TAT	TE PARENT TEACH	ER'S ASSOCIATIC	N, TAMILNADU -	- MODEL QUESTION PAPI	E R - 1
ime :	3.15 Hours	STD - 10 – M A	THEMATICS	MARKS	: 100
		PAF	<u>RT - I</u>		
	Note: (i) Answer al	l the 14 questions.			
		—	er from the given f	our alternatives and writ	te the
		le with the correspo		(14 x 1 = 14)	
1)	If $((a \ 0) (6 \ b))$	procente en identit	y function than	the value of a and l	a oro
1)	respectively	presents an identit	ly function, then	the value of a and t	Jare
		(2)(8,8)	(3) (6, 8)	(4) (6, 6)	
2)	$7^{4k} \equiv ___$ (mod				
	(1) 1	(2) 2	(3) 3	(4) 4	
3)				nsistent if their planes	
,	(1) intersect only at	^	(2) intersect in a l		
	(3) coincides with e	-	(4) do not interse		
4)	In the adjacent figur		$AD \perp BC$ then		
	5 0		A		
		/			
	(1) $BD \cdot CD = BC^2$	(2) $AB \cdot AC = BC^2$	$(3) BD \cdot CD = A$	$D^2 (4) AB . AC = AC^2$	
5)	The straight line giv				
2)	(1) parallel to $X - ax$		(2) parallel to Y -	axis	
	(3) passing through	the origin	(4) passing through	gh the point (0, 11)	
6)				$ot^2 \alpha$, then k is equal to	0
0)	(1) 9	(2) 7	(3) 5	(4) 3	0
7)	The total surface are				
')					
	$(1)\frac{9\pi\hbar^2}{2}$ sq.units	(2) $24\pi h^2$ sq.units	(3) $\frac{8\pi h^2}{2}$ sq.units	(4) $\frac{56\pi h^2}{9}$ sq.units	
8)	Which of the follow		9 -	9 -	
0)	(1) P(A) > 1		(3) $P(\omega) = 0$	(4) P((A) +
	$P(\bar{A}) = 1$		$(3) \Gamma(\varphi) = 0$		11)
9)	The sequence $-3, -$	3 - 3 is			
))	(1) an A.P only		(3) neither A.P no	or G.P (4) both A.F) and
	G.P	(2) a O.i olity			un
10)) The L.C.M of x^3 –	a^3 and $(x-a)^2$ is			
10)	$(1) (x^3 - a^3)(x + a^3)(x +$		(2) $(x^3 - a^3)(x -$	$(-a)^2$	
	(1) $(x - a)^2(x^2 + a)^2$	$a_{1} + a_{2}$	(2) $(x + a)^2 (x^2 - a)^2 (x$	$a_{\perp}^{(2)}$	
11)	(J)(x - u)(x + u)	(R) - a then the to	(+)(x + u)(x -	ons that exist between A	1 and
-11)	B is $P = p$ and n	(D) = q then the to			s and
	$(1) 2^p$	(2) 2^{q}	(3) 2^{p+q}	(4) 2^{pq}	
12)				n - 117, then the value	ofr
12)	is	u 117 15 expressione			01 //
	(1) 4	(2) 2	(3) 1	(4) 3	
12)	· · ·			(4) 3	
13)	The sum of all devia (1) Always positive	atons of the data fro			
	(1) Always positive(3) zero		(2) Always negative(4) non-zero integral		
			$- \cdot \cdot$		

அ.சுப்பாராஜ, ப.ஆ.,(கணக்கு) அரசு உயா நலைப் பள்ள, இருஞ்சுறை, வருதுந்கா மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

14) The angle of elevation and depression are usually measured by a device called(1) Theodolite(2) Kaleidoscope(3) Periscope(4) Telescope

PART - II

Note: (i) Answer 10 questions. (ii) Question Number 28 is compulsory.

 $(10 \times 2 = 20)$

- 15) A man has 532 flower pots. He wants to arrange them I rows such that each row contains 21 flower pots. Find the number of completed rows and how many flower pots are left over.
- 16) Solve: $x^4 13x^2 + 42 = 0$.
- 17) If A is order of $p \ge q$ and B is of order $q \ge r$, what is the order of AB and BA.
- 18) A relation f is defined by $f(x) = x^2 2$ where $x \in \{-2, -1, 0, 3\}$. (i) List the elements of f (ii) Is f a function?
- 19) Show that $\Delta PST \sim \Delta PQR$.

- 20) A tower stands vertically on the ground. From a point on the ground, which is 48 m away from the foot of the tower, the angle of elevation of the top of the tower is 30° . Find the height of the tower.
- 21) The volume of a solid right circular cone is $11088 \text{ } \text{cm}^3$. If its height is 24 cm, then find the radius of the cone.

22)
$$P(A) = \frac{2}{3}, P(B) = \frac{2}{5}, P(A \cup B) = \frac{1}{3}$$
 then find $P(A \cap B)$.

- 23) Find (i) A X B and (ii) A X A for $A = \{m, n\}$ and $B = \emptyset$.
- 24) Find the middle term(s) of an A.P 5, 21, 27,, 183.
- 25) The product of Kumaran's age (in years) two years ago and his age four years from now is one more than twice his present age. What is his present age?
- 26) Find the equation on a line passing through the point (-4, 3) and having slope $\frac{-7}{5}$.
- 27) The standard deviation of 20 observations is $\sqrt{6}$. If each observation is multiplied by 3, find the standard deviation and variance of the resulting observations.

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

28) An organization plans to plant saplings in 2 streets in a town in such a way that one sapling for the first street, three for the second, nine for the third and so on. How many saplings are needed to complete the work?

PART - III

Note: (i) Answer 10 questions. (ii) Question Number 42 is compulsory.

$$(10 \times 5 = 50)$$

- 29) The function 't'which maps temperature in Celsius (C) into temperature (F) is defined by t(C) = F, where $F = \frac{9}{5}C + 32$. Find, i) t(0) (ii) t(28) (iii) t(-10) (iv) the value of C when t(C) = 212. (v) the temperature when the Celsius value is equal to the Fahrenheit value.
- 30) Rekha has 15 square colour papers of sizes 10cm, 11 cm, 12 cm, ..., 24 cm. How much area can be decorated with these colour papers?

31) If
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix}$ verify that $A(B + C) = AB + AC$

- 32) State and prove Pythagoras theorem.
- 33) As observed from the top of a 60 m high light house from the sea level, the angles of depression of two ships are 28° and 45° . If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships. ($tan 28^{\circ} = 0.5317$)
- 34) Find the number of coins, 1.5 cm in diameter and 2 mm thick, to be melted to form a right circular cylinder of height 10 cm and diameter 4.5 cm.
- 35) The marks scored by the students in a slip test are given below.

x	4	6	8	10	12
f	7	3	5	9	5

Find the standard deviation of their marks.

- 36) Let A = The set of all natural numbers less than 8, B = The set of all prime numbers less than 8 and C = The set of even prime number. Verify that $A \ge (B C) = (A \ge B) (A \ge C)$.
- 37) If $S_n = (x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + \dots \dots n$ terms, then prove that $(x - y)S_n = \left[\frac{x^2(x^n - 1)}{x - 1} - \frac{y^2(y^n - 1)}{y - 1}\right]$. 38) Solve: $\frac{1}{2x} + \frac{1}{4y} - \frac{1}{3z} = \frac{1}{4}$; $\frac{1}{x} = \frac{1}{3y}$; $\frac{1}{x} - \frac{1}{5y} + \frac{4}{z} = 2\frac{2}{15}$
- 39) A funnel consists of a frustum of a cone attached to a cylindrical portion 12 cm long attached at the bottom. If the total height be 20 cm, diameter of the cylindrical portion

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

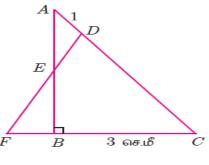
be 12 cm and the diameter of the top of the funnel be 24 cm. Find the outer surface area of the funnel.

- 40) In a class of 50 students, 28 opted for NCC, 28 opted for NSS and 10 opted for both NCC and NSS. One of the students is selected at random. Find the probability that (i) the student opted for NCC but not NSS (ii) The student opted for NSS but not NCC (iii) the student opted for exactly one of them.
- 41) The base of a triangle is 4 cm longer than its altitude. If the area of the triangle is 48 sq.cm, then find its base and altitude..
- 42) The area of a triangle is 5 sq.units. Two of its vertices are (2, 1) and (3, -2). The third vertex lies on the line y = x + 3. Find the third vertex.

PART - IV

<u>Note:</u> (i) This section contains two questions. Each with two alternatives. (ii) Answer both the questions choosing either of the alternatives. $(2 \times 8 = 16)$

43)a) Draw the graph of $y = x^2 + x - 2$ and hence use it to solve the equation $x^2 + x - 2 = 0$.


(**OR**)

b) Solve: 2x + y + 4z = 15, x - 2y + 3z = 13, 3x + y - z = 2.

44) a) Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle ABC. (Scale factor $\frac{6}{5}$)

(**OR**)

b) ABC is a triangle with $\angle B = 90^{\circ}$, BC = 3 cm and AB = 4 cm. D is a point on AC such that AD = 1 cm and E is the mid point of AB. Join D and E and extend DE to meet CB at F. Find BF.

	3.15 Hours		- MATHEMATICS	MARKS: 10
]	<u>PART - I</u>	
	(ii) Chos	er all the 14 questions the correct answ the and the corresp	ver from the give fo	ur alternatives and write th $(14 \text{ x } 1 = 14)$
1)	$f: A \longrightarrow B \text{ is a b}$ (1) 7	bijective function and (2) 49	if $n(B) = 7$, then $n(A)$ (3) 1	is equal to (4) 14
2)	If there are 1024 in B is	relations from a set A	$A = \{1, 2, 3, 4, 5\}$ to a set	B, then the number of elemen
	(1) 3	(2) 2	(3) 4	(4) 8
3)	The next term of	the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}$	$\frac{1}{18}, \dots$ is	
	$(1)\frac{1}{24}$	$(2)\frac{1}{27}$		$(4)\frac{1}{81}$
	(1) $4x^2$	(2) $16x^2$	d to make $x^4 + 64a$ per (3) $8x^2$	fect square? (4) $-8x^2$
5)		ue of the rational exp		\mathbf{O}
6)	(1) 8Graph of a linear(1) straight line	(2) 2 polynomial is a (2) circle	(3) 4 (3) parabola (4	(4) 1) hyberbola
7)	A tangent is perpo (1) centre	endicular to the radius (2) point of con		y (4) chord
8)	The Area of a tria (1) 0 Sq. units		oints (-5,0), (0, -5)an (3) 5 Sq. units	d(5, 0)is (4) None of these
9)		resection of $3x - y = -$ (2) (2, 4)		(4) (4, 4)
10)) If $5x = sec\theta$ and	$d\frac{5}{x} = tan\theta$, then x^2 –	$-\frac{1}{2}$ is equal to	
,	(1) 25	x (2) $\frac{1}{25}$	x^2 (3) 5	(4) 1
11)	$\frac{\sin(90^{\circ}-\theta)\sin\theta}{\pm}$	$\cos(90^{o}-\theta)\cos\theta$		
11)	$\frac{\sin(90^{\circ}-\theta)\sin\theta}{\tan\theta} + \frac{1}{2}$ (1) $\tan\theta$	$\begin{array}{c} cot\theta \\ (2) 1 \end{array}$	(3) – 1	(4) $sin\theta$
12)	respectively. Hei	ght of the frustum is		is a part are h_1 units and r_1 units the smaller base is r_2 units.
	$h_2: h_1 = 1:2$ the (1) 1:3	(2) 1:2	(3) 2 : 1	(4) 3 : 1
13)	The range of first (1) 9	10 prime numbers is (2) 20	(3) 27	(4) 5
		e first 'n' natural num	1 .	

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

PART - II

Note: (i) Answer 10 questions.

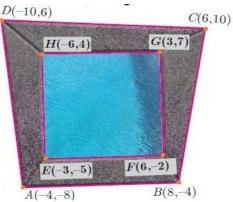
- (ii) Question Number 28 is compulsory. $(10 \times 2 = 20)$
- 15) A relation **R** is given by the set $\{(x, y)/y = x^2 + 3, x \in \{0, 1, 2, 3, 4, 5\}\}$. Determine its domain and range.
- 16) If $f(x) = x^2 1$, g(x) = x 2, find *a* if gof(a) = 1.
- 17) If *A* and *B* are mutually exclusive events of a random experiment and (not A) = 0.45, $P(A \cup B) = 0.65$ then find P(B)
- 18) Dividing the polynomial $p(x) = x^2 5x 14$ by another polynomial q(x) yields $\frac{x-7}{x+2}$ then find q(x).

19) If
$$A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix}$$
 then find the transpose of $-A$.

- 20) If $\triangle ABC$ is similar to $\triangle DEF$ such that BC = 3 cm, EF = 4 cm and area of $\triangle ABC = 54$ cm². Find the area of $\triangle DEF$.
- 21) Find the slope of the line joining the points $(sin\theta, -cos\theta)$ and $(-sin\theta, cos\theta)$.
- 22) The hill in the form of a right triangle has its foot at (19, 3). The inclination of the hill to the ground 45° . Find the equation of the hill joining the foot and top.
- 23) Find x so that x + 6, x + 12 and x + 15 are three consecutive terms of a Geometric Progression.
- 24) If $1 + 2 + 3 + \dots + n = 666$, then find *n*.
- 25) Find the angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of a tower of height $10\sqrt{3}$ m.
- 26) The ratio of the radii of two right circular cones of same height is 1:3. Find the ratio of their curved surface area when the height of each cone is 3 times the radius of the smaller cone?
- 27) If two positive integers *p* and *q* are written as $p = a^2b^3$ and $q = a^3b$; *a*, *b* are prime numbers, then verify $LCM(p,q) \times HCF(p,q) = pq$.
- 28) Find the number of spherical lead shots, each of diameter 6 cm that can be made from a solid cuboids of lead having dimensions $24cm \times 22cm \times 12cm$.

<u>PART - III</u>

Note:


(ii) Question Number 42 is compulsory.

 $(10 \times 5 = 50)$

29) In the figure, the quadrilateral swimming pool shown is surrounded by concrete patio. Find the area of the patio.

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

(i) Answer 10 questions.

30) State and prove Thales theorem.

- 31) If f(x) = x 4, $g(x) = x^2$ and h(x) = 3x 5 then show that (fog)oh = fo(goh).
- 32) (i) Find the least positive value of x such that $67 + x \equiv 1 \pmod{4}$. (ii) Solve $5x \equiv 4 \pmod{6}$.
- 33) The house of the street are numbered from 1 to 49. Senthil's house numbered such that the sum of the numbers of the houses prior to Senthil's house equal to the sum of numbers of the houses following Senthil's house. Find Senthil's house number.
- 34) A coin is tossed thrice. Find the probability of getting exactly two heads or atleast on tail or two consecutive heads.

	C	4 1 5 1	•		• • •
35) The temperature	ot two cities	Aand R in	a winter s	eson are	orven helow
<i>55)</i> The temperature v	or two chies	mana D m	a winter s	beson are	given below.

Temperature of city <i>A</i> (in degree Celsius)	18	20	22	24	26
Temperature of city <i>B</i> (in degree Celsius)	11	14	15	17	18

Find which city is more consistent in temperature changes?

- 36) Let $A = \{x \in \mathbb{W} | x < 2\}$, $B = \{x \in \mathbb{N} | 1 \le x \le 4\}$ and $C = \{3, 5\}$, verify that $A \ge (B \cup C) = (A \ge B) \cup (A \ge C)$.
- 37) Vani, her father and her grand father have an average age of 53. One half of her grand father's age plue one-third of her father's age plus one-fourth of Vani's age is 65. Four years ago if Vani's grandfather was four times as old as Vani then how old are they all now?

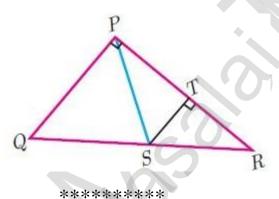
38) If A =
$$\begin{pmatrix} \cos\theta & 0\\ 0 & \cos\theta \end{pmatrix}$$
, B = $\begin{pmatrix} \sin\theta & 0\\ 0 & \sin\theta \end{pmatrix}$ then show that A² + B² = I₂.

- 39) A metallic sheet in the form of a sector of a circle of radius 21 cm has central angle of 216° . The sector is made into a cone by bringing the bounding radii together. Find the volume of the cone formed.
- 40) A shuttle cock used for playing badminton has the shape of a frustum of a cone is mounted on a hemisphere. The diameters of the frustum are 5 cm and 2 cm. the height of the entire shuttle cock is 7 cm. find its external surface area.
- 41) A motor boat whose speed is 18 km/hr in still water takes 1 hour more to go to. 24 km upstream than to return downstream to the same spot. Find the speed of the stream.
- 42) A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at an instant 60° . After some time the angle of elevation reduces to 30° . Find the distance travelled by the balloon during the interval.

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

PART - IV

Note: (i) This section contains two questions. Each with two alternatives. (ii) Answer both the questions choosing either of the alternatives. $(2 \times 8 = 16)$


43) a) Draw the graph of $y = x^2 - 5x - 6$ and hence solve $x^2 - 5x - 14 = 0$.

(OR) b) Find the values of a, b if $16x^4 - 24x^3 + (a - 1)x^2 + (b + 1)x + 49$ is a perfect square.

44) a) Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw two tnagents to the circle from that point.

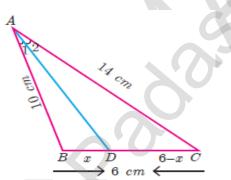
(OR)

b) In figure $\angle QPR = 90^{\circ}$, PS is its bisector. If $ST \perp PR$ prove that $ST \ge (PQ + PR) =$ $PQ \ge PR$.

STA	STATE PARENT TEACHER'S ASSOCIATION, TAMILNADU – MODEL QUESTION PAPER - 3							
Time	: 3.15 Hours		ATHEMATICS	MARKS : 100				
	<u>PART - I</u> <u>Note:</u> (i) Answer all the 14 questions. (ii) Chose the correct answer from the give four alternatives and write the option code and the corresponding answer. (14 x 1 = 14)							
1)	$A = \{a, b, p\}, B = \{2, (1), 8\}$	$(2, 3), C = \{p, q, r, s\}$ th (2) 20	ten $n[(A \cup C) X B]$ (3) 12	(4)16				
2)	Given $f(x) = (-1)^2$ (1) {1}	t is a function from \mathbb{N} (2) \mathbb{N}	to \mathbb{Z} . Then the range of (3) $\{1, -1\}$	$\begin{array}{c} \text{f } f \text{ is} \\ \text{(4) } \mathbb{Z} \end{array}$				
3)	The value of $(1^3 + 2)$ (1) 14400	$(2^3 + 3^3 + \dots + 15^3) -$ (2) 14200	$(1 + 2 + 3 + \dots + 15)$ (3) 14280) is (4) 14520				
4)	If $2 + 4 + 6 + \dots + 2$ (1) 8	29k = 90 then the value (2) 9	ue of <i>k</i> is (3) 10	(4) 11				
5)	(1) The slope is 0.5	puation $8y = 4x + 21$. and the y- intercept 2.6 and the y- intercept 1.6		ng is true? e is 5 and the y- intercept 1.6 e is 5 and the y- intercept 2.6				
6)	GCD of $6x^2y, 9x^2y$ (1) $36xy^2z^2$	$(2) 36x^2y^2z$ is	(3) $36x^2y^2z^2$	(4) $3x^2y$				
7)	In $\triangle ABC$, DE BC, (1) 1.4 cm	AB = 3.6cm, AC = 2 (2) 1.8 cm	A.4cm, AD = 2.1cm, th (3) 1.2 cm	en the length of <i>AE</i> is (4) 1.05 cm				
8)	The slope of the line (1) 1	joining (12, 3), (4, <i>a</i>) (2) 4	is $\frac{1}{8}$, the value of 'a' is (3) - 5	s (4) 2				
9)	(2, 1) is the point of (1) $x - y - 3 = 0$; (3) $3x + y = 3$; $x + 3$		es (2) $x + y = 3$; $3x + (4) x + 3y - 3 = 0$	-				
10)) $tan\theta \ cosec^2\theta - tan$ (1) $sec\theta$	$n\theta$ is equal to (2) $cot^2\theta$	(3) <i>sinθ</i>	(4) <i>cotθ</i>				
11)) The total surface are: (1) π	a of a hemisphere is here (2) 4π	w much times the square (3) 3π	are of its radius? (4) 2π				
12)) If the volume of sphe (1) 3 cm	ere is 36π cm ³ , then its (2) 2 cm	s radius is equal to (3) 5 cm	(4) 10 cm				
13)) The range of the data (1) 0	1 8, 8, 8, 8, 8, 8, , 8 is (2) 1	(3) 8	(4) 3				
14)	chosen precedes x			the probability that the letter				
	$(1)\frac{12}{13}$	$(2)\frac{1}{13}$	$(3)\frac{23}{26}$	$(4)\frac{3}{26}$				

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம்.

ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.


PART - II

Note: (i) Answer 10 questions.

- (ii) Question Number 28 is compulsory. $(10 \times 2 = 20)$
- 15) Let f be the function $f : \mathbb{N} \to \mathbb{N}$ defined by $f(x) = 3x + 2, x \in \mathbb{N}$. Find the pre-image of 29,53.
- 16) Is $7 \times 5 \times 3 \times 2 + 3$, composite number? Justify your answer.
- 17) If 3 + k, 18 k, 5k + 1 are in A.P, then find *k*.
- **18**) If $1^3 + 2^3 + 3^3 + ... + k^3 = 16900$, then find 1 + 2 + 3 + ... + k.
- **19**) If $A = \begin{pmatrix} 7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix}$ then find 2A + B.
- 20) If one root of the equation $3x^2 + kx + 81 = 0$ (having real roots) is the square of the other, then find k.

21) If
$$x = \frac{a^2 + 3a - 4}{3a^2 - 3}$$
 and $y = \frac{a^2 + 2a - 8}{2a^2 - 2a - 4}$, find the value of $x^2 y^{-2}$

22)

In the above figure AD is the bisector of $\angle BAC$, if AB = 10 cm, AC = 14 cm and BC = 6 cm find BD and DC.

- 23) What is the inclination of a line whose slope is 1?.
- 24) A player sitting on the top of a tower of height 20 m, observes the angle of depression of a bell lying on the fround as 60° . Find the distance between the foot of the tower and the ball $(\sqrt{3} = 1.732)$.
- **25)** A cone of height 24 cm is made up of modelling clay. A child reshapes it in the form of a cylinder of same radius as cone. Find the height of the cylinder.
- **26**) If A is an event of a random experiment such that $P(A) : P(\overline{A}) = 17 : 15$ and n(S) = 640 then find $P(\overline{A})$.
- 27) The mean of a data is 25.6 and its coefficient of variation is 18.75. Find the standard deviation.
- **28**) Show that the straight line 3x 5y + 7 = 0 and 15x + 9y + 4 = 0 are perpendicular.

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

PART - III

Note:(i) Answer 10 questions.(ii) Question Number 42 is compulsory. $(10 \ge 50)$

- **29**) Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 5, 8, 11, 14\}$ be two sets. Let $f : A \rightarrow B$ be a function given by f(x) = 3x 1. Represent this function (i) by arrow diagram (ii) in a table form (iii) as a set of ordered pairs (iv) in a graphical form.
- 30) An object travels under the influence of gravity in time t seconds is given by $s(t) = \frac{1}{2}gt^2 + at + b$, where (g is the acceleration due to gravity), a, b are the constants. Check is the function S(t) is one-one.
- **31**) Let $A = \{x \in \mathbb{W} / 0 < x < 5\}$, $B = \{x \in \mathbb{W} / 0 \le x \le 2\}$ and $C = \{x \in \mathbb{W} / x < 3\}$ then verify that $A \ge (B \cap C) = (A \ge B) \cap (A \ge C)$.
- 32) Find the sum of Geometric series $3 + 6 + 12 + \dots + 1536$.
- 33) Find the sum of all 3 digit natural numbers which are divisible by 9.
- **34**) Find the square root of the expression $\frac{4x^2}{y^2} + \frac{20x}{y} + 13 \frac{30y}{x} + \frac{9y^2}{x^2}$.
- **35**) Solve the quadratic equation by completing the square method $\frac{5x+7}{x-1} = 3x + 2$.

36) If
$$A = \begin{pmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{pmatrix}$, verify that $(AB)^T = B^T A^T$.

- 37) The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less the hypotenuse, find the sides of the triangle.
- 38) Find the equation of a straight line joining the point of intersection 7x 3y = -12 and 2y = x + 3 to the point of intersection of 3x + y + 2 = 0 and x 2y 4 = 0.
- **39**) If $\sqrt{3}sin\theta cos\theta = 0$, then show that $tan3\theta = \frac{3tan\theta tan^3\theta}{1 3tan^2\theta}$.
- **40**) The radius of a conical tent is 7 cm and the height is 24 m. Calculate the length of the canvas used to make the tent. If the width of the rectangular canvas is 4m.
- **41**) A card is drawn from a pack of 52 cards. Find the probability of getting a king or a heart or a red card.
- 42) Find the coefficient of variation of the data 18, 20, 15, 12, 25.

PART - IV

Note: (i) This section contains two questions. Each with two alternatives.

(ii) Answer both the questions choosing either of the alternatives. $(2 \times 8 = 16)$

43) a) Draw the graph of $y = 2x^2 - 3x - 5$ and hence solve $2x^2 - 4x - 6 = 0$.

(OR)

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

b) Solve the equation $\frac{1}{x+1} + \frac{2}{x+2} = \frac{4}{x+4}$, where $x + 1 \neq 0, x + 2 \neq 0$ and $x + 4 \neq 0$ using quadratic formula.

44) a) Construct a $\triangle PQR$ in which PQ = 8cm, $\angle R = 60^{\circ}$ and the median RG from R to PQ = 5.8cm. Find the length of the altitude from R to PQ.

(OR)

b) State and prove converse of angel bisector theorem.

	TE PARENT TEAC 3.15 Hours	STD - 10 – M	ATHEMATICS	MODEL QUESTION PAPER - 4 MARKS : 100
		<u>PA</u>	<u>RT - I</u>	
		all the 14 questions the correct answer		alternatives and write the
1)	The range of the rel	e and the correspond ation $R = \{(x, x^2) / x$ (2) $\{2, 3, 5, 7, 11\}$	is a prime number l	(14 x 1 = 14) ess than 13} is 1} (4) {1, 4, 9, 25, 49, 121}
2)				
3)	If 6 times of 6 th terris	m of an A.P is equal to	7 times of the 7 th terr	n, then the 13 th term of an A.P
	(1) 0	(2) 6	(3) 7	(4) 13
4)	The sum of the exp (1) 1	onents of the prime fact (2) 2	tors in the prime factor (3) 3	rization of 1729 is (4) 4
5)	If a and b are two p (1) b	(2) <i>a</i>	a > 0 and b is a factor (3) $3ab$	r of a, then HCF of a and b is (4) $\frac{a}{b}$
6)	If $(x - 6)$ is the HC (1) 3	F of $x^2 - 2x - 24$ and (2) 5	$1x^2 - kx - 6$ then the (3) 6	value of k is (4) 8
7)	If a polynomial is a (1) odd (2) z		factors will be repeate (4) none of t	d number of times the above
8)	If $\triangle ABC$ is an isosc (1) 2.5 cm	eles triangle with $\angle C =$ (2) 5 cm	= 90° and $AC = 5 cm$. (3) 10 cm	, then <i>AB</i> is (4) $5\sqrt{2}$ cm
9)	(1) Two sides are p	a quadrilateral is a trap arallel (2) Two side re parallel (4) all sides	es are parallel and othe	o show r two sides are non-parallel
10)	7x - 3y + 4 = 0 is			d perpendicular to the line (4) $7x - 3y = 0$
11`) If $sin A - cos A$ then	$1 + 2tan^2\theta + sin^2\theta - 1$	is equal to	
11,		$(2)\frac{3}{2}$		$(4)\frac{-2}{3}$
12)	If its height is 20 cr	n, the volume of the ma	aterial in it is	s 14 cm and the width is 4 cm. (4) 2600π cm ³
	(1) 5000 <i>n</i> Cm ²	(2) 1120π cm ³	(<i>3) 30i</i> C ¹	(4) $3600\pi \text{ cm}^3$
13)	Which of the follow $(1) P(A) > 1$		$(3) P(\varphi) = 0$	(4) $P(A) + P(\bar{A}) = 1$
	ராஜ், ப.ஆ.,(கணக்கு) அரசு	உயர் நிலைப் பள்ளி, இருஞ்சின சு உயர் நிலைப் பள்ளி, பனைய	ற, விருதுநகர் மாவட்டம்.	

அ.சுப்பாராஜ, ப.ஆ.,(கணக்கு) அரசு உயா நலைப் பள்ளா, இருஞ்சுறை, வருதுந்கா மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

 $(10 \ge 2 = 20)$

MATHS MASTERS VIRUDHUNAGAR DISTRICT

14) Probability of getting 3 heads or 3 balls in tossing a coin 3 times is $(1)\frac{1}{8}$ $(2)\frac{1}{4}$ $(3)\frac{3}{8}$ $(3)\frac{1}{2}$

PART - II

Note: (i) Answer 10 questions. (ii) Question Number 28 is compulsory.

- 15) Find *k* if fof(k) = 5 where f(k) = 2k 1.
- 16) Let $A = \{1, 2, 3, ..., 100\}$ and R be the relation defined as "is cube of" on A. Find the domain and range of R.
- 17) In a theatre, there are 20 seats in the front row and 30 seats were allotted. Each successive row contains two additional seats than its front row. How many seats are there in the last row?
- 18) In a G.P $\frac{1}{4}$, $\frac{-1}{2}$, -1, -2, ..., find the 10th term.
- 19) Which rational expression should be subtracted from $\frac{x^2+6x+8}{x^8+8}$ to get $\frac{3}{x^2-2x+4}$.
- 20) Determine the quadratic equation, whose sum and product of roots are $\frac{-3}{2}$ and -1.

21) State Pythagoras theorem.

- 22) In the figure *DE* || *AC* and *DC* || *AP*. Prove that $\frac{BE}{EC} = \frac{BC}{CP}$.
- 23) Show that the points P(-1.5, 3), 14Q(6, -2), R(-3, 4) are collinear.
- 24) Prove that $\frac{cotA cosA}{cotA + cosA} = \frac{cosecA 1}{cosecA + 1}$.
- 25) The volumes of two cones of same base radius are 3600 cm³ and 5040 cm³. Find the ratio of their heights.
- 26) The range of a set of data is 13.67 and the largest value is 70.08. find the smallest value.
- 27) Write the sample space for selecting two balls from a bag contains 6 balls numberd 1 to 6 using tree diagram(with replacement).
- 28) Find the sum and product of the roots of equation $8x^2 25 = 0$.

PART - III

Note: (i) Answer 10 questions.

(ii) Question Number 42 is compulsory. $(10 \times 5 = 50)$

29) The data in the adjacent table depicts the length of a woman's forehead and her corresponding height. Based on their data, a student finds a relationship between the height(y) and the forehead length(x) as y = ax + b, where a, b are contants

Length x of forehead(in cm)	Height $'y'$ (in inches)
35	56
45	65
50	69.5
55	74

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

- (i) Check if this relation is a function.
- (ii) Find a and b.
- (iii) Find the height of a woman whose forehead length is 40 cm.
- (iv) Find the length of forehead of a woman if her height is 53.3 inches.

30) A function
$$f: [-5, 9] \rightarrow \mathbb{R}$$
 is defined as follows $f(x) = \begin{cases} 6x+1 & ; -5 \le x < 2\\ 5x^2-1 & ; 2 \le x < 6 \end{cases}$ find $3x-4 & ; 6 \le x \le 9$

(i)
$$f(7) - f(1)$$
 (ii) $\frac{2f(-2) - f(6)}{f(4) + f(-2)}$

31) Find the sum to *n* tems of the series $5 + 55 + 555 + \cdots$

- 32) A girl is twice as old as her sister. Five years hence, the product of their ages (in years) will be 375. Find their present ages.
- 33) Find the non-zero values of x satisfying the matrix equation $x \begin{pmatrix} 2x & 2 \\ 3 & x \end{pmatrix} + 2 \begin{pmatrix} 8 & 5x \\ 4 & 4x \end{pmatrix} = 2 \begin{pmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{pmatrix}.$

34) Find the values of a and b if the polynomial $4x^4 - 12x^3 + 37x^2 + bx + a$ is a perfect square.

- 35) State and prove alternate segment theorem.
- 36) *PQRS* is a rhombus. Its diagonals *PR* and *QS* intersect at the point *M* and satisfy QS = 2PR. If the coordinates of *S* and *M* are (1, 1) and (2, -1) respectively, find the coordinates of *P*.
- 37) A building and a statue are in opposite side of a street from each other 35 m apart. From a point on the roof of building the angle of elevation of the top of statue is 24° and the angle of depression of base of the statue is 34° . Find the height of the statue. [$tan24^{\circ} = 0.4452$, $tan34^{\circ} = 0.6745$]
- 38) A cylindrical bucket, 32*cm* high and with radius of base 18 *cm*, is filled with sand completely. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24*cm*, find the radius and slant height of the heap.
- 39) The consumption of number of guava and orange by family on a particular week are given below

Number of Guavas	3	5	6	4	3	5	4
Number of Oranges	1	3	7	9	2	6	2

Which fruit is consistently consumed by the family?

40) In class of 50 students, 28 opted for NCC, 30 opted for NSS and 18 opted for NCC and NSS. One of the students is selected at random. Find the probability that

- (i) The selected student opted for NCC but not NSS
- (ii) The selected student opted for NSS but not NCC
- (iii) The selected student opted for exactly one of them.
- 41) By using slopes, show that the points (1, -4), (2, -3) and (4, -7) form a right angled triangle.
- 42) A man saved ₹16500 in ten years. In each year after the first he saved ₹100 more than he did in the preceding year. How much did he save the first year?

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

PART - IV

<u>Note:</u> (i) This section contains two questions. Each with two alternatives.

(ii) Answer both the questions choosing either of the alternatives. $(2 \times 8 = 16)$

43) a) Draw the graph of $y = 2x^2$ and hence solve $2x^2 - x - 6 = 0$

(OR) b) Simplify $\frac{a^2-16}{a^3-8} \chi \frac{2a^2-3a-2}{2a^2+9a+4} \div \frac{3a^2-11a-4}{a^2+2a+4}$

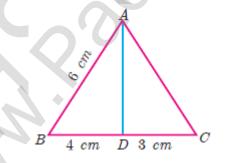
44)a) Draw $\triangle PQR$ such that PQ = 6.8cm, vertical angle is 50° and the bisector of the vertical angle meets the base at *D*, where PD = 5.2cm.

(OR)

b) show that the angle bisector of a triangle are concurrent.

STATE PARENT TEACHER'S ASSOCIATION, TAMILNADU – MODEL QUESTION PAPER - 5						
me :	3.15 Hours	STD - 10 – MA		MARKS : 100		
		PAR	<u>T - I</u>			
	Note: (i) Answer all (ii) Chose the corre code and the corres	ect answer from the	-	ives and write the option $(14 \text{ x } 1 = 14)$		
1)	$f(x) = (x + 1)^3 - (x$ (1) linear	 – 1)³ represents a fu (2) cubic 	nction which is (3) reciprocal	(4) quadratic		
2)	possible remainders are	2		ger is divided by 9 then the		
	(1) 0, 1, 8	(2) 1, 4, 8	(3) 0, 1, 3	(4) 1, 3, 5		
3)		terms. If its 16 th term (2) 62m	is m , then the sum of a (3) 31m	all the terms of this A.P is (4) $\frac{31}{2}m$		
	$\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is (1) $\frac{9y}{7}$ (0)	(2) $\frac{9y^3}{(21y-21)}$	$(3) \frac{21y^2 - 42y + 21}{3y^3}$	$(4)\frac{7(y^2-2y+1)}{y^2}$		
5)	The solution of $x^2 - 2$ (1) no real roots (3) real and unequal ro		(2) real and equal roo(4) imaginary roots	Dts		
6)	For the given matrix A	$=\begin{pmatrix} 1 & 3 & 5\\ 2 & 4 & 6 \end{pmatrix}$ the order	der of the matrix $(A^T)^T$	T is		
	$(1) 2 \times 3$	(2) 3 x 2	(3) 3 x 4	(4) 4 x 3		
7)	PQ = 10 cm, then the	length of AB is	-	m and 24 cm respectively. If		
	(1) $6\frac{2}{3}$ cm ((2) $\frac{10\sqrt{6}}{3}$ cm	(3) $66\frac{2}{3}$ cm	(4) 15 cm		
8)	If $(5, 7)$, $(3, p)$ and $(6, (1) 3)$	6) are collinear, then (2) 6	the value of p is (3) 9	(4) 12		
9)	If the points $A(6, 1)$, B order then the value of		(p, 3) are the vertices	s of parallelogram, taken in		
		(2) 7	(3) 6	(4) -6		
10)	If $acot\theta + bcosec\theta =$ (1) $a^2 - b^2$		$ec\theta = q$, then $p^2 - q^2$ (3) $a^2 + b^2$			
11)	same height is	-	-	th has the same diameter and		
	(1) 1 : 2 : 3	(2) 2 : 1 : 3	(3) 1 : 3 : 2	(4) 3 : 1 : 2		
12)	C.S.A of solid sphere is(1) T.S.A of solid sphere(3) C.S.A of hemisphere	ere	(2) T.S.A of hemisph(4) none of these	nere		

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.


13) Variance of firs	t 20 natural numbers is		
(1) 32.25	(2) 44.25	(3) 33.25	(4) 30

14) Which of the following is incorrect? (1) P(A) > 1 (2) $0 \le P(A) \le 1$ (3) $P(\varphi) = 0$ (4) $P(A) + P(\overline{A}) = 1$

PART - II

Note: (i) Answer 10 questions. (ii) Question Number 28 is compulsory.

- (10 x 2 = 20)
- 15) Let $A = \{1, 2, 3, 4\}$ and $B = \mathbb{N}$. Let $f : A \to B$ be defined by $f(x) = x^2$. Find (i) the range of f (ii) identify the type of function.
- 16) If 3 + k, 18 k, 5k + 1 are in A.P, then find *k*.
- 17) Find the geometric progression whose first term a = -7 and common ratio r = 6.
- 18) Find the square root of $\frac{144 a^8 b^{12} c^{16}}{81 f^{12} g^4 h^{14}}$
- 19) Which term of the A.P 21, 18, 15, ... is -81? State with reason is there any term 0 in this A.P?
- 20) A relation Ris given by the set $\{(x, y) | y = x + 3, x \in \{0, 1, 2, 3, 4, 5\}\}$. Determine its domain and range.
- 21) If $A = \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix}$, find the value of 3A 9B.
- 22) In the figure, AD is the bisector of A. If BD = 4cm, DC = 3cm and AB = 6cm. Find AC.

23) Show that the straight lines x - 2y + 3 = 0 and 6x + 3y + 8 = 0 are perpendicular.

24) Show that
$$\sqrt{\frac{\sec\theta - \tan\theta}{\sec\theta + \tan\theta}} = \frac{1 - \sin\theta}{\cos\theta}$$

- 25) If the radii of the circular ends of a frustum which is 45*cm*high are 28*cm* and 7*cm*, find the volume of the frustum.
- 26) Find the range of the following distribution

Age (in years)	16 - 18	18 - 20	20 - 22	22 - 24	24 - 26	26 - 28
Number of students	0	4	6	8	2	2

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

27) Three fair coins are tossed together. Find the probability of getting(i) atleast one tail(ii) atmost one head

28) Find the value of *p*, when $px^2 + (\sqrt{3} - \sqrt{2})x - 1 = 0$ and $x = \frac{1}{\sqrt{3}}$ is one root of the equation. **PART - III**

Note: (i) Answer 10 questions. (ii) Question Number 42 is compulsory.

 $(10 \times 5 = 50)$

29) Let $A = \{x \in \mathbb{W} | x < 2\}$, $B = \{x \in \mathbb{N} | x < 4\}$ and $C = \{3, 5\}$ verify that $A \ge (B \cap C) = (A \ge B) \cap (A \ge C)$.

30) If f(x) = 2x + 3, g(x) = 1 - 2x and h(x) = 3x, prove that fo(goh) = (fog)oh.

- 31) A man repays a loan of ₹65,000 by paying ₹400 in the first month and then increasing the payment by ₹300 every month. How long will it take for him to clear the loan?
- 32) Find the sum of $10^3 + 11^3 + 12^3 + \dots + 20^3$.
- 33) Solve the system of linear equations in three variables: x + y + z = 5, 2x - y + z = 9, x - 2y + 3z = 16.
- 34) If $9x^4 + 12x^3 + 28x^2 + ax + b$ is perfect square, find the value of a and b.

35) If A =
$$\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
, show that A² - 4A + 5I₂ = 0.

- 36) State and prove Angle Bisector theorem.
- 37) Find the value of k, if the area of a quadrilateral is 28 sq.units, whose vertices are (-4, -2), (-3, k), (3, -2) and (2, 3).
- 38) Two ships are sailing in the sea on either sides of a lighthouse. The angle of elevation of the top of the lighthouse as observed from the ships are 30° and 45° respectively. If the lighthouse is 200m high, find the distance between the two ships. ($\sqrt{3} = 1.732$)
- 39) A right circular cylindrical container of base radius 6cm and height 15cm is full of ice cream. The ice cream is to be filled in cones of height 9cm and base radius 3cm, having a hemispherical cap. Find the number of cones needed to empty the container.
- 40) A well of diameter 3m is dug 14m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 4m to form an embankment. Find the height of the embankment.
- 41) The time taken by 50 students to complete 100 meter race are given below. Find its standard deviation.

Time taken (Seconds)	8.5 – 9.5	9.5 – 10.5	10.5 – 11.5	11.5 – 12.5	12.5 - 13.5
Number of Students	6	8	17	10	9

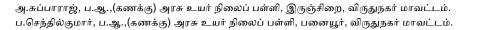
42) A card is drawn from a pack 52 cards. Find the probability of getting a Queen or a Diamond of Black card.

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

PART - IV

<u>Note:</u> (i) This section contains two questions. Each with two alternatives. (ii) Answer both the questions choosing either of the alternatives. $(2 \times 8 = 16)$

43) a) Draw the graph of $y = x^2 + 3x + 2$ and use it to solve $x^2 + 2x + 1 = 0$.

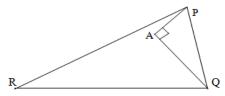

(OR)

b) A train covered a certain distance at a uniform speed. If the train would have been $10 \, km/hr$ faster it would have taken 2 hour less than the scheduled time and if the train were slower by $10 \, km/hr$, it would have taken 3 hour more than the scheduled time. Find the distance covered by the train.

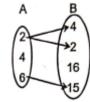
44) a) Construct a triangle ΔPQR such that $QR = 5cm, \angle P = 30^{\circ}$ and the altitude from P to QR is of length 4.2*cm*. (OR)

b) Two vertical poles of heights 6 m and 3 m are erected above a horizontal ground C. find the value of y

STATE PARENT TEACHER'S ASSOCIATION, TAMILNADU – MODEL QUESTION PAPER - 6					
Time : 3.15 Hours	STD - 10 – MATHEMATICS	MARKS : 100			
PART - I					


Note: (i) Answer all the 14 questions.

(ii) Chose the correct answer from the give four alternatives and write the option code and the corresponding answer. (14 x 1 = 14)


- 1) If $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ is a function given by $g = (x) = \alpha x + \beta$ the values of α and β are
 - (1) (-1, 2) (2) (2, -1) (3) (-1, -2) (4) (1, 2)
- 2) The given diagram represents

(1) an onto function (2) a constant function (3) an one-one function (4) not a funciton

- 3) If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + ... + 2^{0}$ then which of the following is true? (1) *B* is 2^{65} more than *A* (3) *B* larger than *A* by 1 (4) *A* is larger than *B* by 1
- 4) If a, b, c are in A.P then $\frac{a-b}{b-c}$ is equal to 1) $\frac{a}{b}$ 2) $\frac{b}{c}$ 3) $\frac{a}{c}$ 4) 1
- 5) $y^2 + \frac{1}{y^2}$ is not equal to $(1)\frac{y^4+1}{y^2}$ (2) $\left(y + \frac{1}{y}\right)^2$ (3) $\left(y - \frac{1}{y}\right)^2 + 2$ (4) $\left(y + \frac{1}{y}\right)^2 - 2$
- 6) Find the matrix X if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$ (1) $\begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$ (2) $\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$ (3) $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ (4) $\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$
- 7) On dividing $\frac{x^2-25}{x+3}$ by $\frac{x+5}{x^2-9}$ is equal to (1) (x-5)(x-3) (2) (x-5)(x+3) (3) (x+5)(x-3) (4) (x+5)(x+3)
- 8) In a $\triangle ABC$, AD is the bisector of $\angle BAC$. If AB = 8 cm, BD = 6 cm and DC = 3 cm, the length of the side AC is (1) 6 cm (2) 4 cm (3) 3 cm (4) 8 cm
- 9) In a given figure PR = 26cm, QR = 24cm, $\angle PAQ = 90^{\circ}$, PA = 6cm and QA = 8cm. Find $\angle PQR$

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

www.Padasalai.Net

www.Trb Tnpsc.Com

 $(10 \ge 2 = 20)$

MATHS MASTERS VIRUDHUNAGAR DISTRICT

(1) 80° (2) 85° (3) 75° (4) 9	0 ⁰
--	----------------

10) If slope of the line PQ is $\frac{1}{\sqrt{3}}$ then slope of the perpendicular bisector of PQ is

(1) $\sqrt{3}$ (2) $-\sqrt{3}$ (3) $\frac{1}{\sqrt{3}}$ (4) 0

11) If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (1) 45° (2) 30° (3) 90° (4) 60°

- 12) A spherical ball of radius r_1 units is melted to make 8 new identical balls each of radius r_2 units. Then $r_1: r_2$
- (1) 2:1 (2) 1:2 (3) 4:1 (4) 1:413) A fair die is thrown once. The probability of getting a prime (or) composite number is
 - (1) 1 (2) 0 (3) $\frac{5}{6}$ (4) $\frac{1}{6}$
- 14) Which of the following is not a measure of dispersion?(1) range(2) standard deviation(3) arithmetic mean(4) variance

<u> PART - II</u>

<u>Note:</u> (i) Answer 10 questions. (ii) Question Number 28 is compulsory.

- 15) Let f be a function from \mathbb{R} to \mathbb{R} defined by f(x) = 3x 5. Find the values of a and b given that (a, 4) and (1, b) belong to f.
- 16) If $R = \{(x, -2), (-5, y)\}$ represents the identity function, find the values of x and y.
- 17) Find the common difference of an A.P $t_{18} t_{14} = 32$.
- 18) Find the number of integer solutins of $3x \equiv 1 \pmod{5}$.
- 19) Find the sum of 1 + 3 + 5 + ... + 55.
- 20) Solve by factorization method $2x^2 2\sqrt{6}x + 3 = 0$.
- 21) If the difference between a number and its reciprocal is $\frac{24}{5}$, find the number.
- 22) If α , β are the roots of the equation $7x^2 + ax + 2 = 0$ and if $\beta \alpha = \frac{-13}{7}$, the find the value of α
- 23) The line through the points (-2, 6) and (4, 8) is perpendicular to the line through the points (8,12) and (x, 24). Find the value of 'x'
- 24) From the top of the rock $50\sqrt{3}m$ high, the angle of depression of a car on the ground is observed to be 30° . Find the distance of the car from the rock.
- 25) A solid sphere and a solid hemisphere have equal total surface area. Prove that the ratio of their volume is $3\sqrt{3}$: 4.

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம். ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

- 26) Find the standard deviation of first 21 natural numbers.
- 27) *A* and *B* are two candidates seeking admission to IIT. The probability the *A* getting selected is 0.5 and probability that both *A* and *B* getting selected is 0.3. Prove that the probability of *B* being selected is at most 0.8.
- 28) *P* and *Q* are points on sides *AB* and *AC* respectively of $\triangle ABC$. If AP = 3cm, PB = 6cm, AQ = 5cm and QC = 10cm. Show that BC = 3PQ.

PART - III

Note: (i) Answer 10 questions. (ii) Question Number 42 is compulsory.

 $(10 \times 5 = 50)$

29) Write the domain of the following functions

(i) $f(x) = \frac{2x+1}{x-9}$ (ii) $g(x) = \sqrt{x-2}$

- 30) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = x^5$ and $g(x) = x^4$ then check if f and g are one one and *fog* is one-one?
- 31) If the sum of the first *p* terms of an A.P is $ap^2 + bp$. find its common difference.
- 32) A man joined a company as Assistant Manager. The company gave him a starting salary of ₹60,000 and agreed to increase his salary 5% annually. What will be his salary after 5 years?
- 33) If the roots of the equation $(c^2 ab)x^2 2(a^2 bc)x + b^2 ac = 0$ are real and equal, prove that either a = 0 or $a^3 + b^3 + c^3 = 3abc$.
- 34) Find the LCM of the polynomials $a^2 + 4a 12$, $a^2 5a + 6$ whose GCD is a 2.
- 35) If A = $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, B = $\begin{pmatrix} 0 & 3 \\ -1 & 5 \end{pmatrix}$, C = $\begin{pmatrix} -1 & 5 \\ 1 & 3 \end{pmatrix}$, prove that A(BC) = (AB)C
- 36) The perpendicular *PS* on the base *QR* of a ΔPQR intersectes *QR* at *S*, such that QS = 3SR. Prove that $2PQ^2 = 2PR^2 + QR^2$.
- 37) Find the equation of the median and altitude of $\triangle ABC$ through A where the vertices are A(6,2), B(-5,-1) and C(1,9).
- 38) Prove that $\left(\frac{\cos^3 A \sin^3 A}{\cos A \sin A}\right) \left(\frac{\cos^3 A + \sin^3 A}{\cos A + \sin A}\right) = 2\sin A \cos A.$
- 39) If the slant height of the frustum cone is 10cm and perimeter of its circular base are 18cm and 28cm respectively. What is the curved surface area of the frustum
- 40) A right circular cylindrical container of base radius 6cm and height 15cm is full of ice cream. The ice cream is to be filled in cones of height 9cm and base radius 3cm, having a hemispherical cap. Find the number of cones needed to empty the container.
- 41) The following table gives the values of mean and variance of heights and weights of the 10th standard students of a school. Which is more varying than the other

	Height	Weight	
Mean	155 cm	46.50 kg	
Variance	72.55 cm^2	28.09 cm^2	

அ.சுப்பாராஜ், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, இருஞ்சிறை, விருதுநகர் மாவட்டம்.

ப.செந்தில்குமார், ப.ஆ.,(கணக்கு) அரசு உயர் நிலைப் பள்ளி, பனையூர், விருதுநகர் மாவட்டம்.

42) A coin is tossed thrice. Find the probability of getting exactly two heads or at least one tail or two consecutive heads.

<u>PART - IV</u>

<u>Note:</u> (i) This section contains two questions. Each with two alternatives. (ii) Answer both the questions choosing either of the alternatives. $(2 \times 8 = 16)$

43) a) Two triangles QPR and QSR, right angled at P and S respectively are drawn on the same base on the same side of QR. If PR and SQ intersect at T, prove that $PT \ge T \ge T \ge T$.

(OR)

b) Draw the circle of diameter 6 cm from a point *P*, which is 8 cm away from its centre. Draw two tangents *PA* and *PB* to the circle and measure their lengths.

44) a) Draw the graph $y = x^2 - 5x - 6$ and hence solve $x^2 - 5x - 14 = 0$.

(OR)

b) A car left 30 minutes later than the scheduled time. In order to reach its destination 150 km away in time, it has to increase its speed by 25 km/hr from its usual speed. Find its usual speed.