
MS CENTRE 9791366374

9TH STANDARD EM

MATHEMATICS BOOK BACK ONE MARKS Multiple Choice Questions

1.SET LANGUAGE

- 6. Which of the following is correct?
 - $(1) \varnothing \subseteq \{a, b\}$
- $(2) \emptyset \in \{a, b\}$
- $(3) \{a\} \in \{a, b\}$
- (4) a $\subseteq \{a, b\}$

- 7. If $A \cup B = A \cap B$, then
 - $(1) A \neq B$
- (2) A = B
- (3) $A \subset B$
- (4) $B \subset A$

- 8. If B A is B, then $A \cap B$ is
 - (1) A

- (2) B
- (3) U
- $(4) \emptyset$
- 9. From the adjacent diagram $n[P(A\Delta B)]$ is
 - (1) 8

- (2) 16
- (3)32
- (4)64

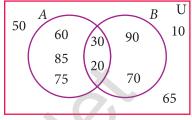


Fig. 1.40

- 10. If n(A) = 10 and n(B) = 15, then the minimum and maximum number of elements in $A \cap B$ is
 - (1) 10,15
- (2) 15,10
- (3) 10,0
- (4) 0,10

- 11. Let $A = \{\emptyset\}$ and B = P(A), then $A \cap B$ is
 - $(1) \{ \emptyset, \{\emptyset\} \}$
- $(2) \{\emptyset\}$
- $(3) \varnothing$

- $(4) \{0\}$
- 12. In a class of 50 boys, 35 boys play Carrom and 20 boys play Chess then the number of boys play both games is
 - (1)5

- (2) 30
- (3) 15

- (4) 10.
- 13. If $U = \{x : x \in \mathbb{N} \text{ and } x < 10\}$, $A = \{1, 2, 3, 5, 8\}$ and $B = \{2, 5, 6, 7, 9\}$, then $n[(A \cup B)']$ is
 - (1) 1

- (2) 2
- (3) 4

(4) 8

- 14. For any three sets P, Q and R, $P (Q \cap R)$ is
 - (1) $P (Q \cup R)$

(2) $(P \cap Q) - R$

(3) $(P - Q) \cup (P - R)$

- (4) $(P Q) \cap (P R)$
- 15. Which of the following is true?
 - $(1) A B = A \cap B$

- (2) A B = B A
- $(3) (A \cup B)' = \overline{A'} \cup \overline{B'}$
- (4) $(A \cap B)' = A' \cup B'$
- 16. If $n(A \cup B \cup C) = 100$, n(A) = 4x, n(B) = 6x, n(C) = 5x, $n(A \cap B) = 20$, $n(B \cap C) = 15$, $n(A \cap C) = 25$ and $n(A \cap B \cap C) = 10$, then the value of x is
 - (1) 10

- (2) 15
- (3) 25

- $(4)\ 30$
- 17. For any three sets A, B and C, $(A B) \cap (B C)$ is equal to
 - (1) A only
- (2) B only
- (3) Conly
- (4) ϕ

18.	If $J = \text{Set of three sided shapes}$, $K = \text{Set of shapes with two equal sides and } L = \text{Set of shapes}$
	shapes with right angle, then $J \cap K \cap L$ is

- (1) Set of isoceles triangles
- (2) Set of equilateral triangles
- (3) Set of isoceles right triangles
- (4) Set of right angled triangles
- 19. The shaded region in the Venn diagram is
 - (1) $Z (X \cup Y)$
- (2) $(X \cup Y) \cap Z$
- (3) $Z (X \cap Y)$
- (4) $Z \cup (X \cap Y)$
- 20. In a city, 40% people like only one fruit, 35% people like only two fruits, 20% people like all the three fruits. How many percentage of people do not like any one of the above three fruits?
 - (1) 5
- (2) 8
- (3) 10
- (4) 15

2.REAL NUMBERS

- 1. If *n* is a natural number then \sqrt{n} is
 - (1) always a natural number.
- (2) always an irrational number.
- (3) always a rational number
- (4) may be rational or irrational
- 2. Which of the following is not true?.
 - (1) Every rational number is a real number.
- (2) Every integer is a rational number.
- (3) Every real number is an irrational number. (4) Every natural number is a whole number.
- Which one of the following, regarding sum of two irrational numbers, is true? 3.
 - (1) always an irrational number.
- (2) may be a rational or irrational number.
- (3) always a rational number.
- (4) always an integer.
- Which one of the following has a terminating decimal expansion?. 4.
 - $(1) \frac{5}{64}$

- $(2) \frac{8}{9}$
- (3) $\frac{14}{15}$
- $(4) \frac{1}{12}$
- Which one of the following is an irrational number 5.
 - $(1) \sqrt{25}$
- (2) $\sqrt{\frac{9}{4}}$ (3) $\frac{7}{11}$
- (4) π

6.	An irrational number b	etween 2 and 2.5 is		
	(1) $\sqrt{11}$	(2) $\sqrt{5}$	(3) $\sqrt{2.5}$	(4) $\sqrt{8}$
7.	The smallest rational	number by which	$\frac{1}{3}$ should be multip	plied so that its decimal
	expansion terminates		U	
	(1) $\frac{1}{10}$	$(2) \frac{3}{10}$	(3) 3	(4) 30
8.	If $\frac{1}{7} = 0.\overline{142857}$ then t	the value of $\frac{5}{7}$ is		
	$(1) \ 0.\overline{142857}$	$(2) \ 0.\overline{714285}$	$(3) \ 0.\overline{571428}$	(4) 0.714285
9.	Find the odd one out	of the following.		, (0
	$(1) \sqrt{32} \times \sqrt{2}$	$(2) \frac{\sqrt{27}}{\sqrt{3}}$	$(3) \sqrt{72} \times \sqrt{8}$	$(4) \frac{\sqrt{54}}{\sqrt{18}}$
10.	$0.\overline{34} + 0.3\overline{4} =$			
	$(1) \ 0.6\overline{87}$	$(2) \ 0.\overline{68}$	$(3) \ 0.6\overline{8}$	$(4) \ 0.68\overline{7}$
11.	Which of the followin	g statement is false	?	
	(1) The square root of	25 is 5 or -5	(3) $\sqrt{25} = 5$	
	(2) $-\sqrt{25} = -5$		$(4) \sqrt{25} = \pm 5$	
12.	Which one of the follo	owing is not a ration	nal number?	
	(1) $\sqrt{\frac{8}{18}}$	(2) $\frac{7}{3}$	(3) $\sqrt{0.01}$	(4) $\sqrt{13}$
13.	$\sqrt{27} + \sqrt{12} =$			
	(1) $\sqrt{39}$ If $\sqrt{80} = k\sqrt{5}$, then	(2) $5\sqrt{6}$	(3) $5\sqrt{3}$	(4) $3\sqrt{5}$
14.	If $\sqrt{80} = k\sqrt{5}$, then	k =		
	(1) 2	(2) 4	(3) 8	(4) 16
15.	(1) 2 $4\sqrt{7} \times 2\sqrt{3} =$ (1) $6\sqrt{10}$			
	(1) $6\sqrt{10}$	(2) $8\sqrt{21}$	(3) $8\sqrt{10}$	(4) $6\sqrt{21}$
16.	When written with a r	rational denominat	or, the expression $\frac{2x}{2}$	$\frac{\sqrt{3}}{\sqrt{2}}$ can be simplified as
	(1) $\frac{\sqrt{2}}{3}$	$(2) \ \frac{\sqrt{3}}{2}$	$(3) \frac{\sqrt{6}}{3}$	$(4) \frac{2}{3}$

- When $(2\sqrt{5} \sqrt{2})^2$ is simplified, we get

 (1) $4\sqrt{5} + 2\sqrt{2}$ (2) $22 4\sqrt{10}$ (3) $8 4\sqrt{10}$ (4) $2\sqrt{10} 2$ $(0.000729)^{\frac{-3}{4}} \times (0.09)^{\frac{-3}{4}} =$ (1) $\frac{10^3}{3^3}$ (2) $\frac{10^5}{3^5}$ (3) $\frac{10^2}{3^2}$ (4) $\frac{10^6}{3^6}$

- (3) $\frac{1}{3}$
- The length and breadth of a rectangular plot are 5×10^5 and 4×10^4 metres respectively. Its area is _____.
 - (1) $9 \times 10^1 \, m^2$
- (2) $9 \times 10^9 \, m^2$
- (3) $2 \times 10^{10} m^2$
- (4) $20 \times 10^{20} m^2$

3.ALGEBRA

1.	If $x^3 + 6x^2 + kx + 6$ is exactly divisible by $(x + 2)$, then $k = ?$				
	(1) -6	(2) -7	(3) -8	(4) 11	
2.	The root of the	e polynomial ec	1 = 2x + 3	0 is	
	$(1) \frac{1}{3}$	$(2) - \frac{1}{3}$	$(3) - \frac{3}{2}$	$(4) - \frac{2}{3}$	X
3.	The type of th	e polynomial 4	$-3x^3$ is		. 0
	(1) constant po	olynomial	(2) linear poly	nomial	
	(3) quadratic p	oolynomial	(4) cubic poly	nomial.	X.
4.	If $x^{51} + 51$ is d	ivided by $x + 1$,	then the remain	der is	
	(1) 0	(2) 1	(3) 49	(4) 50	
5.	The zero of the	polynomial 2 <i>x</i> -	+5 is		
	$(1)\frac{5}{2}$	$(2) - \frac{5}{2}$	$(3) \frac{2}{5}$	$(4)-\frac{2}{5}$	
6.	The sum of the	polynomials <i>p</i> ($(x) = x^3 - x^2 - 2,$	$q(x) = x^2 - 3x$	+ 1
	$(1) x^3 - 3x - 1$	$(2) x^3 + 2x^2 - 1$	$(3) x^3 - 2x^2 - 3$	$x (4) x^3 - 2x^2$	$x^{2} + 3x - 1$
7.	Degree of the	polynomial (y ³	$(y^3 + 1)$ is		
	(1) 9	(2) 2	(3) 3	(4) 6	
8.	Let the polyno	omials be	70		
	(A) $-13q^5 + 4q^2 + 12q$ (B) $(x^2 + 4)(x^2 + 9)$ (C) $4q^8 - q^6 + q^2$ (D) $-\frac{5}{7}y^{12} + y^3 + y^5$				
	Then ascending order of their degree is (1) A,B,D,C (2) A,B,C,D (3) B,C,D,A (4) B,A,C,D				
9.			of		(4) Contain
	(1) divisor	(2) quoti	ient (3) remai	inder	(4) factor
10.	Zeros of $(2-3)$	(3x) is	_		
	(1) 3	(2) 2	(3) $\frac{2}{3}$		$(4) \frac{3}{2}$
11.	Which of the	following has x	-1 as a factor?		2
		_	3 (3) $4x -$	3	(4) $3x - 4$
12.	If $x-3$ is a fa	actor of $p(x)$, th	en the remainde	er is	
	(1) 3	, ,	(3) $p(3)$		(4) $p(-3)$
13.	$(x+y)(x^2-x^2)$	$(xy + y^2)$ is equal	al to		
	$(1) \left(x + y\right)^3$ Kindly send	me vour kev an	$(3)_{x}^{3} + (3)_{x}^{3} + (3)_{x}^{3}$	3 M id - nadasal	$\mathbf{ai.net} \mathbf{@}^{3}_{\mathbf{g}\overline{\mathbf{a}}\mathbf{m}\mathbf{i}\mathbf{l}.\mathbf{com}}$
		jour nej un	SHOLD TO GUI CIIIU	Padasa	Sammeom

14. $(a+b-c)^2$ is equal to	14.	$(a+b-c)^2$	is equal to
-----------------------------	-----	-------------	-------------

(1)
$$(a-b+c)^2$$

(1)
$$(a-b+c)^2$$
 (2) $(-a-b+c)^2$ (3) $(a+b+c)^2$ (4) $(a-b-c)^2$

(3)
$$(a+b+c)^2$$

(4)
$$(a-b-c)^2$$

15. In an expression
$$ax^2 + bx + c$$
 the sum and product of the factors respectively,

16. If
$$(x+5)$$
 and $(x-3)$ are the factors of $ax^2 + bx + c$, then values of a, b and c are

$$(3)$$
 1,2, -15

$$(4) 1, -2, 15$$

19. Find the value of
$$m$$
 from the equation $2x + 3y = m$. If its one solution is $x = 2$ and $y = -2$.

$$(2) -2$$

(1)
$$x + \frac{1}{x} = 2$$

(2)
$$x(x-1)=2$$
 (3) $3x+5=\frac{2}{3}$

$$(4) \ x^3 - x = 5$$

21. Which of the following is a solution of the equation
$$2x - y = 6$$

$$(3)(3,-1)$$

22. If (2,3) is a solution of linear equation
$$2x + 3y = k$$
 then, the value of k is

23. Which condition does not satisfy the linear equation
$$ax + by + c = 0$$

(1)
$$a \neq 0$$
, $b = 0$

(2)
$$a = 0$$
, $b \neq 0$

(3)
$$a = 0$$
, $b = 0$, $c \neq 0$ (4) $a \neq 0$, $b \neq 0$

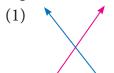
$$(4) \ a \neq 0, \ b \neq 0$$

(1)
$$ax + by + c = 0$$

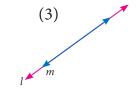
(1)
$$ax + by + c = 0$$
 (2) $0x + 0y + c = 0$

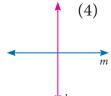
(3)
$$0x + by + c = 0$$
 (4) $ax + 0y + c = 0$

(4)
$$ax + 0y + c = 0$$


25. The value of
$$k$$
 for which the pair of linear equations $4x+6y-1=0$ and $2x+ky-7=0$ represents parallel lines is

(1)
$$k = 3$$


(2)
$$k = 2$$


(3)
$$k = 4$$

$$(4) k = -3$$

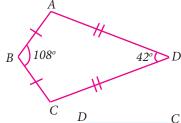
Kindly send me your key answers to our email id - padasalai.net@gamil.com

- MSC 9791366374
 7. If $\frac{a_1}{a_1} \neq \frac{b_1}{b_1}$ where $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ then the given pair of linear 27. equation has _____ solution(s)
 - (1) no solution
- (2) two solutions
- (3) unique
- (4) infinite
- If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{a_2}$ where $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ then the given pair of 28. linear equation has _____ solution(s)
 - (1) no solution
- (2) two solutions
- (3) infinite
- (4) unique
- 29. GCD of any two prime numbers is _____

- (2) 0

(4) 2

- The GCD of $x^4 y^4$ and $x^2 y^2$ is 30.
 - (1) $x^4 y^4$ (2) $x^2 y^2$ (3) $(x+y)^2$


M E T R

- The exterior angle of a triangle is equal to the sum of two 1.
 - (1) Exterior angles angles
- (2) Interior opposite

(3) Alternate angles

- (4) Interior angles
- 2. In the quadrilateral ABCD, AB = BC and AD = DC Measure of $\angle BCD$ is
 - (1) 150°
- $(2) 30^{\circ}$
- (3) 105°

(4) 72°

- ABCD is a square, diagonals AC and BD meet at O. 3. The number of pairs of congruent triangles with vertex O are
 - (1) 6

(2) 8

(3) 4

(4) 12

- In the given figure $CE \parallel DB$ then the value of x° is 4.
 - (1) 45°

 $(2) 30^{\circ}$

- $(4) 85^{\circ}$
- The correct statement out of the following is 5.
 - (1) $\triangle ABC \cong \triangle DEF$
- (2) $\triangle ABC \cong \triangle DEF$
 - (3) $\triangle ABC \cong \triangle FDE$ (4) $\triangle ABC \cong \triangle FED$

- 6. If the diagonal of a rhombus are equal, then the rhombus is a
 - (1) Parallelogram but not a rectangle
 - (2) Rectangle but not a square
 - (3) Square
 - (4) Parallelogram but not a square Kindly send me your key answers to our email id - padasalai.net@gamil.com

- 7. If bisectors of $\angle A$ and $\angle B$ of a quadrilateral ABCD meet at O, then $\angle AOB$ is
 - (1) $\angle C + \angle D$

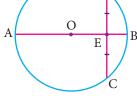
 $(2) \quad \frac{1}{2} \left(\angle C + \angle D \right)$

(3) $\frac{1}{2} \angle C + \frac{1}{3} \angle D$

- (4) $\frac{1}{3} \angle C + \frac{1}{2} \angle D$
- 8. The interior angle made by the side in a parallelogram is 90° then the parallelogram is a
 - (1) rhombus
- (2) rectangle
- (3) trapezium
- (4) kite
- 9. Which of the following statement is correct?
 - (1) Opposite angles of a parallelogram are not equal.
 - (2) Adjacent angles of a parallelogram are complementary.
 - (3) Diagonals of a parallelogram are always equal.
 - (4) Both pairs of opposite sides of a parallelogram are always equal.
- 10. The angles of the triangle are 3x-40, x+20 and 2x-10 then the value of x is
 - $(1) 40^{\circ}$
- (2) 35°
- $(3) 50^{\circ}$
- (4) 45°
- 11. PQ and RS are two equal chords of a circle with centre O such that $\angle POQ = 70^{\circ}$, then $\angle ORS =$
 - $(1) 60^{\circ}$
- (2) 70°
- $(3) 55^{\circ}$

- $(4) 80^{\circ}$
- 12. A chord is at a distance of 15cm from the centre of the circle of radius 25cm. The length of the chord is
 - (1) 25cm
- (2) 20cm
- (3) 40cm
- (4) 18cm
- 13. In the figure, O is the centre of the circle and $\angle ACB = 40^{\circ}$ then $\angle AOB =$
 - (1) 80°
- (2) 85°
- $(3) 70^{\circ}$

(4) 65°


- $(1) 30^{\circ}$
- $(2) 20^{\circ}$
- (3) 15°

 $(4) 25^{\circ}$

S

100°

15. In the figure, O is the centre of a circle and diameter AB bisects A the chord CD at a point E such that CE=ED=8 cm and EB=4cm. The radius of the circle is

Τ

R

Q

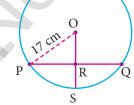
- (1) 8cm
- (2) 4cm
- (3) 6cm
- (4)10cm
- 16. In the figure, PQRS and PTVS are two cyclic quadrilaterals, If $\angle QRS = 100^{\circ}$, then $\angle TVS =$
 - $(1) 80^{\circ}$
- (2) 100°
- $(3) 70^{\circ}$
- $(4) 90^{\circ}$
- 17. If one angle of a cyclic quadrilateral is 75° , then the opposite angle is
 - (1) 100°
- (2) 105°
- $(3) 85^{\circ}$
- (49990°)

Kindly send me your key answers to our email id - padasalai.net@gamil.com

- 18. In the figure, ABCD is a cyclic quadrilateral in which DC produced to E and CF is drawn parallel to AB such that $\angle ADC = 80^{\circ}$ and $\angle ECF = 20^{\circ}$, then $\angle BAD = ?$
 - $(1) 100^{\circ}$
- (2) 20°
- $(3) 120^{\circ}$
- (4) 110°
- 19. AD is a diameter of a circle and AB is a chord If $AD=30\,\mathrm{cm}$ and $AB=24\,\mathrm{cm}$ then the distance of AB from the centre of the circle is

(2) 9cm

(3) 8cm



100°

0

80°

- 20. In the given figure, If $OP=17\mathrm{cm},\ PQ=30\,\mathrm{cm}$ and OS is perpendicular to PQ , then RS is
 - (1) 10cm
- (2) 6cm
- (3) 7cm
- (4) 9cm.

5.COORDINATE GEOMETRY

1.	If the <i>y</i> -coordinate of a point is zero, then the point always lies				
	(1)in the I quadrant	(2) in the II quad	drant (3) on x -axis	(4) on <i>y</i> -axis	
2.	The points $(-5, 2)$ ar	nd (2, –5) lie in the _			
	(1) same quadrant(3) II and IV quad	rant respectively	_	adrant respectively adrant respectively	
3.		nts $O(0,0)$, $A(3, -4)$, e following figure is		and joining <i>OA</i> , <i>AB</i> , <i>BC</i>	
	(1) Square	(2) Rectangle	(3) Trapezium	(4) Rhombus	
4.	If $P(-1,1)$, $Q(3,-4)$ then the points in the			plotted on a graph paper,	
	(1) <i>P</i> and <i>T</i>	(2) <i>Q</i> and <i>R</i>	(3) only <i>S</i>	(4) <i>P</i> and <i>Q</i>	
5.	The point whose ordinate is 4 and which lies on the <i>y</i> -axis is				
	(1)(4,0)	(2) (0, 4)	(3) (1, 4)	(4) (4, 2)	
6. The distance between the two points (2, 3) and (1, 4) is					
	(1) 2	(2) $\sqrt{56}$	(3) $\sqrt{10}$	(4) $\sqrt{2}$	
7.	If the points A (2,0),	B (-6,0), C (3, a-3)	lie on the x-axis ther	n the value of <i>a</i> is	
	(1) 0	(2) 2	(3) 3	(4) -6	
8.	If $(x+2, 4) = (5, y-2)$), then the coordinat	tes (<i>x</i> , <i>y</i>) are		
	(1) (7, 12)	(2) (6, 3)	(3) (3, 6)	(4) (2, 1)	
9.	If Q_1 , Q_2 , Q_3 , Q_4 are t	the quadrants in a Ca	artesian plane then ($Q_2 \cap Q_3$ is	
	$(1) Q_1 \cup Q_2$	$(2) Q_2 \cup Q_3$	(3) Null set	(4) Negative <i>x</i> -axis.	
10.	The distance betwee	n the point $(5, -1)$	and the origin is		
	(1) $\sqrt{24}$	(2) $\sqrt{37}$	(3) $\sqrt{26}$	(4) $\sqrt{17}$	

11.	The coordinates of the point C dividing the line segment joining the points $P(2,4)$ a $Q(5,7)$ internally in the ratio 2:1 is			
	,	(2) (3,5)		(4) (4,6)
12.	If $P\left(\frac{a}{3}, \frac{b}{2}\right)$ is the mid-	point of the line seg	ment joining $A(-4,3)$ a	and $B(-2,4)$ then (a,b) is
	(1) (-9,7)	$(2)\left(-3,\frac{7}{2}\right)$	(3) (9, -7)	(4) $\left(3,-\frac{7}{2}\right)$
13.	In what ratio does the and $R(-2,3)$	e point Q(1,6) divid	de the line segment jo	pining the points $P(2,7)$
	(1) 1:2	(2) 2:1	(3) 1:3	(4) 3:1
14.	If the coordinates of o centre is $(-3,2)$, then			nd the coordinates of its meter is
	(1) (0,-3)	(2) (0,9)	(3) (3,0)	(4) (-9,0)
15.	The ratio in which the $B(a_2,b_2)$ is		70	the points $A(a_1,b_1)$ and
	(1) $b_1 : b_2$	(2) $-b_1:b_2$	(3) $a_1:a_2$	$(4) -a_1: a_2$
16.	The ratio in which the $(1, -7)$ is	ne x-axis divides th	e line segment joinii	ng the points (6,4) and
	(1) 2:3	(2) 3:4	(3) 4:7	(4) 4:3
17.	If the coordinates of to (1,1) and (2,-3) respectively.	_		A of a triangle are (3,4), riangle are
	(1) (3,2), (2,4)	(2) (4,0), (2,8)	(3) (3,4), (2,0)	(4) (4,3), (2,4)
18.	The mid-point of the (1) $(2a,3b)$	line joining $(-a,2b)$ (2) $(-2a,-b)$		(4)(-2a, -3b)
19.				points (-5,1) and (2,3)
	(1) 1:3	(2) 2:5	(3) 3:1	(4) 5:2
20.	If $(1,-2)$, $(3,6)$, $(x,10)$ then the value of x is	and (3,2) are the	vertices of the paralle	elogram taken in order
	(1) 6	(2) 5	(3) 4	(4) 3

6.TRIGONOMETRY

- 1. If $\sin 30^\circ = x$ and $\cos 60^\circ = y$, then $x^2 + y^2$ is
 - $(1) \frac{1}{2}$
- (2) 0
- (3) sin 90°
- (4) cos 90°
- 2. If $\tan \theta = \cot 37^{\circ}$, then the value of θ is
 - (1) 37°
- (2) 53°
- $(3) 90^{\circ}$
- (4) 1°

- 3. The value of tan72° tan18° is
 - (1) 0
- (2) 1
- (3) 18°
- (4) 72°
- 4. The value of $\frac{2 \tan 30^{\circ}}{1 \tan^2 30^{\circ}}$ is equal to
 - $(1) \cos 60^{\circ}$
- $(2) \sin 60^{\circ}$
 - $(3) \tan 60^{\circ}$
- $(4) \sin 30^{\circ}$
- 5. If $2\sin 2\theta = \sqrt{3}$, then the value of θ is
 - $(1) 90^{\circ}$
- $(2) 30^{\circ}$
- $(3) 45^{\circ}$
- $(4) 60^{\circ}$
- 6. The value of $3\sin 70^{\circ} \sec 20^{\circ} + 2\sin 49^{\circ} \sec 51^{\circ}$ is
 - (1) 2
- (2) 3
- (3) 5
- (4) 6

- 7. The value of $\frac{1-\tan^2 45^{\circ}}{1+\tan^2 45^{\circ}}$ is
 - (1) 2
- (2) 1
- (3) 0
- $(4) \frac{1}{2}$
- 8. The value of $\csc(70^\circ + \theta) \sec(20^\circ \theta) + \tan(65^\circ + \theta) \cot(25^\circ \theta)$ is
 - (1) 0
- (2) 1
- (3) 2
- $(4) \ 3$
- 9. The value of tan1° tan2° tan3°...tan89° is
 - (1) 0
- (2) 1
- (3) 2
- $(4) \frac{\sqrt{3}}{2}$
- 10. Given that $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$, then the value of $\alpha + \beta$ is
 - (1) 0°
- (2) 90°
- $(3) 30^{\circ}$
- $(4) 60^{\circ}$

7. Mensuration

1.	The semi-peri	imeter of a trian	igle having sides 15	o cm, 20 cm and 25 cm is
	(1) 60 cm	(2) 45 cm	(3) 30 cm	(4) 15 cm
2.	If the sides of	a triangle are 3	cm, 4 cm and 5 cm	, then the area is
	$(1) \ 3 \ cm^2$	$(2) 6 cm^2$	$(3) 9 cm^2$	(4) $12 cm^2$
3.	The perimeter	r of an equilater	al triangle is 30 <i>cm</i>	. The area is
	(1) $10\sqrt{3} \ cm^2$	(2) $12\sqrt{3}$ cm	e^2 (3) $15\sqrt{3}$ cm ²	(4) $25\sqrt{3} \ cm^2$
4.	The lateral su	rface area of a c	ube of side 12 <i>cm</i> i	S
	$(1)\ 144\ cm^2$	(2) $196 cm^2$	$(3) 576 cm^2$	$(4) 664 cm^2$
5.	If the lateral s	surface area of a	cube is $600 cm^2$, the	nen the total surface area is
	(1) $150 cm^2$	$(2) \ 400 \ cm^2$	(3) $900 cm^2$	(4) 1350 cm^2
6.	The total surf	ace area of a cul	boid with dimension	on $10 \ cm \times 6 \ cm \times 5 \ cm$ is
	(1) $280 \ cm^2$	(2) $300 cm^2$	$(3) 360 cm^2$	$(4)\ 600\ cm^2$
7.	If the ratio of	the sides of two	cubes are 2:3, the	n ratio of their surface areas will be
	(1) 4:6	(2) 4:9	(3) 6:9	(4) 16:36
8.	The volume of	of a cuboid is 66	$0 cm^3$ and the area	of the base is 33 cm^2 . Its height is
	(1) 10 cm	(2) 12 cm	(3) 20 cm	(4) 22 cm
9.	The capacity	of a water tank	of dimensions 10 <i>n</i>	$n \times 5 m \times 1.5 m$ is
	(1) 75 litres	(2) 750 litres	(3) 7500 litres	(4) 75000 litres
10.			teasuring $50 \ cm \times 3$ ions are $5 \ m \times 3 \ m$	$30 \ cm \times 20 \ cm$ that will be required $\times 2 \ m$ is
	(1) 1000	(2) 2000	(3) 3000	(4) 5000
			•	

8. Statistics

1.	Let m be the mid point and b be the upper limit of a class in a continuous frequency distribution. The lower limit of the class is			
	(1) $2m - b$	(2) $2m+b$	(3) <i>m-b</i>	(4) m -2 b .
2.	The mean of a set of seven numbers is 81. If one of the numbers is discarded, the mean of the remaining numbers is 78. The value of discarded number is			
	(1) 101	(2) 100	(3) 99	(4) 98.
3.	A particular observation which occurs maximum number of times in a given data is called its			
	(1) Frequency	(2) range	(3) mode	(4) Median.
4.	For which set of i	numbers do the mean	n, median and mode	e all have the same values?
	(1) 2,2,2,4	(2) 1,3,3,3,5	(3) 1,1,2,5,6	(4) 1,1,2,1,5.
5.	The algebraic sun	n of the deviations of	f a set of n values from	om their mean is
	(1) 0	(2) <i>n</i> -1	(3) n	(4) <i>n</i> +1.
6.	The mean of a,b,c,d and e is 28 . If the mean of a , c and e is 24 , then mean of b and d is_			
	(1) 24	(2) 36	(3) 26	(4) 34
7.	If the mean of five		x, x+4, x+6, x+8, is	11, then the mean of first
	(1) 9	(2) 11	(3) 13	(4) 15.
8.	The mean of 5, 9,	<i>x</i> , 17, and 21 is 13,	then find the value	of x
	(1) 9	(2) 13	(3) 17	(4) 21
9.	The mean of the	square of first 11 nat	tural numbers is	
	(1) 26	(2) 46	(3) 48	(4) 52.
10.	The mean of a se	et of numbers is $ar{X}$. Is	f each number is mu	altiplied by z , the mean is
	(1) $\bar{X} + z$	(2) \overline{X} - z	(3) $z \bar{X}$	(4) \overline{X}

9.Probability

A number between 0 and 1 that is used to measure uncertainty is called			asure uncertainty is	
(1) Random v	ariable	(2) Trial	(3) Simple event (4) Probability	
Probability lie	es between			
(1) –1 and +1	(2) 0 and 1	(3) 0 and n	(4) 0 and ∞	
The probability based on the concept of relative frequency theory is called				
(1) Empirical	probability	(2) Classical prob	pability	
(3) Both (1) a	nd (2)	(4) Neither (1) no	or (2)	
The probabili	pability of an event cannot be			
(1) Equal to zero (2) Greater than zero (3) Equal to one (4) Less than zero				
The probability of all possible outcomes of a random experiment is always equal t				
(1) One	(2) Zero	(3) Infinity	(4) Less than one	
If A is any event in S and its complement is A' then, $P(A')$ is equal to				
(1) 1	(2) 0	(3) 1– <i>A</i>	$(4) \ 1-P(A)$	
Which of the	following cann	ot be taken as prob	pability of an event?	
(1) 0	(2) 0.5	(3) 1	(4) -1	
A particular result of an experiment is called				
(1) Trial (2) Simple event (3) Compound event (4) Outcome				
A collection	of one or more	e outcomes of an ex	periment is called	
(1) Event	(2) Outcome	e (3) Sample poin	t (4) None of the above	
The six faces	s of the dice are	e called equally like	ly if the dice is	
(1) Small	(2) Fair	(3) Six-faced	(4) Round	
	called (1) Random v Probability lie (1) -1 and +1 The probabilit (1) Empirical (3) Both (1) a The probabilit (1) Equal to z The probabilit (1) One If A is any even (1) 1 Which of the (1) 0 A particular (1) Trial A collection (1) Event The six faces	called (1) Random variable Probability lies between (1) -1 and +1 (2) 0 and 1 The probability based on the (1) Empirical probability (3) Both (1) and (2) The probability of an event of (1) Equal to zero (2) Greater The probability of all possible (1) One (2) Zero If A is any event in S and its (1) 1 (2) 0 Which of the following cannot (1) 0 (2) 0.5 A particular result of an ex (1) Trial (2) Simple expected to the dice are called the control of t	called (1) Random variable (2) Trial Probability lies between (1) -1 and +1 (2) 0 and 1 (3) 0 and n The probability based on the concept of relative (1) Empirical probability (2) Classical probability (3) Both (1) and (2) (4) Neither (1) note (3) Equal to zero (2) Greater than zero (3) Equal (3) Equal to zero (2) Greater than zero (3) Equal (3) One (2) Zero (3) Infinity If A is any event in S and its complement is A' to (1) 1 (2) 0 (3) 1-A Which of the following cannot be taken as probability of an experiment is called (1) Trial (2) Simple event (3) Compour A collection of one or more outcomes of an experiment (2) Outcome (3) Sample point The six faces of the dice are called equally like	

ANSWERS SET LANGUAGE

1. (2) 2.(1) 3. (3) 4. (2) 5. (4) 6. (1) 7. (2) 8. (4) 9. (3) 10. (4) 11. (2) 12. (1) 13. (1) 14. (3) 15. (4) 16. (1) 17. (4) 18. (3) 19. (3) 20. (1)

REAL NUMBERS

1. (4) 2. (3) 3. (2) 4. (1) 5. (4) 6. (2) 7. (2) 8. (2) 9. (4) 10. (1) 11. (4) 12. (4) 13. (4) 14. (2) 15. (2) 16. (3) 17. (2) 18. (4) 19. (2) 20. (3)

ALGEBRA

1. (4) 2. (3) 3. (4) 4. (4) 5. (2) 6. (1) 7. (4) 8. (4) 9. (4) 10. (3) 11. (2) 12. (3) 13. (3) 14. (2) 15. (2) 16. (3) 17. (3) 18. (4) 19. (2) 20. (3)21. (2) 22. (4) 23. (3) 24. (2) 25. (1) 26. (2) 27. (3) 28. (1) 29. (3) 30. (2)

GEOMETRY

1. (2) 2. (3) 3. (1) 4. (4) 5. (4) 6. (3) 7. (2) 8. (2) 9. (4) 10. (2) 11. (1) 12. (3) 13. (1) 14. (1) 15. (4) 16. (2) 17. (2) 18. (3) 19. (2) 20. (4)

COORDINATE

1. (3) 2. (3) 3. (3) 4. (2) 5. (2) 6. (4) 7. (3) 8. (3) 9. (3) 10. (3) 11. (4) 12. (1) 13. (3) 14. (4) 15. (2) 16. (3) 17. (2) 18. (2) 19. (4) 20. (2)

TRIGONOMETRY

1. (1) 2. (2) 3. (2) 4. (3) 5. (2) 6. (3) 7. (3) 8. (1) 9. (2) 10. (2)

MENSURATION

1. (3) 2. (2) 3. (4) 4. (3) 5. (3) 6. (1) 7. (2) 8. (3) 9. (4) 10. (1)

STATISTICS

1. (1) 2. (3) 3. (3) 4. (2) 5. (1) 6. (4) 7. (1) 8. (2) 9. (2) 10. (3)

PROBABILITY

1. (4) 2. (2) 3. (1) 4. (4) 5. (1) 6. (4) 7. (4) 8. (4) 9. (1) 10. (2)