10 th std. Common Quarterly Examination - 2019 Mathematics (With Answers)								
Ti	me : 2.30 Hours]		[Maximum Marks : 100					
Introductions :			Product of the roots of the quadratic equation $x^2 + 3x = 0$					
	printing. If there is any lack of fairness, inform the Hall Supervisor immediately.		(a) -3 (b) 3 (c) 0 (d) 1					
	(b) Use Blue or Black ink to write and underline and pencil to draw diagrams	6.	$7^{4k} \equiv (\mod 100)$					
	PART - I	1	(a) 1 (b) 2 (c) 3 (d) 4					
	Note : (i) Answer all the 14 questions	7.	The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots$					
	$[14 \times 1 = 14]$ (ii) Choose the most suitable answer		is 1 1 2 1					
	from the given four correct	8.	(a) $\frac{1}{24}$ (b) $\frac{1}{27}$ (c) $\frac{1}{3}$ (d) $\frac{1}{81}$					
	code with the corresponding answer.		A sequence is a function defined on the set o					
	(iii) Each Question carries 1 mark.		(a) Real numbers(b) Natural numbers(c) Whole numbers(d) Integers					
1.	$f(x) = (x + 1)^3 - (x - 1)^3$ represents a function which is	9.	In ALMN, $\angle L = 60^\circ$, $\angle M = 50^\circ$ if ALMN					
	(a) linear (b) cubic		ΔPQR then the value of $\angle R$ is					
	(c) reciprocal (d) quadratic		(a) 40° (b) 70° (c) 30° (d) 110°					
2.	If $n(A) = p$ and $n(B) = q$ then $n(A \times B) =$	10.	If in $\triangle ABC$, DE BC, AB = 3.6 cm $\triangle C = 2.4$ cm and $\triangle D = 2.1$ cm then the length					
	(a) $p+q$ (b) $p-q$	1	of AE is $AC = 2.4$ cm and $AD = 2.1$ cm then the length					
	(c) $p \times q$ (d) $\frac{p}{q}$	 	(a) 1.4 cm (b) 1.8 cm					
3.	If $(x - 6)$ is the HCF of $x^2 - 2x - 24$ and	11.	(c) 1.2 cm (d) 1.05 cm					
	$x^2 - kx - 6$ then the value of <i>k</i> is		The area of triangle formed by the points $(-5,0)$ $(0, -5)$ and $(5,0)$ is					
	(a) 3 (b) 5 (c) 6 (d) 8		(a) 0 sq.units (b) 25 sq.units					
4.	$y^2 + \frac{1}{y^2}$ is not equal to	12.	(c) 5 sq.units (d) none of these The inclination of a line whose slope = 1 is					
	(a) $\frac{y^4 + 1}{y^4 + 1}$ (b) $\left(y + \frac{1}{y}\right)^2$		(a) 0° (b) 30° (c) 45° (d) 60°					
	$\begin{pmatrix} a \\ y^2 \end{pmatrix} \qquad \begin{pmatrix} b \\ y + - \\ y \end{pmatrix}$	13.	$\tan \theta \operatorname{cosec}^2 \theta - \tan \theta$ is equal to					
	(c) $\left(y-\frac{1}{2}\right)^2 + 2$ (d) $\left(y+\frac{1}{2}\right)^2 - 2$		(1) $\sec \theta$ (2) $\cot^2 \theta$ (3) $\sin \theta$ (4) $\cot^2 \theta$					
	(y)	14	$(3) \sin \theta \qquad (4) \cot \theta$					
		14.	(1) 0 (2) 1					
			(3) 8 (4) 3					

[1]

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

www.Trb Tnpsc.Com

www.surabooks.com

 $10 \times 2 = 20$

(i)

(ii)

(iii)

🖞 Sura's 🔿 X Std - Mathematics - Common Quarterly Exam. 2019

(ii)

Section - III

(i) Answer any **TEN** questions.

Question number 42 is compulsory. $10 \times 5 = 50$

- **29.** Given A ={1, 2, 3}, B = {2, 3, 5}, C = {3, 4} and D = {1, 3, 5}, check if $(A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)$ is true?
- **30.** If f(x) = 3x-2, g(x) = 2x + k and if $f \circ g = g \circ f$, then find the value of k.
- **31.** The sum of first *n*, 2*n* and 3*n* terms of an A.P. are S_1 , S_2 and S_3 respectively. Prove that $S_3 = 3(S_2 S_1)$
- **32.** Find the sum of the following series $6^2 + 7^2 + 8^2 + \dots + 21^2$
- **33.** Find the GCD of the given polynomials

$$3x^4 + 6x^3 - 12x^2 - 24x, 4x^4 + 14x^3 + 8x^2 - 8x$$

34. Find the square root of the expression

$$\frac{x^2}{y^2} - 10\frac{x}{y} + 27 - 10\frac{y}{x} + \frac{y^2}{x^2}$$

- **35.** State and prove angle bisector theorem.
- **36.** If the points A(-3, 9), B(a, b) and C(4,-5) are collinear and if a + b = 1, then find a and b.
- **37.** Using slope concept, show that the points(1,-4), (2, -3) and (4, -7) form a right angled triangle.
- **38.** If $\sin \theta + \cos \theta = p$ and $\sec \theta + \csc \theta = q$ then prove that $q(p^2 1) = 2p$
- **39.** The time taken (in minutes) to complete a homework by 8 students in a day are given by 38, 40, 47, 44, 46, 43, 49, 53. Find the coefficient of variation.
- **40**. The number of books read by 8 students during a month are 2,5,8,11,14,6,12 and 10. Calculate the standard deviation of the data.
- **41**. Solve the quadratic equation $5x^2 6x 2 = 0$ by completing the square method.
- **42**. If the 4th and 7th term of Geometric Progression are 54 and 1458 respectively, find the Geometric Progression.

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

find A and B. **16.** A relation 'f' is defined by $f(x) = x^2 - 2$ where,

 $x \in \{-2, -1, 0, 3\}$ (i) List the elements of f(ii) Is f a function?

15. If $B \times A = \{(-2, 3), (-2, 4), (0, 3), (0, 4), (3, 3), (3, 4)\}$

Section - II

Answer any **TEN** questions.

Each question carries 2 marks

Question number 20 is compulsory.

- **17.** Find the greatest number that will divide 445 and 572 leaving remainders 4 and 5 respectively.
- **18.** Which term of the A.P. 16, 11, 6, 1,... is –54 ?
- **19.** Reduce the rational expressions $\frac{x^2 16}{x^2 + 8x + 16}$
- **20.** Determine the quadratic equations, whose sum and product of roots are $\frac{-3}{2}$ and -1.
- **21.** If $\triangle ABC$ is similar to $\triangle DEF$ such that BC = 3 cm, EF = 4 cm and area of $\triangle ABC = 54$ cm². Find the area of $\triangle DEF$.
- **22.** Prove that $\frac{\cos\theta}{1+\sin\theta} = \sec\theta \tan\theta$
- **23.** The standard deviation and mean of a data are 6.5 and 12.5 respectively. Find the coefficient of variation.
- **24.** What is the slope of a line whose inclination is 30°?
- **25.** The line through the points (-2, *a*) and (9, 3) has slope $-\frac{1}{2}$. Find the value of *a*.
- **26.** Let A = {1,2,3,4,5}, B = W and *f*: A→B is defined by $f(x) = x^2 1$ find the range of *f*.
- **27.** If a clock strikes once at 1 o'clock, twice at 2 o'clock, thrice at 3 o'clock and so on, how many times will it strike in a day?
- **28.** Find the zeros of the quadratic expression $x^2 + 2x 143$.

ots are $\frac{-3}{2}$ and -1.

area of ΔDEF .

www.Trb Tnpsc.Com

3

www.surabooks.com

		Section - IV	1	PART - II
Ansv	wer al	<i>ll</i> questions. $2 \times 8 = 16$	15.	Solution :
43 .	(a)	Construct a triangle similar to a given 7	1	$B \times A = \{(-2, 3), (-2, 4), (0, 3), (0, 4), (3, 3), (3, 4)\}$
		triangle PQR with its sides equal to $\frac{1}{3}$ of the		A = $\{3, 4\}, B = \{-2, 0, 3\}$
		corresponding sides of the triangle PQR.	16.	Solution :
		(OR)	1	$f(x) = x^2 - 2$ where $x \in \{-2, -1, 0, 3\}$
	(b)	In $\triangle ABC$, if DE BC, AD = x , DB = x -2,		(i) $f(-2) = (-2)^2 - 2 = 2;$
		AE = x + 2 and $EC = x - 1$ then find the length of the gides A P and A C		f(-1) = (-1)2 - 2 = -1
44.	(8)	Draw the graph of $y = x^2 + 3x - 4$ and hence		$f(0) = 0^2 - 2 = -2$
	()	use it to solve $x^2 + 3x - 4 = 0$.	1	$f(3) = 3^2 - 2 = 9 - 2 = 7$
		(OR)		$\therefore f = \{(-2, 2), (-1, -1), (0, -2) \\ (3,7)\}$
	(b)	Solve $\frac{1}{3}(x+y-5) = y-z = 2x - 11$		(ii) We note that each element in the
		=9-(x+2z).	1	Therefore f is a function.
			17.	Solution :
		ANSWERS		Since the remainders are 4, 5 respectively the required number is the HCF of the number
		PART - I		445-4 = 441, 572 - 5 = 567.
1.	(d)	quadratic		Hence, we will determine the HCF of 441 and 567. Using Euclid's Division algorithm,
2.	(c)	p imes q		We have
3.	(b)	5		$567 = 441 \times 1 + 126$
4.	(b)	$\left(y+\frac{1}{y}\right)^2$	1	$441 = 126 \times 3 + 63$ $126 = 63 \times 2 + 0$
5.	(c)	$\begin{pmatrix} y \end{pmatrix}$		Therefore HCF of 441 $567 = 63$ and so the
6.	(a)	1		required number is 63.
		1	18.	Solution :
7.	(b)	27		$A.P = 16, 11, 6, 1, \dots$
8	(h)	Natural numbers		It is given that
0.	(b)		 	$t_n = -54$
9. 10	(0)	1.4 cm	1	$a = 16, d = t_2 - t_1 = 11 - 16 = -5$
10.	(a)	25 sq units		
11.	(0)	23 sq.umts		-54 = 16 - 5n + 5
12.	(c)	45°	 	21 - 5n = -54
13.	(4)	$\cot \theta$		-5n = -54 - 21
14.	(1)	0		-5n = -75
			 	$n = \frac{75}{5} = 15$
			 	∴ 15th term is –54.

\therefore 15th term is -54.

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

www.surabooks.com

🛱 Sura's 🖛 X Std - Mathematics - Common Quarterly Exam. 2019

$$\frac{x^2 - 16}{x^2 + 8x + 16} = \frac{(x+4)(x-4)}{(x+4)^2} = \frac{x-4}{x+4}$$

20. Solution :

Sum of the roots = $\frac{-3}{2}$

$$\alpha + \beta = \frac{-3}{2}$$

Product of the roots $(\alpha\beta) = (-1)$ Required equation $= x^2 - (\alpha + \beta)x + \alpha\beta = 0$

$$x^{2} - \left(\frac{-3}{2}\right)x - 1 = 0$$
$$2x^{2} + 3x - 2 = 0$$

21. Solution : Since the ratio of area of two similar triangles is equal to the ratio of the squares of any two corresponding sides, we have

$$\frac{\text{Area}(\Delta \text{ABC})}{\text{Area}(\Delta \text{DEF})} = \frac{\text{BC}^2}{\text{EF}^2}$$

gives $\frac{54}{\text{Area}(\Delta \text{DEF})} = \frac{3^2}{4^2}$
Area (ΔDEF) = $\frac{16 \times 54}{9} = 96 \text{ cm}^2$

22. Solution :

L.H.S =
$$\frac{\cos\theta}{1+\sin\theta}$$

(Multiplying Numerator and
denominator by $(1 - \sin\theta)$
= $\frac{\cos\theta}{1+\sin\theta} \times \frac{1-\sin\theta}{1-\sin\theta} = \frac{\cos\theta - \cos\theta\sin\theta}{1-\sin^2\theta}$
= $\frac{\cos\theta - \cos\theta\sin\theta}{\cos^2\theta} = \frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta}$
= $\sec\theta - \tan\theta$ = R.H.S

23. Solution :

Co-efficient of variation C.V = $\frac{\sigma}{\overline{x}} \times 100$ $\sigma = 6.5, \overline{x} = 12.5$ \therefore C.V = $\frac{6.5}{12.5} \times 100\%$

$$= 52\%$$
.

24. Solution :

Here $\theta = 30^{\circ}$ slope $m = \tan \theta$ \therefore slope $m = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$

25. Solution : A line joining the points (-2, a) and

(9, 3) has slope
$$m = \frac{-1}{2}$$
.
 $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - a}{9 - (-2)} = \frac{-1}{2}$
 $2(3 - a) = -1 (11) \Rightarrow -2a = -11 - 6 = -17$
 $a = \frac{17}{2}$

- **26.** Solution : f(1) = 0; f(2) = 3; f(3) = 8; f(4) = 15; f(5) = 24Range of $f = \{0,3,8,15,24\}$
- 27. Solution :

 $S_n = 2(1 + 2 + 3 + \dots + 12) = 2\left(\frac{12}{2}(1 + 12)\right)$ Number of times clock strikes in a day = 156 times.

28. Solution :

$$P(x) = (x + 13)(x - 11) P(-13) = 0; P(11) = 0$$

Zeros of P(x) are -13 and 11

PART - III

29. Solution :

LHS =
$$(A \cap C) \times (B \cap D)$$

 $A \cap C = \{3\}$
 $B \cap D = \{3, 5\}$
 $(A \cap C) \times (B \cap D) = \{(3, 3) (3, 5)\}$...(1)
RHS = $(A \times B) \cap (C \times D)$
 $A \times B = \{(1, 2), (1, 3), (1, 5), (2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5)\}$
 $C \times D = \{(3, 1), (3, 3), (3, 5), (4, 1), (4, 3), (4, 5)\}$
 $(A \times B) \cap (C \times D) = \{(3, 3), (3, 5)\}$...(2)
 $\therefore (1) = (2) \therefore$ It is true.

30. Solution :

$$f(x) = 3x - 2, g(x) = 2x + k$$

$$fog(x) = f(g(x)) = f(2x + k)$$

$$= 3(2x + k) - 2 = 6x + 3k - 2$$

Thus,

$$fog(x) = 6x + 3k - 2$$

$$gof(x) = g(3x - 2) = 2(3x - 2) + k$$

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

www.Trb Tnpsc.Com

www.surabooks.com

Thus, gof(x) = 6x - 4 + kGiven that fog = gof $\therefore 6x + 3k - 2 = 6x - 4 + k$ $6x - 6x + 3k - k = -4 + 2 \Longrightarrow k = -1$ **31. Solution :**

If S_1 , S_2 and S_3 are sum of first *n*, 2n and 3n terms of A.P. respectively then

$$S_{1} = \frac{n}{2} [2a + (n-1)d], \quad S_{2} = \frac{2n}{2} [2a + (2n-1)d]$$
$$S_{3} = \frac{3n}{2} [2a + (3n-1)d]$$

Consider

$$\begin{split} \mathbf{S}_2 - \mathbf{S}_1 &= \frac{2n}{2} [2a + (2n-1)d] - \frac{n}{2} [2a + (n-1)d] \\ &= \frac{n}{2} [[4a + 2(2n-1)d] - [2a + (n-1)d]] \\ \mathbf{S}_2 - \mathbf{S}_1 &= \frac{n}{2} \times [2a + (3n-1)d] \\ \mathbf{3}(\mathbf{S}_2 - \mathbf{S}_1) &= \frac{3n}{2} \times [2a + (3n-1)d] \\ \mathbf{3}(\mathbf{S}_2 - \mathbf{S}_1) &= \mathbf{S}_3 \end{split}$$

32. Solution :

$$6^{2} + 7^{2} + 8^{2} + \dots + 21^{2}$$

$$= (1^{2} + 2^{2} + \dots + 21^{2}) - (1^{2} + 2^{2} + \dots + 5^{2})$$

$$= \sum_{1}^{21} n^{2} - \sum_{1}^{5} n^{2}$$

$$= \left(\frac{n(n+1)(2n+1)}{6}\right)_{n=21} - \left(\frac{n(n+1)(2n+1)}{6}\right)_{n=5}$$

$$= \left(\frac{21^{7} \times 22^{11} \times 43}{\beta_{2}}\right) - \left(\frac{5 \times \beta \times 11}{\beta}\right)$$

$$= 3311 - 55$$

= 3256

33. Solution :

 $3x^{4} + 6x^{3} - 12x^{2} - 24x, 4x^{4} + 14x^{3} + 8x^{2} - 8x$ $4x^{4} + 14x^{3} + 8x^{2} - 8x = 2 (2x^{4} + 7x^{3} + 4x^{2} - 4x)$ Let us divide $2x^{4} + 7x^{3} + 4x^{2} - 4x \text{ by } x^{4} + 2x^{3} - 4x^{2} - 8x$

$$\begin{array}{c}
2 \\
x^4 + 2x^3 - 4x^2 - 8x \\
2x^4 + 7x^3 + 4x^2 - 4x \\
2x^4 + 4x^3 - 8x^2 - 16x \\
\xrightarrow{(-) \quad (-) \quad (+) \quad (+) \\
3x^3 + 12x^2 + 12x \div 3
\end{array}$$

$$(x^3 + 4x^2 + 4x) \neq 0$$

Now let us divide

$$x^{4} + 2x^{3} - 4x^{2} - 8x$$
 by $x^{3} + 4x^{2} + 4x$
 x^{-2}
 $x^{3} + 4x^{2} + 4x$
 $x^{4} + 2x^{3} - 4x^{2} - 8x$
 $x^{4} + 4x^{3} + 4x^{2}$
(-) (-) (-)
 $-2x^{3} - 8x^{2} - 8x$
 $x^{(+)} - 2x^{3(+)} - 8x - 8x$
0

$$\therefore x^{3} + 4x^{2} + 4x \text{ is the G.C.D of}$$

$$3x^{4} + 6x^{3} - 12x^{2} - 24x, 4x^{4} + 14x^{3} + 8x^{2} - 8x$$

$$\therefore \text{ Ans } x (x^{2} + 4x + 4)$$

34. Solution :

$$\frac{\frac{x}{y} - 5 + \frac{y}{x}}{\frac{x}{y}}$$

$$\frac{\frac{x}{y}}{\frac{x}{y}^{\frac{1}{y^{2}}} - 10\frac{x}{y} + 27 - 10\frac{y}{x} + \frac{y^{2}}{x^{2}}}{\frac{x}{y}^{-1}}$$

$$2\frac{\frac{x}{y} - 5}{\frac{x}{y}^{-5}}$$

$$\frac{-10\frac{x}{y} + 27}{(+)\frac{y}{y}(-)}$$

$$\frac{-10\frac{x}{y} + 27}{(+)\frac{y}{y}(-)}$$

$$\frac{2 - 10\frac{y}{x} + \frac{y^{2}}{x^{2}}}{\frac{10\frac{y}{x} + \frac{y^{2}}{x^{2}}}{\frac{10\frac$$

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

www.Trb Tnpsc.Com

www.surabooks.com

107

ת

 2

35. Solution :

The internal bisector of an

angle of a triangle divides the

opposite side internally in the A

Statement

🖞 Sura's 🖦 X Std - Mathematics - Common Quarterly Exam. 2019

-7b - 14a = -21-7(b + 2a) = -21b + 2a = 3(b + a) + a = 31 + a = 3 $a = 2 \Longrightarrow b = 1 - 2 = -1$ a = 2b = -1

37. Solution :

Let the given points be A(1,-4), B(2,-3) and C(4,-7).

The slope of AB = $\frac{-3+4}{2-1} = \frac{1}{1} = 1$ The slope of BC = $\frac{-7+3}{4-2} = \frac{-4}{2} = -2$ The slope of AC = $\frac{-7+4}{4-1} = \frac{-3}{3} = -1$ Slope of AB \times slope of AC = (1)(-1) = -1 AB is perpendicular to AC. $\angle A = 90^{\circ}$ $\therefore \Delta$ ABC is a right angled triangle. **38.** Solution : $p = \sin\theta + \cos\theta$ $p^2 = \underbrace{\sin^2 \theta + \cos^2 \theta}_{1} + 2\sin \theta \cos \theta$ $p^2 - 1 = 2\sin\theta\cos\theta$ $q = \sec \theta + \csc \theta = \frac{1}{\cos \theta} + \frac{1}{\sin \theta}$ $=\frac{\sin\theta+\cos\theta}{\sin\theta\cos\theta}$ $\therefore \text{ L.H.S } q(p^2 - 1) = \frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} \times 2 \sin \theta \cos \theta$ $= 2(\sin\theta + \cos\theta)$ = 2p = R.H.SMean = $\overline{x} = \frac{\Sigma x}{T}$ **39**. $= \frac{38+40+47+44+46+43+49+53}{8}$ $= \frac{360}{8}$ = 45

ratio of the corresponding sides containing the angle. Proof Given : In \triangle ABC, AD is the internal bisector To prove : $\frac{AB}{AC} = \frac{BD}{CD}$

Construction : Draw a line through C parallel to AB. Extend AD to meet line through C at E

No	Statement	Reason			
1.	$\angle AEC = \angle BAE = \angle 1$	Two parallel lines cut by a transversal make alternate angles equal.			
2.	Δ ACE is isosceles AC = CE(1)	In \triangle ACE, \angle CAE = \angle CEA			
3.	$\Delta ABD \sim \Delta ECD$ $\frac{AB}{CE} = \frac{BD}{CD}$	By AA Similarity			
4.	$\frac{AB}{AC} = \frac{BD}{CD}$	From (1) AC =CE. Hence proved.			

36. Solution :

A(-3,9), B(a,b) C(4,-5), $\downarrow \qquad \downarrow \qquad \downarrow$ $(x_1, y_1) \quad (x_2, y_2) \quad (x_3, y_3)$

are collinear points, a + b = 1 (given) \therefore Area of the Δ

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

www.surabooks.com

🖞 Sura's 🔿 X Std - Mathematics - Common Quarterly Exam. 2019

$$\sigma = \sqrt{\frac{\Sigma d^2}{n}} = \sqrt{\frac{164}{8}} = \sqrt{20.5} = 4.53$$

Co-efficient of variation

C.V. =
$$\frac{\sigma}{\overline{x}} \times 100 = \frac{4.53}{45} \times 100 = 10.07\%$$

x	$d = x - \overline{x}$	d^2
38	-7	49
40	-5	25
47	2	4
44	-1	1
46	1	1
43	-2	4
49	4	16
53	8	64
360	0	164

40.
$$\Sigma x = 68$$
; $\Sigma x^2 = 690$

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$$
$$\sigma = \sqrt{\frac{14}{n}} \approx 3.74$$

41.
$$x^2 - 2\left(\frac{3}{5}\right)x =$$

 $x^2 - 2\left(\frac{3}{5}\right)x + \frac{9}{25} = \frac{9}{25} + \frac{2}{5}$
 $\left(x - \frac{3}{5}\right)^2 = \frac{19}{25}$
 $x - \frac{3}{5} = \pm \frac{\sqrt{19}}{5}$
 $x = \frac{3 + \sqrt{19}}{5}; x = \frac{3 - \sqrt{19}}{5}$

42. $ar^3 = 54; ar^6 = 1458$ $ar^6 = 1458$

$$\overline{ar^3} = \overline{54}$$

$$r = 3; \implies a = 2$$

$$P_{a} = \frac{1}{2} = \frac$$

Required G.P is 2,6,18,54,.....

PART - IV

43. (a) Solution :

Given a triangle $\triangle PQR$. We have to construct another triangle whose sides are $\frac{7}{3}$ of the corresponding sides of the given $\triangle PQR$.

Steps of construction:

- (1) Draw any ray QX making an acute angle with QR on the opposite side to the vertex P.
- (2) Locate 7 points (the greater of 7 and 3 in $\frac{7}{3}$)

 $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, \text{ and } Q_7$ so that $QQ_1 = Q_1Q_2 = Q_2Q_3 = Q_3Q_4$ $= Q_4Q_5 = Q_5Q_6 = Q_6Q_7$

- (3) Join Q_3 to R and draw a line segment through Q_7 parallel to Q_3R intersecting the extended line segment QR at R'.
- (4) Draw a line segment through R' parallel to PR intersecting the extended line segment QP at P'.

Then $\Delta P'QR'$ is the required triangle each of whose sides is $\frac{7}{3}$ of the corresponding sides of the given triangle.

(b) Solution :

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

www.Trb Tnpsc.Com

www.surabooks.com

🖞 Sura's 🖏 X Std - Mathematics - Common Quarterly Exam. 2019

In $\triangle ABC$ we have $DE \parallel BC$.	
By Thales theorem, we have $\frac{AD}{DB} = \frac{AL}{FC}$	
$\frac{x}{2} = \frac{x+2}{1}$ gives $x(x-1) = (x-2)(x+2)$	
x-2 x-1	
frence, x - x - x - 4 so, x = 4	

AE = x + 2 = 6, EC = x - 1 = 3. Hence, AB = AD + DB = 4 + 2 = 6, AC = AE + EC = 6 + 3 = 9. Therefore, AB = 6, AC = 9.

When x = 4, AD = 4, DB = x - 2 = 2,

44. (a) Solution :

x	-4	-3	-2	-1	0	1	2	3	4
x^2	16	9	4	1	0	1	4	9	16
3x	-12	-9	-6	-3	0	3	6	9	12
-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
$y = x^2 + 3x - 4$	0	-4	-6	-6	-4	0	6	14	24

Draw the parabola using the points (-4, 0), (-3, -4), (-2, -6), (-1, -6), (0, -4), (1, 0), (2, 6), (3, 14), (4, 24).

To solve: $x^2 + 3x - 4 = 0$ subtract $x^2 + 3x - 4 = 0$ from $y = x^2 + 3x - 4$

$$y = x^{2} + 3x - 4$$

$$0 = x^{2} + 3x - 4$$

(-) (-) (+)

y = 0 is the equation of the x axis.

The points of intersection of the parabola with the *x* axis are the points (-4, 0) and (1, 0), whose *x* - co-ordinates (-4, 1) is the solution, set for the equation $x^2 + 3x - 4 = 0$.

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000

www.Trb Tnpsc.Com

www.surabooks.com

 $(1) \rightarrow$

🖞 Sura's 🔿 X Std - Mathematics - Common Quarterly Exam. 2019

(OR) (b) Given A B C D $\frac{1}{3}(x+y-5) = y-z = 2x - 11 = 9 - (x+2z)$ From A & B, $\frac{1}{3}(x+y-5) = y-z$ $\Rightarrow x+y-5 = 3y-3z \Rightarrow x-2y+3z = 5$ (1) From B & C, y-z = 2x - 11 $\Rightarrow 2x-y+z = 11$ (2) From C & D, 2x - 11 = 9 - x - 2z $\Rightarrow 3x + 2z = 20$ (3)

 $(2) \times 2 \xrightarrow{4x - 2y + 2z = 22}_{(-)} \xrightarrow{(-)}_{(-)} \xrightarrow{(-)}_{(-)} (3)$ $(3) \xrightarrow{3x + 2z = 20}_{3z = 3 \Rightarrow z = 1} \qquad \dots (4)$ $(3) \xrightarrow{3x + 2z = 20}_{3z = 3 \Rightarrow z = 1} \xrightarrow{(-)}_{3z = 3 \Rightarrow 2 = 2} \xrightarrow{(-)}_{3z = 3 \Rightarrow z = 1} \xrightarrow{(-)}_{3z = 3 \Rightarrow 2 = 2} \xrightarrow{(-)}_{3z = 3 \to 2} \xrightarrow{(-)}_{3z = 3 \to 2} \xrightarrow{(-)$

x - 2y + 3z = 5

**

orders@surabooks.com PH: 9600175757 / 8124201000 / 8124301000 Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com