Term 2

General Instructions:

1. The question paper consists of 14 questions divided into 3 sections A, B, C.
2. All questions are compulsory.
3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
4. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

	Section-A	Mks
1.	(i) Which term of the AP : $21,18,15, \ldots$ is -81 ? (OR) (ii) If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in an A.P and $\mathrm{p}-\mathrm{q}=\mathrm{r}$, then find the value of p in terms of q .	2
2.	Two men on either side of a 75 m high building and in line with base of building observe the angles of elevation of the top of the building as 30° and 60°. Find the distance between the two men.	2
3.	Find the distance between the centres A and B of the two circles.	2
4.	(i) Find the value of the discriminant for $3 \sqrt{2} x^{2}+5 x-\sqrt{2}$ (OR) (ii) Find the values of k for which the roots of the equation $2 x^{2}-2 \mathrm{k} x+18=0$ are real and distinct.	2
5.	If two tangents are inclined at 60° are drawn to a circle of radius 3 cm then find length of each tangent.	2
6.	Find the roots of the equation $4 x^{2}-7 \sqrt{2} x+6=0$ by splitting the middle term.	2

	Section-B	Mks
7.	Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths. (OR) Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.	3
8.	The eighth term of an AP is half its second term and the eleventh term exceeds one third of its fourth term by 1 . Find the 17th term.	3
9.	On a straight line passing through the foot of a tower, two C and D are at distance of 4 m and 16 m from the foot respectively. If the angles of elevation from C and D of the top of the tower are complementary, then find the height of the tower.	3
10.	Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.	3
	Section-C	Mks
11.	Amit, standing on a horizontal plane, find a bird flying at a distance of 200 m from him at an elevation of 30°. Deepak standing on the roof of a 50 m high building, find the angle of elevation of the same bird to be 45°. Amit and Deepak are on opposite sides of the bird. Find the distance of the bird from Deepak. (OR) From the top of a hill, the angle of depression of two consecutive kilometre stones due east are found to be 45° and 30° respectively. Find the height of the hill. [Use $\sqrt{3}=1.73$]	4
12.	If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in AP. Prove that a, b, c are in AP.	4
13.	At the circus, Mayank, the magnificent is walking on the tight rope. It takes him 10 equal size steps to get across the rope. He takes seven steps flawlessly, then wobbles a bit, and quickly takes the last three steps to land safely on the end platform. The point where Mike wobbles partitions the rope (line segment) into the ratio $\frac{7}{3}$.	4

	Partitioning a line segment with ratio $\frac{a}{b}$ It just so happens that Mayank just performed a mathematical feat called partitioning a line segment. Partitioning a directed line segment, AB , into a ratio $\frac{a}{b}$ involves dividing the line segment into $\mathbf{a}+\mathbf{b}$ equal parts and finding a point, that is, a equal parts from A and b equal parts from B. Based on the above given concept, answer the following questions. A cargo boat leaves Port A $(-30,-40)$ heading for Port B $(90,60)$ but has engine trouble when it reaches P at $\frac{5}{8}$ of the distance from A to B . What is the ratio of AP to PB ? (i) $5: 8$ (ii) $5: 3$ (iii) $3: 8$ (iv) $8: 5$ If the line segment is extended in two directions indefinitely from each of the two points then it is classified as \qquad (i) intersecting line (ii) plane (iii) line (iv) ray	
14.	Recap the concepts involved in Circles and Tangents, answer the following questions. A circular mirror with radius 20 cm hangs by a wire from a hook. The wire is 30 cm long and is a tangent to the mirror in two places. How far above the top of the mirror is the hook? (i) 25 cm (ii) 5 cm (iii) 30 cm (iv) 10 cm How many tangents a circle can have? (i) only one (ii) no tangents (iii) infinitely many (iv) two tangents	4

