtained                |         |   |
| 32 | Diagr                        | am (or) explanation                                                                                             |                                                    | 1/2     |   |
|    | $\phi_{\rm E} = 9$           | $\oint \vec{E} \cdot \vec{dA} \text{ (or) } \phi_{E} = \oint E  dA \cos \theta$                                 |                                                    | 1/2     |   |
|    | φ <sub>E</sub> =             | $\oint E dA  (or)  \phi_E = E \oint dA$                                                                         | ( 3. 1                                             | 1/2 1/2 | 3 |
|    | $\phi_E = \frac{1}{2}$       | $\frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \times 4\pi r^2$ (or) $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ and      | $\oint dA = 4\pi r^2$                              | /2      |   |
|    | $\phi_{\rm E} = \frac{1}{2}$ | $\frac{Q}{\varepsilon_0}$                                                                                       |                                                    | 1.      |   |
| 33 | 1                            | $\frac{hc}{\lambda}$ (or) $\lambda = \frac{hc}{E_a}$                                                            |                                                    | 1/2     |   |
|    | 2 -                          | $\frac{\cancel{6.6} \times 10^{-34} \times \cancel{3} \times 10^{8}}{1.875 \times 1.6 \times \cancel{10^{-1}}}$ |                                                    | 1/2     | 3 |
|    | $\lambda = 6$                | 60nm (If unit is not mention                                                                                    | ned reduce ½ mark)                                 | 1       |   |
|    | Red                          | colour light is emitted                                                                                         |                                                    | 1 1     |   |

# PART – IV

## Answer all the Questions

5×5=25

| Q. No     | ANSWER                                                                                                                                                             | Marks                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 34<br>(a) | Simple microscope Explanation  Near point focusing - Diagram Explanation  Upto $m = 1 + \frac{D}{f}$ Normal focusing - Diagram Explanation  Upto $m = \frac{D}{f}$ | 1<br>1/2<br>1/2<br>1<br>1<br>1/2<br>1/2 |
|           | (OR)                                                                                                                                                               |                                         |

..(5)..

| (b)           | Diagram Explanation                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1     |     |
|---------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
|               | $\frac{P}{Q} = \frac{R}{S} = \frac{r. AJ}{r. JB}$ $\frac{P}{Q} = \frac{AJ}{JB} = \frac{l_1}{l_2}$    | Meet sour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1       |     |
|               | $\frac{P}{O} = \frac{AJ}{IB} = \frac{l_1}{l_2}$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |     |
|               | $P = Q. \frac{l_1}{l_2}$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |     |
| 35<br>(a)     | Diagram Explanation of Diagram and component                                                         | Name : Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1       |     |
|               | splitting                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2+1/2 |     |
| F             | $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$ (or)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
| - <u>-</u>    | $dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$                                                | المرافع المام الما | 1       |     |
|               | If $\theta = 90^{\circ} dB = \frac{\mu_0}{4\pi} \frac{Idl}{r^2}$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | =   |
|               |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e jed   |     |
|               | From $\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{dl}{r^2} \sin \emptyset \hat{k}$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | . ( |
|               | upto $\vec{B} = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + Z^2)^{3/2}} \hat{k}$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
|               | (OR)                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |     |
| F             | 보다 때 생동으로 있다고 있다. (15 To A A A A A A A A A A A A A A A A A A                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
|               | $\vec{B} = \frac{\mu_0 NI}{2} \frac{R^2}{(R^2 + Z^2)^{3/2}} \hat{k}$                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
| Į "           | $Z = 0, \vec{B} = \frac{\mu_0 NI}{2R} \hat{\gamma}$                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
|               | (OP)                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |     |
| b)            | Diagram and Explanation                                                                              | Bill State Statement Comment of the State Statement Statement of the State Statement Statement of the State Statement of the  |         |     |
| - 11 (        | upto $d = (i_1 + i_2) - (r_1 + r_2)$<br>upto $d = (i_1 + i_2) - A$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | H , |
|               | (11 1 12) - A                                                                                        | 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2     |     |
|               |                                                                                                      | B manufacture of the second C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | arall.  |     |
| 1             | $f i_1 = i_2 = i, r_1 = r_2 = r$ (or) Graph                                                          | con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |     |
| escribility a | 소프로 - TT : "HET TO                                                                                   | Continued of the second of the | 1/2     | 5   |
|               | $=\frac{A+D}{A}$                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 Ha   |     |
|               | $=\frac{A}{2}$                                                                                       | 20 as es gg<br>Angle of tackdenos()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1       |     |
|               | By applying in Snell's law                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
|               | $= \frac{\operatorname{si} \left(\frac{A+D}{2}\right)}{\operatorname{sin} \left(\frac{A}{2}\right)}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
|               | ( /2)                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |     |

| 36  | Diagram Www.Padasalai.Net                                                                                                                                                                                                                                                                                                                                                           | www.1rb Inpsc.com                           | 1             |         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|---------|
| (a) | Photon energy = work function+kinetic energy (or) Explanation                                                                                                                                                                                                                                                                                                                       | E = 50 > 5                                  | 1             |         |
|     | $h\nu = \emptyset_0 + \frac{1}{2} mv^2$                                                                                                                                                                                                                                                                                                                                             | Metal () (b) (b)                            | 1             | 5       |
|     | At $v = v_0$ (threshold frequency), Kinetic energy of electron is Zero                                                                                                                                                                                                                                                                                                              |                                             | 1             |         |
|     | $h\nu_0 = \emptyset_0$<br>$h\nu = h\nu_0 + \frac{1}{2} \text{ mv}^2$ (or) Equivalent Equation                                                                                                                                                                                                                                                                                       |                                             | 1             |         |
|     | $\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                      |                                             |               |         |
| (b) | Diagram and Explanation                                                                                                                                                                                                                                                                                                                                                             | **************************************      | 1.            |         |
| (~) | V= V <sub>m</sub> Sin ωt                                                                                                                                                                                                                                                                                                                                                            |                                             | 1             |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                     |                                             |               |         |
|     | $dt = \frac{v_m}{L} \sin \omega t \not \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                                                                                                                                                                                                                                          | y a Ym in of                                | 1/2           | 5       |
|     | $i = \frac{v_m}{\omega t} \sin(\omega t - \frac{\pi}{2})$                                                                                                                                                                                                                                                                                                                           |                                             | )<br>polinija |         |
|     | (or)                                                                                                                                                                                                                                                                                                                                                                                |                                             | 1             |         |
|     | upto i = $I_m \sin(\omega t - \frac{\pi}{2})$                                                                                                                                                                                                                                                                                                                                       |                                             | 1/2           | - se    |
|     | Current lags behind voltage by $\pi/2$ or $90^{\circ}$                                                                                                                                                                                                                                                                                                                              |                                             | 1/2+1/2       |         |
| 37  | Phasor Diagram and wave Diagram  Merits                                                                                                                                                                                                                                                                                                                                             | Pitting Sphare Shares Francis C. Careers H. |               |         |
| (a) | <ul> <li>Decrease in noise [or] increase in signal noise rate.</li> <li>Operating range is large.</li> <li>High transmission efficiency.</li> <li>Broad bandwidth.</li> <li>Better quality.</li> <li>Limitations.</li> <li>Requires wider channel.</li> <li>FM transmitter and receiver are more complex.</li> <li>Costly.</li> <li>Compared to AM, FM covers less area.</li> </ul> | (Any Three) (Any Two)                       | 3×1<br>2×1    | 5       |
|     | (OR)                                                                                                                                                                                                                                                                                                                                                                                |                                             |               | alm the |
| (b) | Diagram or explanation $ \oint \vec{B} \cdot \vec{dl} = \mu_0 i_c $                                                                                                                                                                                                                                                                                                                 |                                             | 1             |         |
|     | Diagram or explanation                                                                                                                                                                                                                                                                                                                                                              |                                             | 1             |         |
|     | $\oint \vec{B} \cdot \vec{dl} = 0$                                                                                                                                                                                                                                                                                                                                                  |                                             |               |         |
|     | Diagram or explanation                                                                                                                                                                                                                                                                                                                                                              |                                             | 1             | F       |
|     | $\phi_E = \oint \vec{E} \cdot \vec{dA} = EA = \frac{q}{\epsilon_0}$                                                                                                                                                                                                                                                                                                                 |                                             |               |         |
|     | $upto \ i_d = \varepsilon_0 \frac{d\phi_E}{dt} \text{ or definition of displacement current}$                                                                                                                                                                                                                                                                                       | 1                                           | 1             |         |
|     | $ \oint \vec{B} \cdot \vec{dl} = \mu_0 (i_c + i_d)  \text{(or)} $ $ = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}  \text{(or)} $                                                                                                                                                                                                                                             | 一世里下                                        | 1             |         |
|     | $= \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d}{dt} \oint \vec{E} \cdot \vec{dA}$                                                                                                                                                                                                                                                                                                       |                                             |               | 7)      |
|     | $1-ui + us = - \Phi E dA$                                                                                                                                                                                                                                                                                                                                                           |                                             |               | (7)     |

| 38<br>(a) | Diagram and Explanation $\vec{E}_{+} = \frac{1}{4\pi\epsilon_{0}} \frac{q}{(r-a)^{2}} \hat{P}$ $\vec{E}_{-} = \frac{-1}{4\pi\epsilon_{0}} \frac{q}{(r+a)^{2}} \hat{P}$ $\vec{E}_{Tot} = \vec{E}_{+} + \vec{E}_{-}$ Upto $\vec{E}_{Tot} = \frac{q}{4\pi\epsilon_{0}} \left[ \frac{4ra}{(r^{2}-a^{2})^{2}} \right] \hat{P}$ $\vec{E}_{Tot} = \frac{2\vec{P}}{4\pi\epsilon_{0}r^{3}}$ | 1 1 1 1 1 | 5 |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
|           | $\vec{P} = 2aq\hat{P}$ (OR)                                                                                                                                                                                                                                                                                                                                                        | 1/2       |   |
| (b)       | Nuclear reactor  Nuclear reactor is a system in which nuclear fission takes place in a self-sustained controlled manner.                                                                                                                                                                                                                                                           | 2         |   |
|           | Moderator It is a material used to convert fast neutrons into slow neutrons.  Eg: water, $D_2O$ , graphite (any one)                                                                                                                                                                                                                                                               | 1         |   |
|           | Control rods It is used to control the rate of the reaction. (or absorb excess neutrons produced in a reaction) Eg: Cadmium or Boron (any one)                                                                                                                                                                                                                                     |           | 5 |
|           | Cooling System  Absorbs the heat – transfers to heat exchanger – steam produced – rotates turbine – produces electricity.  Eg: water, heavy water, liquid sodium. (any one)                                                                                                                                                                                                        | 1         |   |