$10^{\text {sim }}$
 Common Quarterly Examination - 2019
 Mathematics (With Answers)

Introductions :

(a) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(b) Use Blue or Black ink to write and underline and pencil to draw diagrams

PART - I
Note: (i) Answer all the 14 questions
[14 $\times 1=14]$
(ii) Choose the most suitable answer from the given four correct alternatives and write the option code with the corresponding answer.
(iii) Each Question carries 1 mark.

1. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(a) linear
(b) cubic
(c) reciprocal
(d) quadratic
2. If $n(\mathrm{~A})=p$ and $n(\mathrm{~B})=q$ then $n(\mathrm{~A} \times \mathrm{B})=$ \qquad
(a) $p+q$
(b) $p-q$
(c) $p \times q$
(d) $\frac{p}{q}$
3. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is
(a) 3
(b) 5
(c) 6
(d) 8
4. $y^{2}+\frac{1}{y^{2}}$ is not equal to
(a) $\frac{y^{4}+1}{y^{2}}$
(b) $\left(y+\frac{1}{y}\right)^{2}$
(c) $\left(y-\frac{1}{y}\right)^{2}+2$
(d) $\left(y+\frac{1}{y}\right)^{2}-2$
5. Product of the roots of the quadratic equation $x^{2}+3 x=0$
(a) -3
(b) 3
(c) 0
(d) 1
6. $7^{4 \mathrm{k}} \equiv$ \qquad $(\bmod 100)$
(a) 1
(b) 2
(c) 3
(d) 4
7. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$
(a) $\frac{1}{24}$
(b) $\frac{1}{27}$
(c) $\frac{2}{3}$
(d) $\frac{1}{81}$
8. A sequence is a function defined on the set of
(a) Real numbers
(b) Natural numbers
(c) Whole numbers
(d) Integers
9. In $\triangle \mathrm{LMN}, \angle \mathrm{L}=60^{\circ}, \angle \mathrm{M}=50^{\circ}$. if $\triangle \mathrm{LMN} \sim$ $\triangle \mathrm{PQR}$ then the value of $\angle \mathrm{R}$ is
(a) 40°
(b) 70°
(c) 30°
(d) 110°
10. If in $\triangle A B C, D E \| B C, A B=3.6 \mathrm{~cm}$, $\mathrm{AC}=2.4 \mathrm{~cm}$ and $\mathrm{AD}=2.1 \mathrm{~cm}$ then the length of AE is
(a) 1.4 cm
(b) 1.8 cm
(c) 1.2 cm
(d) 1.05 cm
11. The area of triangle formed by the points $(-5,0)$ $(0,-5)$ and $(5,0)$ is
(a) 0 sq.units
(b) 25 sq.units
(c) 5 sq.units
(d) none of these
12. The inclination of a line whose slope $=1$ is
(a) 0°
(b) 30°
(c) 45°
(d) 60°
13. $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to
(1) $\sec \theta$
(2) $\cot ^{2} \theta$
(3) $\sin \theta$
(4) $\cot \theta$
14. The range of the data $8,8,8,8,8 \ldots 8$ is
(1) 0
(2) 1
(3) 8
(4) 3

Section - II

(i) Answer any TEN questions.
(ii) Question number $\mathbf{2 0}$ is compulsory.
(iii) Each question carries 2 marks

$$
10 \times 2=20
$$

15. If $\mathrm{B} \times \mathrm{A}=\{(-2,3),(-2,4),(0,3),(0,4),(3,3),(3,4)\}$ find A and B.
16. A relation ' f is defined by $f(x)=x^{2}-2$ where, $x \in\{-2,-1,0,3\}$ (i) List the elements of f (ii) Is f a function?
17. Find the greatest number that will divide 445 and 572 leaving remainders 4 and 5 respectively.
18. Which term of the A.P. $16,11,6,1, \ldots$ is -54 ?
19. Reduce the rational expressions $\frac{x^{2}-16}{x^{2}+8 x+16}$
to its lowest form
20. Determine the quadratic equations, whose sum and product of roots are $\frac{-3}{2}$ and -1 .
21. If $\triangle A B C$ is similar to $\triangle D E F$ such that $B C=3 \mathrm{~cm}$, $E F=4 \mathrm{~cm}$ and area of $\triangle A B C=54 \mathrm{~cm}^{2}$. Find the area of $\triangle \mathrm{DEF}$.
22. Prove that $\frac{\cos \theta}{1+\sin \theta}=\sec \theta-\tan \theta$
23. The standard deviation and mean of a data are 6.5 and 12.5 respectively. Find the coefficient of variation.
24. What is the slope of a line whose inclination is 30° ?
25. The line through the points $(-2, a)$ and $(9,3)$ has slope $-\frac{1}{2}$. Find the value of a.
26. Let $\mathrm{A}=\{1,2,3,4,5\}, \mathrm{B}=\mathrm{W}$ and $f: \mathrm{A} \rightarrow \mathrm{B}$ is defined by $f(x)=x^{2}-1$ find the range of f.
27. If a clock strikes once at 1 oclock, twice at 2 o'clock, thrice at 3 oclock and so on, how many times will it strike in a day?
28. Find the zeros of the quadratic expression $x^{2}+2 x-143$.

Section - III

(i) Answer any TEN questions.
(ii) Question number $\mathbf{4 2}$ is compulsory.

$$
10 \times 5=50
$$

29. Given $A=\{1,2,3\}, B=\{2,3,5\}, C=\{3,4\}$ and $D=\{1,3,5\}$, check if $(A \cap C) \times(B \cap D)=(A \times B) \cap$ ($\mathrm{C} \times \mathrm{D}$) is true?
30. If $f(x)=3 x-2, g(x)=2 x+k$ and if $f \circ g=g o f$, then find the value of k.
31. The sum of first $n, 2 n$ and $3 n$ terms of an A.P. are S_{1}, S_{2} and S_{3} respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$
32. Find the sum of the following series
$6^{2}+7^{2}+8^{2}+\ldots+21^{2}$
33. Find the GCD of the given polynomials
$3 x^{4}+6 x^{3}-12 x^{2}-24 x, 4 x^{4}+14 x^{3}+8 x^{2}-8 x$
34. Find the square root of the expression
$\frac{x^{2}}{y^{2}}-10 \frac{x}{y}+27-10 \frac{y}{x}+\frac{y^{2}}{x^{2}}$
35. State and prove angle bisector theorem.
36. If the points $\mathrm{A}(-3,9), \mathrm{B}(a, b)$ and $\mathrm{C}(4,-5)$ are collinear and if $a+b=1$, then find a and b.
37. Using slope concept, show that the points(1,-4), $(2,-3)$ and $(4,-7)$ form a right angled triangle.
38. If $\sin \theta+\cos \theta=p$ and $\sec \theta+\operatorname{cosec} \theta=q$ then prove that $q\left(p^{2}-1\right)=2 p$
39. The time taken (in minutes) to complete a homework by 8 students in a day are given by $38,40,47,44,46,43,49,53$. Find the coefficient of variation.
40. The number of books read by 8 students during a month are $2,5,8,11,14,6,12$ and 10. Calculate the standard deviation of the data.
41. Solve the quadratic equation $5 x^{2}-6 x-2=0$ by completing the square method.
42. If the 4th and 7th term of Geometric Progression are 54 and 1458 respectively, find the Geometric Progression.

Section - IV

Answer all questions.

$$
2 \times 8=16
$$

43. (a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR .
(OR)
(b) In $\triangle \mathrm{ABC}$, if $\mathrm{DE} \| \mathrm{BC}, \mathrm{AD}=x, \mathrm{DB}=x-2$, $\mathrm{AE}=x+2$ and $\mathrm{EC}=x-1$ then find the length of the sides AB and AC .
44. (a) Draw the graph of $y=x^{2}+3 x-4$ and hence use it to solve $x^{2}+3 x-4=0$.
(OR)
(b) Solve $\frac{1}{3}(x+y-5)=y-z=2 x-11$ $=9-(x+2 z)$.

ANSWERS

PART - I

1. (d) quadratic
2. (c) $p \times q$
3. (b) 5
4. (b) $\left(y+\frac{1}{y}\right)^{2}$
5. (c) 0
6. (a) 1
7. (b) $\frac{1}{27}$
8. (b) Natural numbers
9. (b) 70°
10. (a) 1.4 cm
11. (b) 25 sq.units
12. (c) 45°
13. (4) $\cot \theta$
14. (1) 0

PART - II

15. Solution :

$$
\begin{equation*}
\mathrm{B} \times \mathrm{A}=\{(-2,3),(-2,4),(0,3),(0,4), \tag{3,3}
\end{equation*}
$$

$$
A=\{3,4), B=\{-2,0,3\}
$$

16. Solution :

$$
f(x)=x^{2}-2 \text { where } x \in\{-2,-1,0,3\}
$$

(i) $f(-2)=(-2)^{2}-2=2$;

$$
f(-1)=(-1) 2-2=-1
$$

$$
f(0)=0^{2}-2=-2
$$

$$
f(3)=3^{2}-2=9-2=7
$$

$$
\begin{equation*}
\therefore f=\{(-2,2),(-1,-1),(0,-2), \tag{3,7}
\end{equation*}
$$

(ii) We note that each element in the domain of f has a unique image. Therefore f is a function.

17. Solution :

Since the remainders are 4,5 respectively the required number is the HCF of the number $445-4=441,572-5=567$.

Hence, we will determine the HCF of 441 and 567. Using Euclid's Division algorithm,

We have

$$
\begin{aligned}
567 & =441 \times 1+126 \\
441 & =126 \times 3+63 \\
126 & =63 \times 2+0
\end{aligned}
$$

Therefore HCF of $441,567=63$ and so the required number is 63 .
18. Solution :

$$
\text { A.P }=16,11,6,1, \ldots
$$

It is given that

$$
\begin{aligned}
& t_{n}=-54 \\
& a=16, d \\
&=t_{2}-t_{1}=11-16=-5 \\
& t_{n}=a+(n-1) d \\
&-54=16+(n-1)(-5) \\
&-54=16-5 n+5 \\
& 21-5 n=-54 \\
&-5 n=-54-21 \\
&-5 n=-75 \\
& n=\frac{75}{5}=15
\end{aligned}
$$

$\therefore 15$ th term is -54 .
19. Solution :

$$
\frac{x^{2}-16}{x^{2}+8 x+16}=\frac{(x+4)(x-4)}{(x+4)^{2}}=\frac{x-4}{x+4}
$$

20. Solution :

$$
\begin{array}{r}
\text { Sum of the roots }=\frac{-3}{2} \\
\qquad \alpha+\beta=\frac{-3}{2}
\end{array}
$$

Product of the roots $(\alpha \beta)=(-1)$
Required equation $=x^{2}-(\alpha+\beta) x+\alpha \beta=0$

$$
\begin{array}{r}
x^{2}-\left(\frac{-3}{2}\right) x-1=0 \\
2 x^{2}+3 x-2=0
\end{array}
$$

21. Solution : Since the ratio of area of two similar triangles is equal to the ratio of the squares of any two corresponding sides, we have

$$
\begin{aligned}
\frac{\operatorname{Area}(\Delta \mathrm{ABC})}{\operatorname{Area}(\Delta \mathrm{DEF})} & =\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}} \\
\text { gives } \frac{54}{\operatorname{Area}(\Delta \mathrm{DEF})} & =\frac{3^{2}}{4^{2}} \\
\operatorname{Area}(\Delta \mathrm{DEF}) & =\frac{16 \times 54}{9}=96 \mathrm{~cm}^{2}
\end{aligned}
$$

22. Solution :

$$
\left.\begin{array}{l}
\text { L.H.S }=\frac{\cos \theta}{1+\sin \theta} \\
\text { (Multiplying Numerator and } \\
\text { denominator by }(1-\sin \theta) \text {) }
\end{array}=\frac{\cos \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}=\frac{\cos \theta-\cos \theta \sin \theta}{1-\sin ^{2} \theta}\right)=\frac{\cos \theta-\cos \theta \sin \theta}{\cos ^{2} \theta}=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta} .
$$

23. Solution :

Co-efficient of variation C.V $=\frac{\sigma}{\bar{x}} \times 100$

$$
\begin{aligned}
\sigma & =6.5, \bar{x}=12.5 \\
\therefore \quad \text { C.V } & =\frac{6.5}{12.5} \times 100 \% \\
& =52 \% .
\end{aligned}
$$

24. Solution :

Here $\theta=30^{\circ}$
slope $m=\tan \theta$
\therefore slope $m=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
25. Solution : A line joining the points $(-2, a)$ and $(9,3)$ has slope $\quad m=\frac{-1}{2}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-a}{9-(-2)}=\frac{-1}{2} \\
2(3-a) & =-1(11) \Rightarrow-2 a=-11-6=-17 \\
a & =\frac{17}{2} .
\end{aligned}
$$

26. Solution : $f(1)=0 ; f(2)=3 ; \mathrm{f}(3)=8 ; f(4)=15$; $f(5)=24$
Range of $f=\{0,3,8,15,24\}$

27. Solution :

$$
\mathrm{S}_{n}=2(1+2+3+\ldots \ldots . .+12)=2\left(\frac{12}{2}(1+12)\right)
$$

Number of times clock strikes in a day $=156$ times.
28. Solution :

$$
\begin{aligned}
\mathrm{P}(x) & =(x+13)(x-11) \\
\mathrm{P}(-13) & =0 ; \mathrm{P}(11)=0
\end{aligned}
$$

Zeros of $\mathrm{P}(x)$ are -13 and 11

PART - III

29. Solution :

LHS $=(A \cap C) \times(B \cap D)$

$$
\begin{aligned}
\mathrm{A} \cap \mathrm{C} & =\{3\} \\
\mathrm{B} \cap \mathrm{D} & =\{3,5\}
\end{aligned}
$$

$(\mathrm{A} \cap \mathrm{C}) \times(\mathrm{B} \cap \mathrm{D})=\{(3,3)(3,5)\}$
RHS $=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})$
$A \times B=\{(1,2),(1,3),(1,5),(2,2),(2,3)$,

$$
(2,5),(3,2),(3,3),(3,5)\}
$$

$\mathrm{C} \times \mathrm{D}=\{(3,1),(3,3),(3,5),(4,1),(4,3),(4,5)\}$
$(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})=\{(3,3),(3,5)\}$
$\therefore(1)=(2) \therefore$ It is true.

30. Solution :

$$
\begin{aligned}
f(x) & =3 x-2, g(x)=2 x+k \\
f \circ g(x) & =f(g(x))=f(2 x+k) \\
& =3(2 x+k)-2=6 x+3 k-2
\end{aligned}
$$

Thus, $\quad f \circ g(x)=6 x+3 k-2$
$g \circ f(x)=g(3 x-2)=2(3 x-2)+k$

Thus, $\quad \operatorname{gof}(x)=6 x-4+k$
Given that $f o g=$ gof
$\therefore \quad 6 x+3 k-2=6 x-4+k$
$6 x-6 x+3 k-k=-4+2 \Rightarrow k=-1$

31. Solution :

If S_{1}, S_{2} and S_{3} are sum of first $n, 2 n$ and $3 n$ terms of A.P. respectively then

$$
\begin{aligned}
\mathrm{S}_{1}= & \frac{n}{2}[2 a+(n-1) d], \quad \mathrm{S}_{2}=\frac{2 n}{2}[2 a+(2 n-1) d] \\
& \mathrm{S}_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]
\end{aligned}
$$

Consider

$$
\begin{aligned}
\mathrm{S}_{2}-\mathrm{S}_{1} & =\frac{2 n}{2}[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{n}{2}[[4 a+2(2 n-1) d]-[2 a+(n-1) d]] \\
\mathrm{S}_{2}-\mathrm{S}_{1} & =\frac{n}{2} \times[2 a+(3 n-1) d] \\
3\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right) & =\frac{3 n}{2} \times[2 a+(3 n-1) d] \\
3\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right) & =\mathrm{S}_{3}
\end{aligned}
$$

32. Solution :

$$
\begin{aligned}
& 6^{2}+7^{2}+8^{2}+\ldots+21^{2} \\
& =\left(1^{2}+2^{2}+\ldots+21^{2}\right)-\left(1^{2}+2^{2}+\ldots+5^{2}\right) \\
& =\sum_{1}^{21} n^{2}-\sum_{1}^{5} n^{2} \\
& =\left(\frac{n(n+1)(2 n+1)}{6}\right)_{n=21}-\left(\frac{n(n+1)(2 n+1)}{6}\right)_{n=5} \\
& =\left(\frac{21^{7} \times 22^{11} \times 43}{6_{2}}\right)-\left(\frac{5 \times \not 6 \times 11}{6}\right) \\
& =3311-55 \\
& =3256
\end{aligned}
$$

33. Solution :
$3 x^{4}+6 x^{3}-12 x^{2}-24 x, 4 x^{4}+14 x^{3}+8 x^{2}-8 x$
$4 x^{4}+14 x^{3}+8 x^{2}-8 x=2\left(2 x^{4}+7 x^{3}+4 x^{2}-4 x\right)$
Let us divide
$2 x^{4}+7 x^{3}+4 x^{2}-4 x$ by $x^{4}+2 x^{3}-4 x^{2}-8 x$

$$
x^{4}+2 x^{3}-4 x^{2}-8 x \begin{aligned}
& 2 \\
& \begin{array}{l}
2 x^{4}+7 x^{3}+4 x^{2}-4 x \\
2 x^{4}+4 x^{3}-8 x^{2}-16 x \\
(-)(-)(+) \quad(+)
\end{array} \\
& \hline \begin{array}{l}
3 x^{3}+12 x^{2}+12 x \div 3
\end{array}
\end{aligned}
$$

$$
\left(x^{3}+4 x^{2}+4 x\right) \neq 0
$$

Now let us divide

$$
x^{4}+2 x^{3}-4 x^{2}-8 x \text { by } x^{3}+4 x^{2}+4 x
$$

$$
x^{3}+4 x^{2}+4 x \left\lvert\, \begin{gathered}
x-2 \\
\begin{array}{l}
x^{4}+2 x^{3}-4 x^{2}-8 x \\
x^{4}+4 x^{3}+4 x^{2} \\
\frac{(-)(-)(-)}{\left(-2 x^{3}-8 x^{2}-8 x\right.} \\
\frac{\begin{array}{l}
(+) \\
\left.\frac{-2}{3}-2\right) \\
\hline(+) \\
\hline
\end{array}}{0}
\end{array}
\end{gathered}\right.
$$

$\therefore x^{3}+4 x^{2}+4 x$ is the G.C.D of
$3 x^{4}+6 x^{3}-12 x^{2}-24 x, 4 x^{4}+14 x^{3}+8 x^{2}-8 x$
\therefore Ans $x\left(x^{2}+4 x+4\right)$

34. Solution :

	$\underline{x}-5+\underline{y}$
	$y \quad x$
$\frac{x}{y}$	$\begin{aligned} & \frac{x y^{2}}{y^{2}}-10 \frac{x}{y}+27-10 \frac{y}{x}+\frac{y^{2}}{x^{2}} \\ & (-) \\ & \frac{x y^{2}}{y^{2}} \end{aligned}$
$2 \frac{x}{y}-5$	$\begin{aligned} & -10 \frac{x}{y}+27 \\ & -10 \frac{x}{y}+25 \end{aligned}$
$2 \frac{x}{y}-10+\frac{y}{x}$	$\begin{aligned} & 2-10 \frac{y}{x}+\frac{y^{2}}{x^{2}} \\ & (f+x) \frac{y}{x}+\frac{y^{2}}{x^{2}} \\ & x-x+2 x^{2} \end{aligned}$
	0
$\therefore \sqrt{\frac{x^{2}}{y^{2}}-10}$	$+27-10 \frac{y}{x}+\frac{y^{2}}{x^{2}}=\left\lvert\, \frac{x}{y}-5+\frac{y}{x}\right.$

35. Solution :

Statement
The internal bisector of an angle of a triangle divides the opposite side internally in the
 ratio of the corresponding sides containing the angle.
Proof
Given : In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the internal bisector
To prove : $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{CD}}$
Construction : Draw a line through C parallel to $A B$.
Extend AD to meet line through C at E

No	Statement	Reason
1.	$\angle \mathrm{AEC}=\angle \mathrm{BAE}=\angle 1$	Two parallel lines cut by a transversal make alternate angles equal.
2.	$\triangle \mathrm{ACE}$ is isosceles $\mathrm{AC}=\mathrm{CE} . . .(1)$	In $\triangle \mathrm{ACE}, \angle \mathrm{CAE}=$ $\angle \mathrm{CEA}$
3.	$\triangle \mathrm{ABD} \sim \triangle \mathrm{ECD}$ $\frac{\mathrm{AB}}{\mathrm{CE}}=\frac{\mathrm{BD}}{\mathrm{CD}}$	By AA Similarity
4.	$\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{CD}}$	From (1) $\mathrm{AC}=\mathrm{CE}$. Hence proved.

36. Solution :

$$
\begin{array}{ccc}
\mathrm{A}(-3,9), & \mathrm{B}(a, b) & \mathrm{C}(4,-5), \\
\downarrow & \downarrow & \downarrow \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) & \left(x_{3}, y_{3}\right)
\end{array}
$$

are collinear points, $a+b=1$ (given)
\therefore Area of the Δ

$=\frac{1}{2}\left|\begin{array}{cccc}-3 & a & 4 & -3 \\ 9 & b & -5 & 9\end{array}\right|=0$
(\because points are collinear)

$$
\begin{aligned}
(-3 b-5 a+36)-(9 a+4 b+15) & =0 \\
(-3 b-4 b)+(-5 a-9 a)+(36-15) & =0
\end{aligned}
$$

$$
\begin{aligned}
-7 b-14 a & =-21 \\
-7(b+2 a) & =-21 \\
b+2 a & =3 \\
(b+a)+a & =3 \\
1+a & =3 \\
a=2 \Rightarrow b=1-2 & =-1
\end{aligned}
$$

$$
\begin{aligned}
& a=2 \\
& b=-1
\end{aligned}
$$

37. Solution :

Let the given points be $\mathrm{A}(1,-4), \mathrm{B}(2,-3)$ and $\mathrm{C}(4,-7)$.
The slope of $\mathrm{AB}=\frac{-3+4}{2-1}=\frac{1}{1}=1$
The slope of $\mathrm{BC}=\frac{-7+3}{4-2}=\frac{-4}{2}=-2$
The slope of $\mathrm{AC}=\frac{-7+4}{4-1}=\frac{-3}{3}=-1$
Slope of AB \times slope of $A C=(1)(-1)=-1$
AB is perpendicular to $\mathrm{AC} . \angle \mathrm{A}=90^{\circ}$
$\therefore \triangle \mathrm{ABC}$ is a right angled triangle.
38. Solution :

$$
\begin{aligned}
& p=\sin \theta+\cos \theta \\
& p^{2}=\underbrace{\sin ^{2} \theta+\cos ^{2} \theta}_{1}+2 \sin \theta \cos \theta \\
& p^{2}-1=2 \sin \theta \cos \theta \\
& q=\sec \theta+\operatorname{cosec} \theta=\frac{1}{\cos \theta}+\frac{1}{\sin \theta} \\
&=\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta} \\
& \therefore \text { L.H.S } q\left(p^{2}-1\right)=\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta} \times 2 \sin \theta \cos \theta \\
&=2(\sin \theta+\cos \theta) \\
&=2 p=\text { R.H.S } \\
& \text { 39. Mean }=\bar{x}=\frac{\Sigma x}{n} \\
&=\frac{38+40+47+44+46+43+49+53}{8} \\
&=\frac{360}{8} \\
&=45
\end{aligned}
$$

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\sum d^{2}}{n}}=\sqrt{\frac{164}{8}}=\sqrt{20.5} \\
& =4.53
\end{aligned}
$$

Co-efficient of variation C.V. $=\frac{\sigma}{\bar{x}} \times 100=\frac{4.53}{45} \times 100=10.07 \%$

\boldsymbol{x}	$\boldsymbol{d = \boldsymbol { x } - \overline { \boldsymbol { x } }}$	$\boldsymbol{d}^{\mathbf{2}}$
38	-7	49
40	-5	25
47	2	4
44	-1	1
46	1	1
43	-2	4
49	4	16
53	8	64
360	0	164

40. $\Sigma x=68 ; \Sigma x^{2}=690$
$\sigma=\sqrt{\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}}$
$\sigma=\sqrt{14} \cong 3.74$
41. $x^{2}-2\left(\frac{3}{5}\right) x=$

$$
\begin{gathered}
x^{2}-2\left(\frac{3}{5}\right) x+\frac{9}{25}=\frac{9}{25}+\frac{2}{5} \\
\left(x-\frac{3}{5}\right)^{2}=\frac{19}{25} \\
x-\frac{3}{5}= \pm \frac{\sqrt{19}}{5} \\
x=\frac{3+\sqrt{19}}{5} ; x=\frac{3-\sqrt{19}}{5}
\end{gathered}
$$

42. $a r^{3}=54 ; a r^{6}=1458$
$\frac{a r^{6}}{a r^{3}}=\frac{1458}{54}$
$r=3 ; \Rightarrow a=2$
Required G.P is $2,6,18,54$, \qquad

In $\triangle \mathrm{ABC}$ we have $\mathrm{DE} \| \mathrm{BC}$.
By Thales theorem, we have $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$ $\frac{x}{x-2}=\frac{x+2}{x-1}$ gives $x(x-1) \stackrel{\mathrm{DB}}{=}(x-2)(x+2)$
Hence, $x^{2}-x=x^{2}-4$ so, $x=4$
$\mathrm{AE}=x+2=6, \mathrm{EC}=x-1=3$.
Hence, $\mathrm{AB}=\mathrm{AD}+\mathrm{DB}=4+2=6$,
$\mathrm{AC}=\mathrm{AE}+\mathrm{EC}=6+3=9$.
Therefore, $\mathrm{AB}=6, \mathrm{AC}=9$.

When $x=4, \mathrm{AD}=4, \mathrm{DB}=x-2=2$,
44. (a) Solution :

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
$\boldsymbol{x}^{\mathbf{2}}$	16	9	4	1	0	1	4	9	16
$\mathbf{3} \boldsymbol{x}$	-12	-9	-6	-3	0	3	6	9	12
$\boldsymbol{- 4}$	-4	-4	-4	-4	-4	-4	-4	-4	-4
$\boldsymbol{y}=\boldsymbol{x}^{2}+\mathbf{3} \boldsymbol{x}-\mathbf{4}$	0	-4	-6	-6	-4	0	6	14	24

Draw the parabola using the points $(-4,0),(-3,-4),(-2,-6),(-1,-6),(0,-4),(1,0),(2,6),(3,14)$, $(4,24)$.

To solve: $x^{2}+3 x-4=0$ subtract $x^{2}+3 x-4=0$ from $y=x^{2}+3 x-4$

$$
\begin{aligned}
& y=x^{2}+3 x-4 \\
& 0=x^{2}+3 x-4
\end{aligned}
$$

$$
(-) \quad(-) \quad(+)
$$

$$
y=0 \quad \text { is the equation of the } x \text { axis. }
$$

The points of intersection of the parabola with the x axis are the points $(-4,0)$ and $(1,0)$, whose x - co-ordinates $(-4,1)$ is the solution, set for the equation $x^{2}+3 x-4=0$.

Sura's ${ }^{[1 /+}$ X Std - Mathematics - Common Quarterly Exam. 2019
(OR)
(b) Given

$$
\begin{array}{cccc}
\text { A } & \text { B } & \text { C } & \text { D } \\
\frac{1}{3}(x+y-5)= & y-z= & 2 x-11 & =9-(x+2 z)
\end{array}
$$

From $\mathrm{A} \& \mathrm{~B}, \frac{1}{3}(x+y-5)=y-z$
$\Rightarrow x+y-5=3 y-3 z \Rightarrow x-2 y+3 z=5$
From B \& C, $y-z=2 x-11$

$$
\begin{equation*}
\Rightarrow 2 x-y+z=11 \tag{2}
\end{equation*}
$$

From C \& D, $2 x-11=9-x-2 z$

$$
\Rightarrow 3 x+2 z=20
$$

(1) \rightarrow

$$
x-2 y+3 z=5
$$

(2) $\times 2 \rightarrow 4 x-2 y+2 z=22$

$$
\begin{equation*}
\frac{(\Theta)}{-3 x+z=-17} \tag{4}
\end{equation*}
$$

(3) $\rightarrow \quad \frac{3 x+2 z=20}{3 z=3 \Rightarrow z=1}$
\therefore (3) becomes, $3 x+2=20 \Rightarrow 3 x=20-2=18$

$$
x=\frac{18}{3}=6
$$

\therefore (1) becomes, $6-2 y+3(1)=5 \Rightarrow 9-2 y=5$

$$
\begin{gathered}
\Rightarrow 9-5=2 y \Rightarrow 2 y=4 \\
\therefore y=\frac{4}{2}=2
\end{gathered}
$$

\therefore Solution set is $\{6,2,1\}$.

