12th PHYSICS

VOLUME - I

UNSOLVED PROBLEMS

-Mr.THIVIYARAJ V M.Sc.,M.Phill.,B.Ed.,

1. ELECTROSTATICS

1. When two objects are rubbed with each other, approximately a charge of 50 nC can be produced in each object. Calculate the number of electrons that must be transferred to produce this charge.

2. The total number of electrons in the human body is typically in the order of $\mathbf{1 0}^{\mathbf{2 8}}$. Suppose, due to some reason, you and your friend lost 1% of this number of electrons. Calculate the electrostatic force between you and your friend separated at a distance of 1 m . Compare this with your weight. Assume mass of each person is 60 kg and use point charge approximation.

3. Five identical charges Q are placed equidistant on a semicircle as shown in the figure. Another point charge q is kept at the centre of the circle of radius R. Calculate the electrostatic force experienced by the charge q.

SOLUTION:

$$
\begin{aligned}
& \text { 1. Folcesacting on } q \text { due to } Q, \text { and } Q_{5} \text { are } \\
& \text { equal and opposite. Hence } \vec{F}_{1} \vec{F}_{5} \text { get cancelled. } \\
& \text { Net force is zero. }
\end{aligned}
$$

Net force is zero.

$$
\begin{aligned}
& \text { Net Force is zero. } \\
& 2 \text {. Forces acting on } q \text { dree to } Q_{2}\left[\overrightarrow{F_{2}}\right] \text { and } Q_{4}
\end{aligned}
$$

$$
\left[\overrightarrow{F_{4}}\right] \text { is sesolved ito two components. }
$$

- newts acts in same direction. Arts added

$$
F_{2} \sin \theta \text { and } F_{4} \sin \theta \text { use equal in mapuited }
$$ but opposite in direction, get cancelled.

$F_{2} \cos \theta$ and $F_{4} \cos \theta$ are horizontal compo -vents acts in same direction, gets added 3. Force acting on q due to Q_{2} is $\overrightarrow{F_{3}}$ total Force acting on ' q ' is
$\vec{F}=\vec{F}_{3}+F_{2} \cos \theta \hat{i}+F_{4} \cos \theta \hat{i}$

$$
\vec{F}=k \frac{q Q}{R^{2}} \hat{i}+k \frac{q Q}{R^{2}} \cos 4 \dot{5}^{\circ} \hat{i}+k \frac{q Q}{R^{2}} \cos 45^{\circ} \hat{i} .
$$

$$
45^{\circ} \hat{\imath} .
$$

$$
\begin{aligned}
& =\frac{k q Q}{R^{2}} \hat{i}\left[1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right] \\
& =\frac{k q Q}{R^{2}} \hat{i}\left[1+\frac{2}{\sqrt{2}}\right]=\frac{k q Q}{R^{2}} \hat{i}\left[1+\frac{\sqrt{2} \sqrt{2}}{\sqrt{2}}\right] \\
& \vec{F}=\frac{1}{4 \pi E_{0}} \frac{q Q}{R^{2}}[1+\sqrt{2}] \hat{i} N
\end{aligned}
$$

4. Suppose a charge $+q$ on Earth's surface and another $+q$ charge is placed on the surface of the Moon. (a) Calculate the value of q required to balance the gravitational attraction between Earth and Moon (b) Suppose the distance between the Moon and Earth is halved, would the charge q change?
(Take $m_{E}=5.9 \times 10^{24} \mathrm{~kg}, m_{M}=7.9 \times 10^{22} \mathrm{~kg}$)

$$
\begin{aligned}
& \frac{1}{4 \pi \varepsilon_{0}} \frac{q \cdot q_{2}}{r_{2}}=\frac{1 / k_{\varepsilon_{0}}}{4 \cdot q} \\
& \frac{1}{4 \pi \varepsilon_{0}} \frac{q \cdot q}{r^{2}}=\frac{\mathrm{m}_{E} \mathrm{mM}}{s^{2}} \\
& 9 \times 10^{9} q^{2}=6.67 \times 10^{-11} \times 5.9 \times 10^{2} \\
& q^{2}=\frac{6.67 \times 5.9 \times 7.9 \times 10^{35}}{9 \times 10^{9}}
\end{aligned}
$$

$$
9 \times 10^{9} q^{2}=6.67 \times 10^{-11} \times 5.9 \times 10^{24} \times 7.9 \times 10^{22}
$$

$$
q=\sqrt{\frac{6.67 \times 5.9 \times 7.9 \times 10^{26}}{9}}=10^{13} \sqrt{\frac{6.67 \times 5.9 \times 7.9}{9}}
$$

$$
9
$$

$$
\therefore q=5.87 \times 10^{13} \mathrm{c}
$$

ii)

$$
k q^{2}=G M_{E} M_{m} .
$$

If $r=r / 2 \quad \therefore$ The charge ' q ' will not change
5. Draw the free body diagram for the following charges as shown in the figure (a), (b) and (c).

FREEBODY DIAGRAM

$$
\text { a) } \overbrace{\ll x}^{N}>Q_{E E}
$$

b)

c)

b)

c)

6. Consider an electron travelling with a speed v_{0} and entering into a uniform electric field \vec{E} which is perpendicular to \vec{v}_{0} as shown in the Figure. Ignoring gravity, obtain the electron's acceleration, velocity and position as functions of time.

$$
\begin{aligned}
& \text { SOLUTION: } \quad F=m a, a=\mathrm{F} / \mathrm{m} \text {. } \\
& \text { (i) } \frac{\text { acceleration: }}{F=e E}(\vec{a}) \\
& \vec{a}=\frac{e E}{m}(-\hat{j})=-\frac{e E}{m} \hat{j} \\
& \text { ii) Velocity: }(\vec{v}) \\
& \vec{v}=\vec{u}+\vec{a} t, \quad u=v_{0} \hat{i}, \quad \vec{a}=-\frac{e E}{m} \hat{j} \\
& \vec{V}=V_{0} \hat{i}-\frac{e E}{m} t \hat{j} \\
& \text { (iii) Position vector }(\vec{r}) \text { : } \\
& \vec{s}=\vec{u} t+1 / 2 \vec{a} t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{l}=V_{0} \hat{i}+1 / 2\left[-\frac{e E}{m} \hat{j}\right] t^{2} \\
& \vec{d}=V_{0} \hat{i}-1 / 2 \frac{e E}{m} t^{2} \hat{j}
\end{aligned}
$$

7. A closed triangular box is kept in an electric field of magnitude $E=2 \times 10^{3} \mathrm{NC}^{-1}$ as shown in the figure.

Calculate the electric flux through the (a) vertical rectangular surface (b) slanted surface and (c) entire surface.

$$
\begin{aligned}
& \text { a) Vertical rectangle suisface: } \\
& \begin{array}{l}
\phi_{E}=E A \cos \theta, \quad A=15 \mathrm{~cm} \times 5 \mathrm{~cm} \\
A
\end{array} \\
& \phi_{E}=2 \times 10^{3} \times 75 \times 10^{-4} \times \cos 0^{\circ} \\
& =150 \times 10^{-1} \\
& \phi_{E}=15 \mathrm{Nm}^{2} \mathrm{C}^{-1} \\
& \text { b) } \\
& \text { slanted surface: } \\
& \phi_{E}=E_{A} \cos \theta \\
& A=15 \times 10^{-2} \times 10 \times 10^{-2}=150 \times 10^{-4} \mathrm{~m}^{2} \\
& \phi_{E}=2 \times 10^{3} \times 150 \times 10^{-4} \times \cos 60^{\circ} \\
& =300 \times 10^{-1} \times 1 / 2 \\
& \phi_{E}=15 \mathrm{Nm}^{2} L^{-1} \\
& 5 \mathrm{~cm} \mathrm{PO} \\
& \sin B=\frac{O P P_{1}}{\operatorname{Ly} P_{1}} \\
& \sin 30^{\circ}=\frac{5 \times 10^{-2}}{\operatorname{ly} p} \\
& \operatorname{tu} p_{f}=\frac{5 \times 10^{-2}}{1 / 2} \\
& h_{y P_{1:}}=10 \times 10^{-2} \mathrm{~m} \\
& \text { c) Entire surface } \\
& \text { Inward flux }=\text { outward flex } \\
& \phi_{E}=0 . \\
& \text { Netflix in zero. }
\end{aligned}
$$

8. The electrostatic potential is given as a function of x in figure (a) and (b). Calculate the corresponding electric fields in regions A, B, C and D. Plot the electric field as a function of x for the figure (b).

(a)

(b)

$$
E_{x}=?
$$

(i) Region A

$$
E_{x}=-\frac{d v}{d x}
$$

$$
\text { From o to } 0.2 \mathrm{~m} \text {; slope is }-V \text {. }
$$

$$
E_{x}=-\left[-\frac{d v}{d x}\right]=\frac{d v}{d x}=3 / 0.2=15 \mathrm{vm}^{-1} .
$$

(ii) Region B:
From 0.2 m to $0.4 \mathrm{~m} ;$ Potential is constant
$[V=$ constant $]$.
$V=5 \mathrm{~V}$
$E_{x}=-d v / d x=0$.
(iii) $\xlongequal[\text { From } 0.4 \mathrm{~m}]{\text { Regin }}$

$$
E_{x}=-d v / d x=-\frac{2}{0.2}=-10 \mathrm{vm}^{-1} .
$$

9. A spark plug in a bike or a car is used to ignite the air-fuel mixture in the engine. It consists of two electrodes separated by a gap of around 0.6 mm gap as shown in the figure.

To create the spark, an electric field of magnitude $3 \times 10^{6} \mathrm{Vm}^{-1}$ is required. (a) What potential difference must be applied to produce the spark? (b) If the gap is increased, does the potential difference increase, decrease or remains the same? (c) find the potential difference if the gap is 1 mm .

$$
\begin{aligned}
& \text { Given: } E=3 \times 10^{6} \mathrm{Vm}^{-1} ; d=0.6 \mathrm{~mm}=6 \times 10^{-4} \mathrm{~m} \text { ! } \\
& \text { Solution: } V=\text { ? } \\
& \text { a) Potential difference, } V=E \times d \\
& V=3 \times 10^{6} \times 6 \times 10^{-4}=18 \times 10^{2} \mathrm{~V}=1800 \mathrm{Volt} . \\
& \text { b) } V \propto d . \\
& \text { If gap increases, then potential also will } \\
& \text { increase. } V=E \times d . \\
& \text { c) If } d=1 \mathrm{~mm}, V=3 \times 10^{3} \mathrm{~V}=3000 \mathrm{Volt} .
\end{aligned}
$$

10. A point charge of $+10 \mu C$ is placed at a distance of 20 cm from another identical point charge of $+10 \mu C$. A point charge of $-2 \mu C$ is moved from point a to b as shown in the figure. Calculate the change in potential energy of the system? Interpret your result.

$$
\begin{aligned}
& \text { GIVEN: } \quad q_{1}=q_{2}=10 \mu \mathrm{c} ; \quad q=-2 \mu c \text {. } \\
& r_{1}=5 \mathrm{~cm}, r_{2}=15 \mathrm{~cm} \\
& r_{1}^{1}=\sqrt{5^{2}+5^{2}}=\sqrt{50}=5 \sqrt{2} \mathrm{~cm} \\
& r_{2}^{\prime}=\sqrt{15^{2}+5^{2}}=\sqrt{250}=\sqrt{25 \times 10}=5 \sqrt{10} \mathrm{~cm} \\
& \therefore \text { change in P.E } \Delta U=\text { ? } \\
& \text { SOLUTION: } \\
& \text { (i) Initial potential energy }\left(\mathrm{Ui}_{i}\right) \text { when }-2 \mu \mathrm{c} \\
& \text { charge at 'a' } \\
& u_{i}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{1}}{r_{1}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2} q}{r_{2}} \\
& =\frac{q q_{1}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{1}}+\frac{1}{r_{2}}\right] \\
& v_{i}=9 \times 10^{9} \times\left(-2 \times 10^{-6}\right) \times 10 \times 10^{-6} \times\left[\frac{1}{5}+\frac{1}{15}\right] \times \frac{1}{15^{2}} \\
& =-18 \times 10^{2} \times\left[\frac{20}{75}\right] \times \frac{1}{10^{-2}} \\
& =-18 \times 10^{-2} \times 4 / 15^{5} \times 1 / 10^{-2}=\frac{-24}{5}
\end{aligned}
$$

11. Calculate the resultant capacitances for each of the following combinations of capacitors.

SOLUTION:

FiCH (A)
$\therefore c_{p}=c_{0}+c_{0}=2 c_{0}$

$\rightarrow \|_{2 c_{0}}^{\|} \frac{1}{c_{0}}=\frac{1}{c_{0}}+\frac{1}{2 c_{0}}=\frac{2+1}{2 c_{0}}=\frac{3}{2 c_{0}}$
$c_{p}=c_{0}+c_{0}=2 c_{0}$

$$
c_{s}=2 c_{0} / 3
$$

Fia (B)

$$
\begin{aligned}
\frac{1}{c_{s}} & =\frac{1}{2 c_{0}}+\frac{1}{2 c_{0}} \\
& =\frac{2}{2 c_{0}}=1 / c_{0}
\end{aligned}
$$

Fic (c):
$c_{p}=c_{0}+c_{0}+c_{0}$

$c_{p}=3 c_{0}$

$$
c_{S}=c_{0}
$$

Ficq (D):

c_{1} and c_{3} in series

$$
\frac{1}{c_{s_{1}}}=\frac{1}{c_{1}}+\frac{1}{c_{3}}=\frac{c_{3}+c_{1}}{c_{1} c_{3}}
$$

$$
c_{s_{1}}=\frac{c_{1} c_{3}}{c_{1}+c_{3}}
$$

$$
\begin{aligned}
& \begin{array}{l}
c_{2} \text { and } c_{4} \text { in stories, } \\
\frac{1}{c_{s_{2}}}=\frac{1}{c_{2}}+\frac{1}{c_{4}}=\frac{c_{4}+c_{2}}{c_{2} c_{4}} \quad c_{s_{2}}=\frac{c_{2} c_{4}}{c_{2}+c_{4}}
\end{array} \\
& C_{s_{1}} \text { and } c_{s_{2}} \text { are in parallel } \\
& c_{P Q}=c_{S 1}+c_{S_{2}} \\
& =\frac{c_{1} c_{3}}{c_{1}+c_{3}}+\frac{c_{2} c_{4}}{c_{2}+c_{4}} \\
& C_{P Q}=\frac{c_{1} c_{3}\left[c_{2}+c_{4}\right]+c_{2} c_{4}\left[c_{1}+c_{3}\right]}{\left(c_{1}+c_{3}\right) \cdot\left(c_{2}+c_{4}\right)} \\
& c_{P Q}=\frac{c_{1} c_{2} c_{3}+c_{1} c_{3} c_{4}+c_{1} c_{2} c_{4}+c_{2} c_{3} c_{4}}{\left(c_{1}+c_{3}\right)\left(c_{2}+c_{4}\right)}
\end{aligned}
$$

12. An electron and a proton are allowed to fall through the separation between the plates of a parallel plate capacitor of voltage 5 V and separation distance $h=1 \mathrm{~mm}$ as shown in the figure.

(a) Calculate the time of flight for both electron and proton (b) Suppose if a neutron is allowed to fall, what is the time of flight? (c) Among the three, which one will reach the bottom first? $\left(\right.$ Take $m_{p}=1.6 \times 10^{-27} \mathrm{~kg}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{g}=10$ $m s^{-2}$)

$$
\begin{aligned}
& t_{e}=\sqrt{\frac{18.2^{9.1} \times 10^{-18}}{8_{4}}}=\frac{10^{-9}}{2} \sqrt{9.1}=\frac{3 \times 10^{-9}}{2} \sqrt{9.1} \approx 3 \\
& t_{e}=1.5 \times 10^{-9} \mathrm{~s} ; t_{e}=1.5 \mathrm{~ns} \\
& \text { (ii) Tince of flight for proton }\left(t_{p}\right) \text { : } \\
& s=u t+1 / 2 a t^{2} ; s=h ; u=0 ; t=t_{p} ; a=\frac{E_{e}}{m_{F}} \\
& \therefore u=0+1 / 2\left[\frac{e E}{m p}\right] t_{p}^{2} . \\
& t_{p}=\sqrt{\frac{2 M_{p} h}{e E}}=\sqrt{\frac{2 \times 1.6 \times 10^{-27} \times 1 \times 10^{-3}}{1.6 \times 10^{-19} \times 5 \times 10^{3}}} \\
& t_{p}=\sqrt{0.4 \times 10^{-14}}=10^{-7} \sqrt{0.4}=10^{-7} \times 0.632 \\
& =10^{-7} \times 6.3 \times 10^{-1}=6.3 \times 10^{-8} \\
& t_{p}=63 \mathrm{~ns} \\
& \text { (iii) Tince of Flight For neution 【tn」 } \\
& \begin{array}{l}
t_{n}=\sqrt{\frac{2 h}{9}}=\sqrt{\frac{2 \times 1 \times 10^{-3}}{10}} \quad \begin{array}{l}
s=u t+1 / 2 a t^{2} \\
u=0 ; a=9 ; s=h \\
t_{n}=10^{-2} \sqrt{2}=1.414 \times 10^{-2} s .
\end{array}
\end{array} \\
& t_{n}=14.14 \mathrm{~ms} \\
& t_{e}<t_{p}<t_{e} \\
& \therefore \text { Elections will seach thee bothom First. }
\end{aligned}
$$

13．During a thunder storm，the movement of water molecules within the clouds creates friction，partially causing the bottom part of the clouds to become negatively charged．This implies that the bottom of the cloud and the ground act as a parallel plate capacitor．If the electric field between the cloud and ground exceeds the dielectric breakdown of the air $\left(3 \times 10^{6} \mathrm{Vm}^{-1}\right)$ ，lightning will occur．
（a）If the bottom part of the cloud is 1000 m above the ground，determine the electric potential difference that exists between the cloud and ground．
（b）In a typical lightning phenomenon，around $25 C$ of electrons are transferred from cloud to ground．How much electrostatic potential energy is transferred to the ground？

14. For the given capacitor configuration (a) Find the charges on each capacitor (b) potential difference across them (c) energy stored in each capacitor

$$
\begin{aligned}
& \text { SOLUTION: } V=9 V \\
& c_{a}=8 \mu \mathrm{~F}, \quad c_{b}=6 \mu \mathrm{~F} . \\
& c_{c}=2 \mu \mathrm{~F}, \quad c_{d}=8 \mu \mathrm{~F} .
\end{aligned}
$$

$c_{b} a_{n}+c_{c}$ in parallel
$c_{b c}=c_{b}+c_{c}=b+2=8 \mu \mathrm{~F}$.

$v_{a}=v_{3}=9 / 3=3 v_{01}$
$v_{b}=v_{c}=v_{d}=v_{/ 3}=9 / 3=3 v_{\text {dolt }}$
$V_{a}=V_{b}=V_{c}=V_{d}=3$ volt.
15. Capacitors P and Q have identical cross sectional areas A and separation d. The space between the capacitors is filled with a dielectric of dielectric constant ϵ_{r} as shown in the figure. Calculate the capacitance of capacitors P and Q.

$$
c_{2}=\frac{\varepsilon_{r} \varepsilon_{0}(A / 2)}{d}=\frac{\varepsilon_{0} \varepsilon_{r} A}{2 d}
$$

$$
\therefore c_{p}=\frac{\varepsilon_{0} A}{2 d}+\frac{\varepsilon_{e} \varepsilon_{0} A}{2 d}
$$

$$
C_{p}=\frac{\varepsilon_{0} A}{2 d}\left(1+\varepsilon_{r}\right)
$$

In copaciter Q

$$
A=A ; d=d / 2
$$

$$
c_{1}, c_{2} \text { are in sesies }
$$

$$
\frac{1}{c_{a}}=\frac{1}{c_{1}}+\frac{1}{c_{2}} ; c_{1}=\frac{\varepsilon_{2} \varepsilon_{0} A}{d / 2}
$$

$$
c_{2}=\frac{\varepsilon_{0} A}{d / 2}=\frac{2 \varepsilon_{0} A}{d}
$$

$$
c_{1}=\frac{2 \varepsilon_{2} \varepsilon_{0} 4}{d}
$$

$$
\frac{1}{c_{Q}}=\frac{d}{2 \varepsilon_{5} \varepsilon_{0} A}+\frac{d}{2 \varepsilon_{0} A}=\frac{d}{2 \varepsilon_{0} A}\left[\frac{1}{\varepsilon_{r}}+1\right]
$$

$$
\frac{1}{c_{9}}=\frac{d}{2 \varepsilon_{0} A}\left[\frac{1+\varepsilon_{r}}{\varepsilon_{r}}\right]
$$

$$
C_{Q}=\frac{2 \varepsilon_{0}}{d}\left[\frac{\varepsilon_{r}}{1+\varepsilon_{s}}\right]
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { capaciter 'p' } \\
\text { (i) cmpacitonce of a parallel plate }
\end{array} \\
& \text { copacitor } \\
& c=\frac{\varepsilon_{0} A}{d} . \\
& \text { with dielecteic, } c=\frac{E_{1} E_{0} A}{d} \text {. } \\
& \text { In capacitor ' } p \text { ' } c_{1} \text { and } c_{2} \text { parallel. } \\
& c_{p}=c_{1}+c_{2} \\
& c=\varepsilon_{0} A / d \text { here } A=A / 2 \\
& c_{1}=\frac{\varepsilon_{0}(A / 2)}{d}=\frac{\varepsilon_{0} A}{2 d}
\end{aligned}
$$

2. CURRENT ELECTRICITY

1. The following graphs represent the current versus voltage and voltage versus current for the six conductors A, B, C, D, E and F. Which conductor has least resistance and which has maximum resistance?

Solution

According to ohm's law,

$$
V=I R ; \quad R=\frac{V}{I}
$$

2. Lightning is very good example of natural current. In typical lightning, there is $\mathbf{1 0} \mathbf{0}^{9}$ J energy transfer across the potential difference of $5 \times 10^{7} \mathrm{~V}$ during a time interval of 0.2 s .

Solution

$$
\begin{aligned}
& N=10^{9} \mathrm{~J} ; V=5 \times 10^{7} \mathrm{~V} ; t=0.2 \mathrm{~s}=2 \times 10^{-1} \mathrm{~s} . \\
& \text { Total amount of charge: } \\
& n=v \cdot q \\
& q=\frac{w}{v}=\frac{10^{9}}{5 \times 10^{7}}=0.2 \times 10^{2} \\
& \begin{array}{l}
q=20 C \\
\angle R R E N T
\end{array} \quad I=Q / t \\
& -\frac{20^{10}}{2 \times 10^{-1}}=1004 \\
& \text { 3. POWER: } P=N I \\
& \begin{array}{l}
=5 \times 10^{7} \times 10^{2}=5 \times 10^{9} \mathrm{~W} \\
1 \mathrm{~W}=5 \mathrm{~W}
\end{array}
\end{aligned}
$$

3. A copper wire of $10^{-6} \mathrm{~m}^{2}$ area of cross section, carries a current of 2 A . If the number of free electrons per cubic meter in the wire is 8×10^{28}, calculate the current density and average drift velocity of electrons.

Solution

$$
\begin{aligned}
& S=1 U T 10 N \\
& I=I / A=2 / 10^{-6}=2 \times 10^{6} \mathrm{Am}^{-2} \\
& J=n e V d \\
& V d=\frac{J}{n e}=\frac{2 \times 10^{6}}{8 \times 10^{28} \times 1.6 \times 10^{-19}} \\
& =\frac{10^{-3}}{6.4}=1.56 \times 10^{-19} \mathrm{~m} / \mathrm{s} \\
& V d=15.6 \times 10^{-5} \mathrm{~ms}
\end{aligned}
$$

4. The resistance of a nichrome wire at $20^{\circ} \mathrm{C}$ is $\mathbf{1 0} \Omega$. If its temperature coefficient of resistivity of nichrome is $0.004 /^{\circ} \mathrm{C}$, find the resistance of the wire at boiling point of water. Comment on the result.

Solution

$$
\begin{aligned}
& \alpha=\frac{R_{T}-R_{0}}{R_{0}\left[T-T_{0}\right]} \\
& 0.004=\frac{R_{100}-10}{10[100-20]} \\
& =R_{100}-10 \\
& 10 \text { [80] } \\
& {[0.004 \times 800]=R_{100}-10} \\
& 3.2+10=R_{100} \\
& R_{100}=13.2 \Omega \\
& \text { [OR] } \\
& R_{t}=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right] \\
& R_{100}=10[1+0.004[100-20]] \\
& R_{100}=10[1+0.32]=13.2 \Omega
\end{aligned}
$$

5. The rod given in the figure is made up of two different materials.

Both have square cross sections of $\mathbf{3} \mathbf{~ m m}$ side. The resistivity of the first material is $4 \times 10^{-3} \Omega \mathrm{~m}$ and that of second material has resistivity of 5×10^{-3} Ωm. What is the resistance of rod between its ends?

Solution

$$
\begin{aligned}
& P_{1}=4 \times 10^{-3} \mathrm{em} ; \quad P_{1}=25 \mathrm{~cm} \\
& P_{2}=5 \times 10^{-3} 2 \mathrm{~m} ; P_{2}=70 \mathrm{~cm} . \\
& \text { site length }=3 \mathrm{~mm} \text {. } \\
& A \operatorname{sea} A=\left[3 \times 10-\frac{3}{m^{2}}\right]^{2} \\
& A=4 \times 10^{-6} \mathrm{~m}^{2} . \\
& \text { SOLUTION: } \\
& R_{s}=R_{1}+R_{2} \\
& R_{1}=\frac{P_{1} P_{1}}{A}=\frac{4 \times 10^{-3} \times 25 \times 10^{-2}}{9 \times 10^{-6}} \\
& =\frac{4 \times 25 \times 10^{-5}}{4 \times 10^{-6}}=\frac{1000}{9} \Omega \\
& R_{2}=\frac{P_{2} P_{2}}{A}=\frac{5 \times 10^{3} \times 10 \times 10^{-2}}{9 \times 10^{-6}} \\
& =\frac{5 \times 70 \times 10^{-5}}{9 \times 10^{-6}}=\frac{3500}{9} \Omega \\
& R_{S}=\frac{1000}{9}+\frac{3500}{9}=\frac{4500}{9} \\
& R_{S}=500 \Omega
\end{aligned}
$$

6. Three identical lamps each having a resistance R are connected to the battery of emf ε as shown in the figure.

Suddenly the switch S is closed. (a) Calculate the current in the circuit when S is open and closed (b) What happens to the intensities of the bulbs A, B and C. (c) Calculate the voltage across the three bulbs when S is open and closed (d) Calculate the power delivered to the circuit when S is opened and closed (e) Does the power delivered to the circuit decrease, increase or remain same?

Solution

$$
\begin{aligned}
& \text { a) CURRENT: } \\
& \text { ohm's law } \% V=I R \\
& \frac{1}{5}=V . \\
& R_{1}=R_{2}=R_{3}=R \\
& \text { Those lamps are connected } \\
& \text { in series. } R_{S}=R_{1}+R_{2}+R_{3} \text {. } \\
& R_{S}=R+R+R=3 R . \\
& \text { Switch is open: } \\
& I=v / R_{S}=\xi_{1} / 3 R . \\
& \text { Switch is closed: } \\
& \text { No current Flow through } \\
& \text { Lump ' } C \text { ' } \\
& I=\xi / 2 R
\end{aligned}
$$

b) INTENSITIES:
Switeh is open:
All bulbs having equal
intensities.
$\frac{\text { Switen is closed: }}{A \text { and } B \text { equal intersositi }}$
But ' C ' will not glow.
because no cursent.
c) VOITAGE
switeh is open:
$I=\xi / 3 R$
$V_{A}=I R=\xi / 3 \times \neq \xi / 3$
$V_{B}=I R=\xi / 3 R \times R=\xi / 3$
$V_{c}=I R=\xi / 3 R \times R=\xi / 3$
switeh is closed:
$v_{A}=I R=\xi / 2 R \times R=\xi / 2$
$V_{B}=I R=\xi_{1 / 2 R} \times R=\xi / 2$
$V_{c}=I R=0 \times R=0$
Bulb ' c ' is in parallel]
7. An electronics hobbyist is building a radio which requires 150Ω in her circuit. But she has only $220 \Omega, 79 \Omega$ and 92Ω resistors available. How can she connect the available resistors to get the desired value of resistance?

Solution

$$
\begin{aligned}
& \text { Revintane sequised } R=150 \Omega \\
& R_{1}=220 \Omega, R_{2}=79 \Omega \\
& R_{3}=92 \Omega \\
& R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{220 \times 79}{220+79} \\
& R_{P}=\frac{17380}{299}=58 \Omega \\
& N_{1} \\
& R_{P} \\
& R_{S}=R_{P}+R_{3}=58+92
\end{aligned}
$$

Therefore, parallel combination of 230Ω and 79Ω in series with 92Ω
8. A cell supplies a current of 0.9 A through a 2Ω resistor and a current of $0.3 A$ through a 7Ω resistor. Calculate the internal resistance of the cell.

Solution

$$
\begin{aligned}
& \text { GVVEN: } I,=0-G \rightarrow, R_{1}=21 \\
& I_{2}=0.3 \Omega, R_{2}=7 \Omega \\
& \text { somution } \\
& I,=\xi_{R_{1}+2}, \xi=I,\left[R_{1}, 2\right] \\
& I_{2}=\zeta / R_{2}+-2 ; \Leftrightarrow=I_{2}\left[R_{2}+I_{]}\right] \\
& I_{1} R_{1}+I_{1} r_{2}=I_{2} R_{2}+I_{2} R \\
& \text { I, }-I_{2} \text { - } I_{2} R_{2}-I_{1} R_{1} \\
& R_{1}\left[I_{1}-I_{2}\right]=I_{2} R_{2}-I_{1} R_{1} \\
& r=\frac{I_{2} R_{2}-I_{1} R_{1}}{I_{1}-I_{2}} \\
& =\frac{0.3 \times 7-0.9 \times 2}{0.9-0.3} \\
& =\frac{2.1-1.8}{0.6}=\frac{0.3}{0.6}=1 / 2 \\
& 8=0.5 \Omega
\end{aligned}
$$

9. Calculate the currents in the following circuit.

Solution

$$
I_{1}=? \quad: I_{2}=? \quad ; I_{3}=?
$$

Applying Kischoff's cursent sule at junction B'. $I_{1}-I_{2}-I_{3}=0 ; \quad I_{3}=I_{1}-I_{2} \rightarrow \infty$
Applying Kirchott's Voltage sule For closed

Path ABEFA, $100 I_{1}+100 I_{3}=15$

$$
100 I_{1}+100\left[I_{1}-I_{2}\right]=15
$$

$$
100 I_{1}+100 I_{1}-100 I_{2}=15
$$

$$
200 I_{1}-100 I_{2}=15 \rightarrow(2)
$$

Applying klichott's Voltage sole For closed path BCDEB,

$$
100 I_{2}-100 I_{3}=-9 \left\lvert\, \begin{aligned}
& 2 \\
& 200 I_{1}-100 \times-\frac{1}{100}=15
\end{aligned}\right.
$$

$$
100 I_{2}-100\left[I_{1}-I_{2}\right]=-9
$$

$200 I_{1}+1=15 \quad 7$

$$
100 I_{2}-100 I_{1}+100 I_{2}=-9
$$

$200 I_{1}=14 ; I_{1}=1 / 4 / 200$

$$
200 I_{2}-100 I_{1}=-9
$$

$$
-100 I_{1}+200 I_{2}=-9 \rightarrow(3
$$

$$
I_{1}=0.07 \mathrm{~A}
$$

(1) $\Rightarrow I_{3}=I_{1}-I_{2}$
$=0.07-[-0.01]$
$I_{3}=0.08 \mathrm{~A}$
$\begin{aligned} \text { (2) } & \Rightarrow 200 / I_{1}-100 I_{2}\end{aligned}=15$.

100
$I_{2}=X \varnothing \frac{-1}{10^{2}}=-1 \times 10^{-2} \Rightarrow I_{2}=-0.01 \mathrm{~A}$
10. A potentiometer wire has a length of 4 m and resistance of 20Ω. It is connected in series with resistance of 2980Ω and a cell of emf 4 V. Calculate the potential gradient along the wire.

GIVEN:

$$
\begin{array}{ll}
t=4 \mathrm{~m}, & r=20 \Omega \\
\xi_{1}=4 \mathrm{~V} & r^{\prime}=2980 \Omega \\
E=?
\end{array}
$$

SOLUTION
Effective resistance for two sesinterts in series combination. $R_{s}=r+s^{\prime}$

$$
R_{s}=20+2980
$$

$$
R_{s}=3000 \Omega
$$

$$
I=\xi / R=4 / 3000 \mathrm{~A}
$$

Potential drop across the wise.

$$
V=I R ; V=I \Omega=\frac{4 / 200 \phi}{150} \times 2 \phi=4 / 150
$$

$$
\text { Potential gradient, } E=V / P
$$

$$
=4 / 15 \times 1 / 4=1 / 150=\frac{1}{15 \times 10}=0.066 \times 10^{-1}
$$

$$
E=0.66 \times 10^{-2} \mathrm{Vm}^{-1}
$$

11. Determine the current flowing through the galvanometer (G) as shown in the figure.

Solution

$I_{g}=$?

SOLUTION:
Applying kiAchoti's current sule at junction 'P'. $I-I_{1}-I_{2}=0$
$I-I_{1}=I_{2} \rightarrow$ (1)
Apply kiachotit's Voltage rule For closed path PQSP,
$5 I_{1}+10 I_{g}-15 I_{2}=0$
(1) $\quad 5 I_{1}+10 I_{9}-15\left[I-I_{1}\right]=0$

$$
5 I_{1}+10 I_{9}-15 I+15 I_{1}=0
$$

$$
I=24, \quad 20 I_{1}+10 I_{9}-15 \times 2=0
$$

$20 I_{1}+10 I_{g}=30 \rightarrow$ (2)
Apply Kirchoft's voltage sule For closed path QRSP.
$10\left[I_{1}-I_{9}\right]-20\left[I_{2}+I_{9}\right]-10 I_{9}=0$.
$10 I_{1}-10 I_{g}-20 I_{2}-20 I_{g}-10 I_{g}=0$.
(1) $\Rightarrow_{10} I_{1}-40 I_{g}-20\left[I-I_{1}\right]=0$.

$$
10 I_{1}-40 I_{g}-20 I+20 I_{1}=0
$$

$$
I=24,30 I_{1}-40 I_{g}-20[2]=0
$$

$$
30 I,-40 I g=40 \rightarrow 3
$$

(2) $\times 3 \Rightarrow 60 I_{1}+30 I_{9}=90$.
(3) $\times 2 \Rightarrow \underset{[-7]}{60 I_{1}-80 I_{9}=80}[-]$
$110 I_{g}=10$
$I_{g}=\frac{10}{110}=1 / 11$
$I_{g}=1 / 11^{A}$
12. Two cells each of $5 V$ are connected in series with a $\mathbf{8} \Omega$ resistor and three parallel resistors of $4 \Omega, 6 \Omega$ and 12Ω. Draw a circuit diagram for the above arrangement. Calculate i) the current drawn from the cells (ii) current through each resistor

Solution

SOLUTION: $\quad R_{1}=42 ; R_{2}=6 \Omega ; R_{3}=12 \Omega$ $\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=\frac{3+2+1}{12}$ $\frac{1}{R_{p}}=\phi / 12_{2} \Omega=2 \Omega$

$$
R_{p}=2 \Omega
$$

$8 \Omega \quad 2 \Omega$
$R_{S}=R+R_{P}$.
$R_{S}=8+2=10 \Omega$
$R_{S}=10 \Omega$
$\xi_{1}=\xi_{1}+\xi_{2}=5+5=10 \mathrm{~V}$.
current drawn From each cell.
$I=\xi_{1} / R_{S}=10 / 10=1 \mathrm{~A}$.
Potential tititisough 8Ω resistor is $V=I R$
$V=1 \times 8=8 \mathrm{~V}$
\therefore Potential though $2 \Omega, V=I R=1 \times 2=2 \mathrm{~V}$
(i) CURRENT T though $8 \Omega, I=V / R=8 / 8 ; I=1 A$
(ii) CURRENT though he, be, $12 \Omega ;$
$R=4 \Omega ; I=V / R=\frac{2}{4} ; \quad R=6 \Omega ; I=V / R=2 / b ; R=12 \Omega ; I=V / R=\frac{2}{12}$
$I=0.5 A$
$I=0.33 \mathrm{~A} \quad I=0.166 \mathrm{~A}$
13. Four bulbs P, Q, R, S are connected in a circuit of unknown arrangement.

When each bulb is removed one at a time and replaced, the following behaviour is observed.

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
P removed	$*$	on	on	on
Q removed	on	$*$	on	off
R removed	off	off	\cdot	off
S removed	on	off	on	$*$

Draw the circuit diagram for these bulbs.

Solution

14. In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63 cm , what is the emf of the second cell?

Solution

Given:

$$
\begin{aligned}
& \xi_{1}=1.25 \mathrm{~V} ; \xi_{2}=? \quad \xi_{1}=5 / 4 \mathrm{~V} . \\
& P_{1}=35 \times 10^{-2} \mathrm{~m} ; \rightarrow_{2}=63 \times 10^{-2} \mathrm{~m} .
\end{aligned}
$$

SOLUTION:

$$
\begin{aligned}
& \frac{\xi_{12}}{\xi_{1}}=\frac{P_{2}}{P_{1}} ; \xi_{1_{2}}=\xi_{1} \times \frac{P_{2}}{T_{1}} \\
\xi_{I_{2}}= & F_{4} \times \frac{63 \times 10^{-2}}{35 \times 10^{-2}}=9 / 44=2.25 \\
& \xi_{1_{2}}=2.25 \text { volt }
\end{aligned}
$$

3. MAGNETISM AND MAGNETIC

EFFECTS OF ELECTRIC CURRENT

1. A bar magnet having a magnetic moment $\overrightarrow{\boldsymbol{p}}_{\boldsymbol{m}}$ is cut into four pieces i.e., first cut into two pieces along the axis of the magnet and each piece is further cut along the axis into two pieces. Compute the magnetic moment of each piece.
)
Maquetic moment \vec{P}_{m}
When a bus magnet First cut in two pieces along the axis, their magretia moment is

$$
\vec{P}_{m}^{\prime}=\frac{\vec{P}_{m}}{2}
$$

$$
\overrightarrow{P_{m}^{\prime}}={\overrightarrow{\tau_{m}}}_{m} \times 2 l
$$

$$
k 2 l \longrightarrow
$$

$$
\begin{aligned}
& \vec{P}_{m}^{\prime}=\vec{\tau}_{m}^{\prime} \times 2 l \\
& \vec{P}_{m}^{\prime}=\frac{q_{m}}{2} \times 2 l . \quad \vec{P}_{m}^{\prime}=\frac{P_{m}}{2} \quad\left(: \quad \vec{P}_{m}=q_{m} \times 2 \vec{l}\right)
\end{aligned}
$$

Each pieces is further cut into pieces.
Further cut into piekes.

$$
\begin{aligned}
\therefore \vec{P}_{m}^{\prime \prime} & =q_{m}^{\prime \prime} \times 2 l \\
& =\frac{q_{m}}{4} \times 2 l
\end{aligned}
$$

2. A conductor of linear mass density $0.2 \mathrm{~g} \mathrm{~m}^{-1}$ suspended by two flexible wire as shown in figure. Suppose the tension in the supporting wires is zero when it is kept inside the magnetic field of 1 T whose direction is into the page. Compute the current inside the conductor and also the direction of the current. Assume $g=10 \mathrm{~m} \mathrm{~s}^{-2}$

$$
\begin{aligned}
& \text { Maquetic Field, } B=1 T \text {. } \\
& \text { Downward Force, } F=m g \text {. } \\
& \text { Linear mass derisity, } \\
& \times \underset{x}{x} \times \\
& =m / l=0.2 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \text {. } \\
& m \text { = Linear mass lewsity } \times l \\
& m=0.2 \times 10^{-3} \times P \\
& F=m g=0.2 \times 10^{-3} \times P \times 10 \\
& F=2 \times 10^{-3} L \rightarrow 1 \\
& F=B I A=1 \times I \times \rightarrow \text { (2) }[\text { This is upend magnetic }] \text { Force acting on the wise }] \\
& \begin{array}{l}
\text { From (1) and (2) } \\
I \times P=2 \times 10^{-3} l
\end{array} \\
& I=2 \mathrm{~mA}
\end{aligned}
$$

3. A circular coil with cross-sectional area 0.1 cm 2 is kept in a uniform magnetic field of strength 0.2 T. If the current passing in the coil is $3 A$ and plane of the loop is perpendicular to the direction of magnetic field. Calculate (a) total torque on the coil (b) total force on the coil (c) average force on each electron in the coil due to the magnetic field. (The free electron density for the material of the wire is $10^{28} \mathrm{~m}^{-3}$).

$$
\begin{aligned}
& \text { choss-sectional area of coil } \\
& A=0.1 \mathrm{~cm}^{2}=0.1 \times\left(10^{-2} \mathrm{~m}\right)^{2} \\
& A=0.1 \times 10^{-4} \mathrm{~m}^{2} ; B=0.2 \mathrm{~T} ; \quad I=3 \mathrm{~A} .
\end{aligned}
$$

Angle between the maquetic field and normal

$$
\text { to the coil, } \theta=0^{\circ}
$$

4. A bar magnet is placed in a uniform magnetic field whose strength is 0.8 T.If the bar magnet is oriented at an angle 30° with the external field experiences a torque of 0.2 Nm. Calculate: (i) the magnetic moment of the magnet (ii) the work done by the magnetic field in moving it from most stable configuration to the most unstable configuration and also compute the work done by the applied magnetic field in this case.

$$
B=0.8 \mathrm{~T} ; \theta=30^{\circ} ; \tau=0.2 \mathrm{Nm}
$$

SOLUTION:-

$$
\begin{aligned}
& \text { (i) } \tau=P_{m} B \sin \theta . \\
& P_{m}=\frac{\tau}{B \sin \theta}=\frac{0.2}{0.8 \times \sin 30^{\circ}}=\frac{1}{4 \times 1 / 2} \\
& P_{m}=0.5 \mathrm{Am}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) Total torque on the coil:- } \\
& \tau=A B I \sin \theta \quad\left[\because \sin 0^{\circ}=0\right] \text {. } \\
& \tau=0 \\
& \text { b) Total force on the coil:- } \\
& F=B I+\sin \theta \\
& F=0.2 \times 3 \times+\times \sin 0^{\circ} \\
& F=0 \text {. } \\
& \text { C) Average force:- } \\
& F=q v_{d} B \quad v_{d}=\frac{I}{\operatorname{neA}_{A}} \\
& F=\phi \times \frac{I}{n \neq A} \times B \\
& F=\frac{I B}{n A}=\frac{3 \times 0.2}{10^{28} \times 0.1 \times 10^{-4}}=6 \times 10^{-24} \text {. } \\
& F=0.6 \times 10^{-23} \mathrm{~N}
\end{aligned}
$$

5. A non - conducting sphere has a mass of 100 g and radius 20 cm . A flat compact coil of wire with turns 5 is wrapped tightly around it with each turns concentric with the sphere. This sphere is placed on an inclined plane such that plane of coil is parallel to the inclined plane. A uniform magnetic field of $0.5 T$ exists in the region in vertically upward direction. Compute the current I required to rest the sphere in equilibrium.

Mass of the sphere (m)

$$
m=1009=100 \times 10^{-3} \mathrm{~kg}
$$

$$
\text { Radius } R=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m} \text {. }
$$

$$
n=5, \quad B=0.5 T=1 / 2 T .
$$

 $I=$?

$$
\begin{aligned}
& \text { (ii) In stable configuration work done by an } \\
& \text { applied force, } \\
& U_{i}=-P_{m} B \cos \theta \\
& U_{i}=-P_{m} B \\
& \text { (iii) In unstable configuration workdone by an } \\
& \text { applied force, } \\
& U_{f}=-P_{m} B \cos \theta \\
& U_{f}=P_{m B} \\
& \text { Work done by applied magnetic field, } \\
& W=U_{f}-U_{i} \\
& =P_{m} B-\left[-P_{m} B\right] \\
& =2 \mathrm{PmB} \\
& =2 \times 0.5 \times 0.8 \\
& W=0.8 \mathrm{~J} \text {. }
\end{aligned}
$$

SOLUTION:- At equilibrium,

$$
\begin{aligned}
& f_{s} R-P_{m} B \sin \theta=0 . \\
& f_{s} R=P_{m} B \sin \theta \quad\left[\theta=90^{\circ}\right] \quad\left[\begin{array}{l}
P_{m}=I_{A} \\
\text { For ni turns } \\
P_{m}=N \times I A
\end{array}\right] \\
& I=\frac{m g R}{N B A}=\frac{m g R}{N B \pi R^{2}}=\frac{m g}{N B \pi R}=\frac{206 \times 10^{-3} \times 10}{\Gamma \times 1 / 2 \times \pi 26 \times 10^{-2}} \\
& I=\frac{20}{\pi} \times 10^{-1} \Rightarrow I=2 / \pi A
\end{aligned}
$$

6. Calculate the magnetic field at the centre of a square loop which carries a current of 1.5 A, length of each side being 50 cm .

$$
\begin{aligned}
& I=1.5 \mathrm{~A} ; \quad l=50 \mathrm{~cm}=0.5 \mathrm{~m} \\
& \text { Magnetic field at the centre of current carrying } \\
& \text { square loop, } B^{\prime}=\text { ? } \\
& \text { Solution: } \\
& \text { According to Blot - savaltlaw, } \\
& \text { Magnetic field due to a current } \\
& \text { Carrying straight line } \\
& B^{\prime}=\frac{\text { ho } I}{4 \pi a}\left(\cos \phi_{1}-\cos \phi_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4 \pi \times 10^{-7} \times 1.5}{4 \pi \times 0.25}\left[\cos 45^{\circ}-\cos \left(180-45^{\circ}\right)\right] . \\
& =6 \times 10^{-7}\left[\cos 45^{\circ}+\cos 45^{\circ}\right] \quad\left(\because \cos \left(180^{\circ}-\theta\right)=0\right) \\
& =6 \times 10^{-7} \times\left(1 / \sqrt{2}+\frac{1}{\sqrt{2}}\right) \\
& =6 \times 10^{-7} \times 2 / \sqrt{2}=6 \times 10^{-7} \times \frac{\sqrt{2} \times \sqrt{2}}{\sqrt{2}} \\
& B^{\prime}=6 \times 10^{-7} \times 1.414 \\
& B^{\prime}=8.484 \times 10^{-7} \mathrm{~T} .
\end{aligned}
$$

\therefore For Four sides,

$$
\begin{aligned}
& B^{\prime}=4 \times 8.484 \times 10^{-7} \\
& B^{\prime}=33.9 \times 10^{-7} \\
& B^{\prime}=3.4 \times 10^{-6} \mathrm{~T}
\end{aligned}
$$

4. ELECTROMAGNETIC INDUCTION

AND ALTERNATING CURRENT

1. A square coil of side 30 cm with 500 turns is kept in a uniform magnetic field of 0.4 T. The plane of the coil is inclined at an angle of 30o to the field. Calculate the magnetic flux through the coil.

$$
\begin{aligned}
& \text {) GIVEN } \\
& A=30 \times 10^{-2} \times 30 \times 10^{-2} \mathrm{~m}^{2} \\
& A=900 \times 10^{-4}=9 \times 10^{-2} \mathrm{~m}^{2} \\
& B=0.4 \mathrm{~T} \text {, plane reclined to the field, } \theta=30^{\circ} \\
& \theta=90^{\circ}-30^{\circ}=60^{\circ} ; N=500 \text { turns, } \phi_{B}=\text { ? } \\
& \text { SOLUTION: } \\
& \phi_{B}=N B A \cos \theta=500 \times 0.4 \times 9 \times 10^{-2} \times \cos 60^{\circ} \\
& =5 \times 10^{2} \times 4 \times 10^{-1} \times 9 \times 10^{2} \times 1 / 2 \\
& \phi_{B}=10 \times 10^{-1} \times 9 \\
& \phi_{B}=9 \mathrm{wb} .
\end{aligned}
$$

2. A straight metal wire crosses a magnetic field of flux 4 mWb in a time 0.4 s . Find the magnitude of the emf induced in the wire.
GIVEN:

$$
\begin{aligned}
d \phi & =4 m w b=4 \times 10^{-3} \mathrm{ub} \\
d t & =0.4 s=4 \times 10^{-1} \mathrm{~s} \\
\varepsilon & =?
\end{aligned}
$$

SOLUTION:

$$
\varepsilon=\frac{d \phi}{d t}=\frac{4 \times 10^{-3}}{4 \times 10^{-1}}=10 \times 10^{-3} \mathrm{~V}
$$

3. The magnetic flux passing through a coil perpendicular to its plane is a function of time and is given by $\emptyset_{B}=\left(2 t^{3}+4 t^{2}+8 t+8\right) W b$. If the resistance of the coil is 5Ω, determine the induced current through the coil at a time $t=3$ second.

$$
\begin{aligned}
& \varepsilon=6 t^{2}+8 t+8 \\
& t=3 s, \quad \varepsilon=6 \times(3)^{2}+8 \times 3+8 \\
&=6 \times 9+24+8=54+32 \\
& \varepsilon=86 \mathrm{~V} . \\
& i=\varepsilon / R=86 / 5 \quad i=17.2 \mathrm{~A}
\end{aligned}
$$

4. A closely wound circular coil of radius 0.02 m is placed perpendicular to the magnetic field. When the magnetic field is changed from 8000 T to 2000 Tin 6 s, an emf of 44 V is induced in it. Calculate the number of turns in the coil.

$$
\begin{aligned}
& \text { GIVEN: } \\
& r=0.02 \mathrm{~m} \\
& d t=6 \mathrm{~s} ;
\end{aligned} \quad \begin{aligned}
-2 \times 10^{-2} \mathrm{~m} ; & B_{1}=8000 \mathrm{~T} ; \\
d t & B_{2}=2000 \mathrm{~T} .
\end{aligned}
$$

SOLUTION:

$$
\varepsilon=\frac{d \phi_{B}}{d t}=N A \frac{\left(B_{1}-B_{2}\right)}{t} \times \cos \theta .
$$

$$
A=\pi r^{2}=3.14 \times\left(2 \times 10^{-2}\right)^{2},
$$

$$
4 \frac{11}{44}=\frac{N \times 3.14 \times 4 \times 10^{-4} \times(8000-2000) \times \cos 0^{\circ}}{6}
$$

$$
11=N \times 3.14 \times 10^{-4} \times 6000 \times 1
$$

$$
\not 6
$$

$$
\begin{aligned}
& 11=N \times 3.14 \times 10^{-1} \\
& N= \frac{110}{3.14}=\frac{116^{5}}{22 / 7}=5 \times 7=35 \\
& N=35 \text { turns. }
\end{aligned}
$$

5. A rectangular coil of area $6 \mathrm{~cm}^{2}$ having 3500 turns is kept in a uniform magnetic field of 0.4 T. Initially, the plane of the coil is perpendicular to the field and is then rotated through an angle of 180°. If the resistance of the coil is 35Ω, find the amount of charge flowing through the coil.

$$
\begin{aligned}
& \text { SoLUTION: } \\
& \varepsilon=-\frac{d \phi}{d t}=\frac{+N B A\left(\cos \theta_{1}-\cos \theta_{2}\right)}{t} . \\
& \text { (only magnitude) } \\
& \varepsilon=\frac{35 \times 10^{2} \times 4 \times 10^{-1} \times 6 \times 10^{-4} \times\left[\cos 0^{\circ}-\cos 180^{\circ}\right]}{1} \\
& \varepsilon=840 \times 10^{-3} \times(1+1)=1680 \times 10^{-3} \mathrm{~V} . \\
& i=\varepsilon / R=\frac{1680 \times 10^{-3}}{35}=48 \times 10^{-3} \mathrm{~A} \\
& q=i t=48 \times 10^{-3} \times 1 \mathrm{c} \\
& =q=48 \mathrm{mc} .
\end{aligned}
$$

6. An induced current of 2.5 mA flows through a single conductor of resistance 100Ω. Find out the rate at which the magnetic flux is cut by the conductor.

> GIVEN:

$$
i=2.5 \mathrm{~mA}: R=100 \Omega
$$

$$
\frac{d \phi_{B}}{d t}=?
$$

SOLUTION:

$$
\frac{d \phi_{B}}{d t}=\varepsilon \quad ; \quad \varepsilon=i R
$$

$$
\frac{d \phi_{B}}{d t}=2.5 \times 10^{-3} \times 100=250 \times 10^{-3} .
$$

$$
\therefore \text { Rate of change of Flux; }
$$

$$
\frac{d \phi}{d t}=250 \mathrm{~m} \omega \mathrm{~b} / \mathrm{s}
$$

7. A fan of metal blades of length 0.4 m rotates normal to a magnetic field of $4 \times 10^{-3} \mathrm{~T}$. If the induced emf between the centre and edge of the blade is 0.02 V , determine the rate of rotation of the blade.

8. A bicycle wheel with metal spokes of 1 m long rotates in Earth's magnetic field. The plane of the wheel is perpendicular to the horizontal component of Earth's field of 4×10^{-5} T. If the emf induced across the spokes is 31.4 mV , calculate the rate of revolution of the wheel.

$$
\begin{aligned}
& \text { GIVEN: } \\
& \quad T=1 \mathrm{~m} ; B=4 \times 10^{-5} \mathrm{~T} ; A=\pi r^{2}=3.14 \times(1)^{2}=3.14 \mathrm{~m}^{2} \\
& \varepsilon=31.4 \mathrm{mV}=31.4 \times 10^{-3} \mathrm{~V}=3.14 \times 10^{-2} \mathrm{~V} ; \quad \omega=?
\end{aligned}
$$

SOLUTION:

$$
\varepsilon=N B A W \sin \theta \quad\left[N=1 ; \theta=90^{\circ} ; \sin 90^{\circ}=1\right]
$$

$\omega=\frac{\varepsilon}{N B A \sin \theta}$
$=\frac{3.14 \times 10^{-2}}{1 \times 4 \times 10^{-5} \times 3.14 \times \sin 90^{\circ}}=\frac{1000}{4 \times 1}$

$$
\omega=250 \mathrm{rPs}
$$

9. Determine the self-inductance of 4000 turn air-core solenoid of length $\mathbf{2 m}$ and diameter 0.04 m .

$$
\begin{aligned}
& \text { GIVEN: } \begin{aligned}
\text { G } & =4000 \text { tums; } l=2 \mathrm{~m} ; \quad d=0.04 \mathrm{~m} ; \quad r=0.02 \mathrm{~m} \\
r & =2 \times 10^{-2 \mathrm{~m}}
\end{aligned} \\
& A=\pi r^{2} ; L=? \\
& L=\mu_{0} n^{2} \wedge P \quad ; n=N / l \\
& L=\frac{h_{0} N^{2} 4}{+}=\frac{4 \pi \times 10^{-7} \times(4000)^{2} \times 3.14 \times\left(2 \times 10^{-2}\right)^{2}}{2} \\
& L=2 \times 3.14 \times 10^{-7} \times 16 \times 10^{6} \times 3.14 \times 4 \times 10^{-4} \\
& L=3.14 \times 3.14 \times 128 \times 10^{-5} \\
& L=1262.02 \times 10^{-5} \mathrm{H}=12.62 \times 10^{-3} \mathrm{H} \\
& L=12.62 \mathrm{mH} .
\end{aligned}
$$

10. A coil of 200 turns carries a current of 4 A. If the magnetic flux through the coil is $6 \times 10^{-5} \mathrm{~Wb}$, find the magnetic energy stored in the medium surrounding the coil.

Given:
$N=200=2 \times 10^{2}$ turns; $I=4 A, \phi_{B}=6 \times 10^{-5} \mathrm{wb}$ $U_{B}=$?
SOLUTION:

$$
\begin{array}{lr}
U_{B}=1 / 2 L I^{2} ; & L I=N \phi_{B} \\
=1 / 2 \times \frac{N \phi_{B}}{I} \times I^{I} & L=N \phi_{B} / I \\
=1 / 2 N \phi_{B} \times I=1 / 7 \times 2 \times 10^{2} \times 6 \times 10^{-5} \times 4 . \\
U_{B}=24 \times 10^{-3} \mathrm{~J} & \therefore U_{B}=0.024 \mathrm{I}
\end{array}
$$

11. A 50 cm long solenoid has 400 turns per cm . The diameter of the solenoid is 0.04 m . Find the magnetic flux linked with each turn when it carries a current of 1 A.

12. A coil of 200 turns carries a current of 0.4 A. If the magnetic flux of 4 mWb is linked with each turn of the coil, find the inductance of the coil.

$$
\text { GIVEN: } \quad \begin{aligned}
& N=200 \text { turns: } I=0.4 A=4 \times 10^{-1} ; \Phi_{B}=4 m \omega b= \\
& 4 \times 10^{-3} w b .
\end{aligned}
$$

$L=$?
SOLUTION: $N 中_{B}=L I ; L=\frac{N \phi_{B}}{I}$

$$
L=2 H
$$

$$
l=80 \mathrm{~cm}=8 \times 10^{-1} ; A=5 \mathrm{~cm}^{2}=5 \times 10^{-4} \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& l=80 \mathrm{~cm}=8 \times 10 ; A=12 \times 10^{2} ; N_{2}=400=4 \times 10^{2} \\
& N_{1}=1200 \text { turns }=12
\end{aligned}
$$

$$
M=?
$$

13. Two air core solenoids have the same length of 80 cm and same cross-sectional area 5 cm^{2}. Find the mutual inductance between them if the number of turns in the first coil is 1200 turns and that in the second coil is 400 turns.

GIVEN:

$$
M=?
$$

SOLUTION:

$$
M=\frac{\mu_{20} N_{1} N_{2} A}{t}
$$

$$
; \quad n_{1}=\frac{N_{1}}{-p} ; \quad n_{2}=\frac{N_{2}}{t}
$$

$$
\begin{aligned}
{[M} & \left.=\mu_{0} n_{1} n_{2} A P\right] \\
b & \frac{4 \pi \times 10^{-7} \times 12 \times 10^{2} \times 4 \times 10^{2} \times 5 \times 10^{-4}}{8 \times 10^{-1}}=4 \times 3.14 \times 30 \times 10^{-6} \\
& =\frac{4}{8}=37.68 \times 10^{-5} \mathrm{H} \\
& =12.56 \times 3 \times 10^{-5} \\
M & =0.3768 \times 10^{-3} \mathrm{H}=0.38 \mathrm{mH} .
\end{aligned}
$$

14. A long solenoid having 400 turns per cm carries a current 2A. A 100 turn coil of crosssectional area 4 cm 2 is placed co-axially inside the solenoid so that the coil is in the field produced by the solenoid. Find the emf induced in the coil if the current through the solenoid reverses its direction in 0.04 sec.

15. A 200 turn circular coil of radius 2 cm is placed co-axially within a long solenoid of 3 cm radius. If the turn density of the solenoid is 90 turns per cm, then calculate mutual inductance of the coil and the solenoid.

GIVEN:

$N_{2}=200=2 \times 10^{2} ; \quad r=2 \times 10^{-2} \mathrm{~m} ; A=\pi r^{2}$
$N_{1}=90$ turns $/ \mathrm{cm}=90 / 10^{-2}=40 \times 10^{2} ; M=$?
SOLUTION'
$M=\frac{120 N N_{2} A}{t} \Rightarrow \frac{4 \pi \times 10^{-7} \times 9 \times 10^{3} \times 2 \times 10^{2} \times 3.14 \times\left(2 \times 10^{-2}\right)^{2}}{1}$

$=12.56 \times 18 \times 12.56 \times 10^{-6}$
$M=2.84 \times 10^{-3} \mathrm{H}$

16. The solenoids S_{1} and S_{2} are wound on an iron-core of relative permeability 900. Their areas of their cross-section and their lengths are the same and are $4 \mathrm{~cm}^{2}$ and 0.04 m respectively. If the number of turns in S_{1} is 200 and that in S_{2} is 800, calculate the mutual inductance between the solenoids. If the current in solenoid 1 is increased form $2 A$ to $8 A$ in 0.04 second, calculate the induced emf in solenoid 2.

17. A step-down transformer connected to main supply of 220 V is used to operate 11V,88W lamp. Calculate (i) Voltage transformation ratio and (ii) Current in the primary.

GIVEN:

$$
\begin{aligned}
& \begin{aligned}
V_{p} & =220 \mathrm{~V} ; V_{s}=11 \mathrm{~V} ; \text { output powder }
\end{aligned}=V_{s} I_{s} \\
&=88 \mathrm{~W} \\
& K=? \quad I_{p}=?
\end{aligned}
$$

SOLUTION:
(i) Transformer ratio $(K)=\frac{V_{s}}{V_{p}}=\frac{11}{220}$

$$
k=1 / 20
$$

(ii) $\quad V_{S} I_{S}=88 ; \quad 11 \times I_{S}=88 ; \quad I_{S}=8 \mathrm{~A}$

$$
\frac{I_{P}}{I_{S}}=\frac{V_{s}}{V_{P}} ; \quad I_{p}=\frac{V_{s}}{V_{p}} \times I_{s}
$$

$$
I_{p}=\frac{11}{220} \times 8^{2}=0.44
$$

$$
\begin{aligned}
& I_{P}=0.4 \mathrm{~A} \\
& I_{P} / I_{S}=K ; \quad[O R] \\
& I_{P}=k I_{S}=1 / 20^{\circ}
\end{aligned}
$$

$$
I_{P}=0.4 \mathrm{~A}
$$

18. A $200 \mathrm{~V} / 120 \mathrm{~V}$ step-down transformer of $\mathbf{9 0 \%}$ efficiency is connected to an induction stove of resistance 40Ω. Find the current drawn by the primary of the transformer.

GIVEN:

$$
V_{P}=200 \mathrm{~V} ; V_{S}=120 \mathrm{~V} ; \quad \eta=90 \%=90 / 100
$$

$$
R_{S}=40 \Omega \quad ; \quad I_{p}=?
$$

SOLUTION:

$$
V_{s}=I_{s} R_{s}
$$

$$
I_{S}=V_{S} / R_{S}=\frac{120}{40}=3.4 \quad I_{S}=3.4
$$

$$
\therefore \eta=\frac{V_{S} I_{S}}{V_{P} I_{P}}=\frac{90}{100}=\frac{120 \times 3}{200 \times I_{P}}
$$

$$
I_{P}=2 \mathrm{~A}
$$

19. The 300 turn primary of a transformer has resistance 0.82Ω and the resistance of its secondary of 1200 turns is 6.2Ω. Find the voltage across the primary if the power output from the secondary at 1600 V is 32 kW . Calculate the power losses in both coils when the transformer efficiency is 80%.

GIVEN:
$V_{p}=? \quad V_{s}=1600 \mathrm{~V}$.
out put power $=V_{s} I_{s}=32 \mathrm{~kW}=32 \times 10^{3} \mathrm{~W}$
$I_{P}^{2} R_{P}=? \quad \eta=80 \mathrm{~V}=80 / 100$
$I_{s}{ }^{2} R_{s}=$?
SOLUTION:
(i) $\frac{V_{P}}{V_{S}}=\frac{N_{P}}{N_{S}} ; V_{P}=\frac{N_{P}}{N_{S}} \times V_{S}=\frac{300}{V_{2} 00} \times 1600$
$V_{p}=400 \mathrm{~V}$
(ii) out put power, $V_{s} I_{s}=32 \times 10^{3} \mathrm{~W}$

$$
I_{S}=\frac{32 \times 10^{3}}{16 \times 10^{2}}=20 \mathrm{~A}
$$

$I_{S}=20 \mathrm{~A}$
(iii) $\eta=\frac{V_{S} I_{S}}{V_{P} I_{P}}=\frac{80}{100}=\frac{1600 \times 20}{400 \times I_{P}}$

$$
I_{p}=100 \mathrm{n}
$$

Power loss in primary coil $=I_{P}^{2} R_{P}$

$$
\begin{aligned}
& \therefore I_{P}^{2} R_{P}=(100)^{2} \times 0.82=8200 \mathrm{~W} \\
& I_{P}^{2} R_{P}=8.2 \mathrm{~kW}
\end{aligned}
$$

$$
\text { power loss in secondary coil }=I_{s}^{2} R_{S} \text {. }
$$

$$
I_{s}{ }^{2} R_{S}=(20)^{2} \times 6.2=4 \times 10^{2} \times 6.2
$$

$$
=24.8 \times 10^{2}
$$

$$
I_{S}^{2} R_{S}=2.48 \mathrm{~kW}
$$

20. Calculate the instantaneous value at 60°, average value and RMS value of an alternating current whose peak value is 20 A .

$$
\begin{aligned}
& \theta=60^{\circ} ; i=? ; I_{\Delta v_{j}}=? ; I_{r m s}=? \\
& I_{m}=20 \mathrm{~A} \\
& \text { SOLUTION: } \\
& \text { (i) Instantaneous current, } i=I_{m} \sin \omega t \\
& \theta=\omega t ; i=20 \sin 60^{\circ}=20 \times \sqrt{3} / 2=10 \times 1.732 \\
& i=17.324 . \\
& \text { (ii) } I_{\text {avg }}=\frac{2 I_{m}}{\pi}=\frac{2 \times 20}{3.14}=\frac{40}{3.14}=1.275 \times 10^{1} \\
& \therefore I_{a v g}=12.75 \mathrm{~A} \\
& \text { (iii) } I_{r m s}=\frac{I_{m}}{\sqrt{2}}=0.707 I_{m}=0.707 \times 20 \\
& I_{\text {rms }}=14.14 \mathrm{~A}
\end{aligned}
$$

5. ELECTROMAGNETIC WAVES

1. Consider a parallel plate capacitor whose plates are closely spaced. Let \mathbf{R} be the radius of the plates and the current in the wire connected to the plates is 5 A , calculate the displacement current through the surface passing between the plates by directly calculating the rate of change of flux of electric field through the surface.
```
1 Given: \(I_{c}=5 A ; I_{d}=\) ?
    \(\frac{\text { Solution: }}{\text { Electric flux } \phi_{e}=q / \varepsilon_{0} .}\)
        \(\because I_{d}=\varepsilon_{0} \frac{d \phi_{E}}{d t}=\varepsilon_{0} \frac{d}{d t}[q / \varepsilon /]\)
        \(I_{d}=d q / d t=\frac{d\left(I_{c} t\right)}{d t}\)
        \(I_{d}=I_{c} d t / d t\)
        \(I_{d}=I_{c}=5 \mathrm{~A}\).
```

2. A transmitter consists of LC circuit with an inductance of $1 \mu H$ and a capacitance of $1 \mu \mathrm{~F}$. What is the wavelength of the electromagnetic waves it emits?

GIVEN: $L=1 \mu \mathrm{H}=10^{-6} \mathrm{H}$

$$
\lambda=?
$$

SOLUTION:

$$
\lambda=c / f
$$

$$
\begin{aligned}
& f=\frac{1}{2 \pi \sqrt{L C}} \quad c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} . \\
& f=\frac{1}{2 \times 3.14 \sqrt{10^{-6} \times 10^{-6}}}=\frac{1}{6.28 \times 10^{-6}}=\frac{10^{6}}{6.28} \mathrm{~Hz} . \\
& \lambda=c / f=\frac{3 \times 10^{8} \times 6.28}{10^{6}}=18.84 \times 10^{2} . \\
& \quad \lambda=18.84 \times 10^{2} \mathrm{~m} .
\end{aligned}
$$

3. A pulse of light of duration $10^{-6} s$ is absorbed completely by a small object initially at rest. If the power of the pulse is $60 \times 10^{-3} \mathrm{~W}$, calculate the final momentum of the object.

$$
\text { GIVEN: } \quad \begin{aligned}
t=10^{-6} \mathrm{~s} ; & \text { Power }=60 \times 10^{-3} \mathrm{~W} \\
& \text { Momentum } P=?
\end{aligned}
$$

SOLUTION:

$$
\begin{aligned}
& P=U / c \\
&=\frac{20}{66 \times 10^{-3} \times 10^{-6}} \\
& 3 \times 10^{8}
\end{aligned} C=3 \times 10^{8} \mathrm{~m} / \mathrm{s} .
$$

4. Let an electromagnetic wave propagate along the x-direction, the magnetic field oscillates at a frequency of $10^{10} \mathrm{~Hz}$ and has an amplitude of $10^{-5} \mathrm{~T}$, acting along the \boldsymbol{y} - direction. Then, compute the wavelength of the wave. Also write down the expression for electric field in this case.

$$
\begin{aligned}
& \text { GIVEN: } f=10^{10} \mathrm{~Hz}, \quad B_{0}-10^{-5} \mathrm{~T}, C=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \text {. } \\
& \lambda=\text { ? } \\
& \text { SOLUTION: } \\
& \text { (ii) Amplitude of oscillating electric field. } \quad \lambda=3 \times 10^{-2} \mathrm{~m} . \\
& E_{0}=C B_{0}=3 \times 10^{8} \times 10^{-5}=3 \times 10^{3} \mathrm{~N} \mathrm{C}^{-1} . \\
& \text { Expression for Electric field in EM wave, } \\
& E=E_{0} \sin (k x-\omega t) \\
& k=2 \pi / \lambda=\frac{2 \times 3.14}{3 \times 10^{-2}}=\frac{6.28 \times 10^{2}}{3}=2.09 \times 10^{2} . \\
& \omega=2 \pi f=2 \times 3.14 \times 10^{10}=6.28 \times 10^{10} . \\
& \vec{E}=3 \times 10^{3} \sin \left[2.09 \times 10^{2} x-6.28 \times 10^{10} t\right] \hat{i} N c^{-1}
\end{aligned}
$$

5. If the relative permeability and relative permittivity of a medium are 1.0 and 2.25 respectively, find the speed of the electromagnetic wave in this medium.

Given

$$
\mu_{r}=1.0 ; \varepsilon_{r}=2.25 \quad V=?
$$

$$
\xlongequal{\text { SOLUTION: }}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} ; \quad V=\frac{1}{\sqrt{\mu \varepsilon}}
$$

$$
\begin{aligned}
& \mu=\mu_{0} \mu_{r} ; \quad \varepsilon=\varepsilon_{0} \varepsilon_{r} . \\
& V=\frac{1}{\sqrt{\mu_{0} \mu_{r} \times \varepsilon_{0} \varepsilon_{r}}}=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}}=\frac{3 \times 10^{8}}{\sqrt{1 \times 2.25}}
\end{aligned}
$$

$$
\begin{aligned}
V=\frac{3 \times 10^{8}}{1.5} & =2 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
V & =2 \times 10^{8} \mathrm{~ms}^{-1}
\end{aligned}
$$

