| 1. | Gel electrophoresis is used for (2008)          |                                         |
|----|-------------------------------------------------|-----------------------------------------|
|    | (A)Construction of recombinant DNA by joining   | g with cloning vectors                  |
|    | (B)Isolation of DNA molecules                   |                                         |
|    | (C)Cutting of DNA into fragments                |                                         |
|    | (D)Separation of DNA fragments according to t   | heir                                    |
| 2. | Bacterium commonly used in plant genetic eng    | gineering is (2009)                     |
|    | (A) <mark>Agrobacterium</mark>                  | (B)Corynebacterium                      |
|    | (C)Bacillus subtilis                            | (D)Salmonella typhi                     |
| 3. | Which is used in gene cloning?                  |                                         |
|    | (A)Lamosomes                                    | (B)Mesosomes                            |
|    | (C) <mark>Plasmids</mark>                       | (D) Nucleotides                         |
| 4. | Which can be used as vector for transfer of DN  | A segment? <b>(2010)</b>                |
|    | (a)bacterium                                    | (b)plasmid                              |
|    | (c)plasmodium                                   | (d)bacteriophage                        |
|    | (A)a, b and d                                   | (B)a only                               |
|    | (C)a and c                                      | (D) <mark>b and d</mark>                |
| 5. | Which one of the following is used as vector fo | r cloning into higher organisms? (2010) |
|    | (A)Salmonella typhimurium                       | (B)Rhizopus nigricans                   |
|    | (C)Retrovirus                                   | (D)Baculovirus                          |
| 6. | Stirred-tank bioreactors have been designed for | or <b>(2010</b> )                       |
|    | (A)Purification of the product                  |                                         |
|    | (B)Ensuring anaerobic conditions in the culture | evessel                                 |
|    | (C)Availability of oxygen throughout the proce  | ss                                      |
|    |                                                 |                                         |

(D)Addition of preservatives to the product.

7. There is a restriction endonuclease called Ecorl. What does 'co' part of it stand for? (2011)

(A)Coenzyme (B)coli

(C)Colon (D)Coelom

8. Agarose extracted from sea weeds finds use in (2011)

(A)PCR (B)Gel electrophoresis

(C)Spectrophotometry (D)Tissue culture

9. Which technique made it possible to genetically engineer living organ isms? (2011)

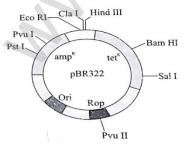
(A) Recombinant DNA techniques

(B)Heavy isotope labeling

(C)X-ray diffraction

(D)Hybridisation

10. What is the source of EcoRI?


(A)Excherichia coli RI

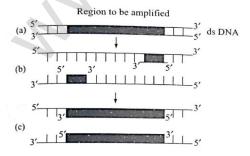
(B) Escherichia coli RI 13

(C) Escherichia coli RX 13

(D) Escherichia coli RX 13

11. In the diagram of pBR 322, which identifies components correctly (2012)




(A)rop—reduced osmotic pressure

- (B)Hind III, EcoRI—selectable markers
- (C) ampR, tetR—antibiotic resistance genes
- (D)ori—original restriction enzyme
- **12.** What is true about DNA polymerase used in PCR? (2012)
  - (A)It is used to ligate introduced DNA in recipient cells
  - (B)It serves as selectable marker
  - (C)It is isolated from a virus
  - (D) It is active at high temperature
- 13. Microparticles for coating with DNA to be bombarded with gene gun are made of (2012)
  - (A)Silver or platinum

(B)Platinum or zinc

(C)Silicon or platinum

- (D)Gold or tungsten
- **14.** Biolistic gun is suitable for (2012)
  - (A) Transformation of plant cells
  - (B)Disarming pathogen vectors
  - (C)DNA finger printing
  - (D)Constructing recombinant DNA
- **15.** In the three steps (a, b, c) of polymerase chain reaction, select the correct step. **2012**)



(A)c—extension in presence of heat stable DNA polymerase

|     | (B)a—annealing with two sets of primers                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------|
|     | (C)b—denaturation at high temperature                                                                                 |
|     | (D)a—denaturation at 50°C                                                                                             |
| 16. | In genetic engineering antibiotics are used (2012)                                                                    |
|     | (A)For keeping cultures free of infection                                                                             |
|     | (B)To select healthy vectors                                                                                          |
|     | (C)As selectable markers                                                                                              |
|     | (D)As sequence where replication starts                                                                               |
| 17. | The colonies of recombinant bacteria appear white in contrast to blue colonies of non-recombinant bacteria because of |
|     | (A)Industrial inactivation of alpha galactosidase in recombinant bacteria                                             |
|     | (B)Inactivation of glycosidase enzyme in recombinant bacteria                                                         |
|     | (C)Non-recombinant bacteria containing beta galactosidase                                                             |
|     | (D)Insertional inactivation of alpha galactosidase in non-recombinant bacteria                                        |
| 18. | DNA fragements generated by the restriction endonucleases in a chemical reaction can be separated by (2013)           |
|     | (A) Electrophoreisi                                                                                                   |
|     | (B)Restriction mapping                                                                                                |
|     | (C)Centrifugation                                                                                                     |
|     | (D)Polymerase chain reaction                                                                                          |
| 19. | Which of the following is not correctly matched for the organism and its cell wall degrading enzyme? (2013)           |
|     | (A)Algae—Methylase                                                                                                    |
|     | (B)Fungi—Chitinase                                                                                                    |
|     | (C)Bacteria—Lysozyme                                                                                                  |
|     |                                                                                                                       |

|     | (D)Plant cells—Cellulase                          |                                |
|-----|---------------------------------------------------|--------------------------------|
| 20. | Eco RI cleaves the DNA strands to produce         | (2013)                         |
|     | (A)Blunt ends                                     | (B)Sticky ends                 |
|     | (C)Satellite ends                                 | (D) <i>ori</i> replication end |
| 21. | During the process of isolation of DNA, chilled e | htanol is added to (2013)      |
|     | (A)Precipitate DNA                                |                                |
|     | (B)Break open the cell to release DNA             |                                |
|     | (C)Facilitate action of restriction enzymes       |                                |
|     | (D)Remove proteins such as histones               |                                |
| 22. | During amplification of gene using PCR, Taq pol   | ymerase is used between (2013) |
|     | (A)Denaturation and annealing                     | 20                             |
|     | (B)Annealing and extension                        |                                |
|     | (C)Annealing and amplification                    | 0                              |
|     | (D)None of above                                  |                                |
| 23. | Which of the following is a cloning vector?       |                                |
|     | (A)DNA of Salmoneall atyphimurium                 |                                |
|     | (B) <sup>Ti</sup> plasmid                         |                                |
|     | (C)Any DNA containing antibiotic resistance gen   | es                             |
|     | (D) <i>Ori</i> minus pBR 322                      |                                |
| 24. | Which of the following is a palindromic sequence  | re? <b>(2013)</b>              |
|     | (A)5' —CGTATG—3'                                  | (B)5'—CGAATG—3'                |
|     | 3'—GCATAC—5'                                      | 3'—CGAATG—5'                   |
|     | (C) 5' —GAATTC—3'                                 | (B)5'—GACTAC—3'                |
|     | 3'—CTTAAG—5'                                      | 3'—TACGAC—5'                   |

| 25. | The restriction enzymes are used in genetic engineering, because (2013)                       |
|-----|-----------------------------------------------------------------------------------------------|
|     | (A)They can cut DNA at specific base sequence                                                 |
|     | (B)They are nucleases that cut DNA at variable sites                                          |
|     | (C)They can degrade harmful proteins                                                          |
|     | (D)They can degrade harmful fragments                                                         |
| 26. | Which vector can clone only a small fragment of DNA? (2014)                                   |
|     | (A)Cosmid                                                                                     |
|     | (B)Baterial artifical chromosome                                                              |
|     | (C)Yeast artifical chromosome                                                                 |
|     | (D)Plasmid                                                                                    |
| 27. | The terms 'microinjection', 'biolistics' and 'disarmed pathogen vector' are related to (2015) |
|     | (A)Bioterrorism                                                                               |
|     | (B)Biosaftey                                                                                  |
|     | (C)Integrated pest management                                                                 |
|     | (D)Integrated pest management                                                                 |
| 28. | Recombinant-DNA technology revolution actually began with the discovery of (2015)             |
|     | (A)Plasmids                                                                                   |
|     | (B)Restrictin endonucleases                                                                   |
|     | (C)Complementary DNA                                                                          |
|     | (D)PCR                                                                                        |
| 29. | Bioreactor is a vessel/device in which (2015)                                                 |
|     | (A) Chemical process involving microorganisms is carried out                                  |
|     | (B)Chemical process involving radioactive substance is carried out                            |
|     | (C)Potentially hazardous microbes are handled                                                 |

|     | (D)Electrochemical processes are carried out                   |                         |                             |        |
|-----|----------------------------------------------------------------|-------------------------|-----------------------------|--------|
| 30. | Which of the following is not correctly matched enzyme? (2015) | for the organis         | m and its cell wall degradi | ng     |
|     | (A)Plant cells—Cellulase                                       |                         |                             |        |
|     | (B)Algae—Methylase                                             |                         |                             |        |
|     | (C)Fungi—Chitinase                                             |                         | X                           |        |
|     | (D)Bacteria—Lysozyme                                           |                         |                             |        |
| 31. | Restriction enzymes are used in genetic engine                 | ering because           | (2015)                      |        |
|     | (A)They can join different DNA fragments                       |                         |                             |        |
|     | (B)They can cleave DNA at a specific target                    |                         | 70°                         |        |
|     | (C)They are nucleases that cut DNA at variable                 | sites                   |                             |        |
|     | (D)They are proteolytic enzymes which can deg                  | grade harmful er        | nzymes                      |        |
| 32. | The toxic protein produced by the Bacillus thur                | ingiensis               | (2015)                      |        |
|     | (A)Cry-protein                                                 | (B)Auxins               |                             |        |
|     | (C)Leg—haemoglobin                                             | (D)Opines               |                             |        |
| 33. | The DNA molecule to which the gene of interes                  | t is integrated fo      | or cloning is called        | (2015) |
|     | (A)Vector                                                      | (B)Template             |                             |        |
|     | (C)Carrier                                                     | (D)Transforme           | r                           |        |
| 34. | The introducing of T-DNA into plants involves                  | (2015)                  |                             |        |
|     | (A)Altering the pH of the soil, then heat-shocking             | ng the plants           |                             |        |
|     | (B)Exposing the plants to cold for a brief period              | I                       |                             |        |
|     | (C)Allowing the plant roots to stand in water                  |                         |                             |        |
|     | (D)Infection of the plant by Agrobacterium tum                 | <mark>refaciens.</mark> |                             |        |

| 35. | The cutting of DNA at specific locations became    | possible with th      | e discovery of | (2015) |
|-----|----------------------------------------------------|-----------------------|----------------|--------|
|     | (A)Probes                                          | (B)Selectable m       | arkers         |        |
|     | (C)Ligases                                         | (D)Restriction e      | nzymes.        |        |
| 36. | Isolation of DNA from a fungal cell involves the   | use of enzyme         | (2016)         |        |
|     | (A)Chitinase                                       | (B)Lysozyme           |                |        |
|     | (C)Eco RI                                          | (D)Hind-II            |                |        |
| 37. | Which of the following is not a feature of the pla | asmids? <b>(2016)</b> |                |        |
|     | (A)Transferable                                    |                       |                |        |
|     | (B) Single-stranded                                |                       |                |        |
|     | (C)Independent replications                        |                       | O              |        |
|     | (D)Circular structure                              | -0                    |                |        |
| 38. | Which of the following is a restriction endonucle  | ease?                 | (2016)         |        |
|     | (A)DNase I                                         | (B)RNase              |                |        |
|     | (C)Hind II                                         | (D)Protease           |                |        |
|     | 0.0                                                |                       |                |        |
|     | SECTION D: CHAPTI                                  | ER-END TEST           |                |        |
|     |                                                    |                       |                |        |
| 1.  | Plasmids are vectors for gene cloning because the  | ney                   |                |        |
|     | (A)Self replicate in bacterial cells               |                       |                |        |
|     | (B)Replicate freely outside bacterial cells        |                       |                |        |
|     | (C)Can be multiplied in culture                    |                       |                |        |
|     | (D)Can be multiplied in laboratories using enzyn   | nes                   |                |        |
| 2.  | Cloning is means of                                |                       |                |        |
|     | (A)Replace original genotype                       |                       |                |        |

|    | (B)Preserve genotype                             |                            |
|----|--------------------------------------------------|----------------------------|
|    | (C)Production of HGH gene in Escherichia coli    |                            |
|    | (D)None of the above                             |                            |
| 3. | Two bacteria most useful in genetic engineering  | g are                      |
|    | (A)Rhizobium and Azotobacter                     |                            |
|    | (B)Escherichia and Agrobacterium                 |                            |
|    | (C)Rhizobium and Diplococcus                     |                            |
|    | (D)Nitrosomonas and Klebsiella                   |                            |
| 4. | Bacterial plasmid contains                       |                            |
|    | (A)RNA                                           | 7.0                        |
|    | (B)RNA + protein                                 | -0                         |
|    | (C)DNA                                           |                            |
|    | (D)Photosynthetic structures                     | O                          |
| 5. | A good vector in genetic engineering is          |                            |
|    | (A)Agrobacterium tumefaciens                     |                            |
|    | (B)Bacillus thuringiensis                        |                            |
|    | (C)Bacillus amyloliquefaciens                    |                            |
|    | (D)Salmonella typhimurium                        |                            |
| 6. | The technique of insertion of a desired gene int | o DNA of plasmid vector is |
|    | (A)Gene splicing                                 | (B)Gene dressing           |
|    | (C)Gene cloning                                  | (D)Gene drafting           |
| 7. | A plasmid                                        |                            |
|    | (A)Lives together with chromosomes               |                            |
|    | (B)Shows dependent assortment                    |                            |

|     | (C)Can replicate independently                |                            |
|-----|-----------------------------------------------|----------------------------|
|     | (D)Cannot replicate                           |                            |
| 8.  | With the help of DNA ligase donor DNA fragmer | nt is joined. It is called |
|     | (A)Molecular cloning                          | (B)Tissue culture          |
|     | (C)Protoplasmic fusion                        | (D)Splicing                |
| 9.  | Advancement i genetic engineering has been po | essible due to discovery   |
|     | (A)Transposons                                | (B)Endonucleases           |
|     | (C)Exonucleases                               | (D)Oncogenes               |
| 10. | Restriction endonucleases are useful in       |                            |
|     | (A)Breaking DNA at specific sites             | 7,0                        |
|     | (B)Creating sticky ends                       |                            |
|     | (C)Both A and B                               | 25                         |
|     | (D)Crossing over                              | 0                          |
| 11. | Endonuclease is employed in                   |                            |
|     | (A)Transcription                              | (B)Translation             |
|     | (C)Genetic engineering                        | (D)DNA replication         |
| 12. | The enzymes which are commonly used in gene   | tic engineering are        |
|     | (A)Restriction endonuclease and polymerase    |                            |
|     | (B)Endonuclease and ligase                    |                            |
|     | (C)Restriction endonuclease and ligase        |                            |
|     | (D)Ligase and polymerase                      |                            |
| 13. | Natural genetic engineer is                   |                            |
|     | (A)Pseudomonas putida                         |                            |
|     | (B)Agrobacterium tumefaciens                  |                            |

|     | (C)Escnericnia coli                               |                            |
|-----|---------------------------------------------------|----------------------------|
|     | (D)Bacillus subilis                               |                            |
| 14. | Genomic DNA library is                            |                            |
|     | (A) Pacing of donor DNA is a collection of vector | s                          |
|     | (B)A collection of gene vectors                   |                            |
|     | (C)Collection of organsims for extracting DNA     |                            |
|     | (D)A collection of literature about DNA           |                            |
| 15. | Bacteria protect themselves from viruses by fra   | gmenting viral DNA wi      |
|     | (A)Endonuclease                                   | (B)Exonuclease             |
|     | (C)Gyrase                                         | (D)Ligase                  |
| 16. | In plant biotechnology, root tumours are induce   | ed by                      |
|     | (A)Rhizobium                                      | 25                         |
|     | (B)Agrobacterium tumefaciens                      | 0                          |
|     | (C)Agrobacterium rhizogenes                       |                            |
|     | (D)Agrobacterium basilis                          |                            |
| 17. | Restriction endonucleases are called so as they   |                            |
|     | (A)Synthesize DNA                                 |                            |
|     | (B)Restrict nuclear activity                      |                            |
|     | (C)Cleave DNA into fragments                      |                            |
|     | (D)Breadk DNA at random                           |                            |
| 18. | Select DNA sequence which could act as a restri   | ction site.                |
|     | $(A)\frac{AACCGG}{TTGGCC}$                        | $(B)\frac{GGTTGG}{CCTTGG}$ |
|     | (C) $\frac{AAGGCT}{TTCCGA}$                       | (D) CTGCAG GACGTC          |

| 19. | Extracthromosomal DNA used as vector in gene cloning is |                                    |
|-----|---------------------------------------------------------|------------------------------------|
|     | (A)Transposon                                           | (B)Intron                          |
|     | (C)Exon                                                 | (D) <mark>Plasmid</mark>           |
| 20. | Electroporation is                                      |                                    |
|     | (A) Making trasient pores in cell membranes to i        | ntroduce gene constructs           |
|     | (B)Fast passage of nutrients through phloem sie         | eve pores by elecytric stimulation |
|     | (C)Opening of stomata by artifical light during n       | ight                               |
|     | (D)Purification of saline water with the help of r      | membrane system                    |
| 21. | Which enzyme is useful in genetic engineering?          |                                    |
|     | (A)DNase                                                | 10                                 |
|     | (B)Amylase                                              | 60                                 |
|     | (C)Lipase                                               |                                    |
|     | (D)Restriction endonuclease                             |                                    |
| 22. | Restriction enzymes are used in genetic engineer        | ering because they                 |
|     | (A)Can join DNA fragments                               |                                    |
|     | (B)Cut DNA at specific base sequence                    |                                    |
|     | (C)Cut DNA at variable was                              |                                    |
|     | (D)Are proteolytic enzymes which degrade harn           | nful proteins                      |
| 23. | Insect tolerant gene from Bacillus thuringiensis        | is introduced using Ti plasmid of  |
|     | (A)Escherichia coli                                     |                                    |
|     | (B) <mark>Agrobacterium tumefaciens</mark>              |                                    |
|     | (C)Haemophilus influenzae                               |                                    |
|     | (D)Arabidopsis thaliana                                 |                                    |

| 24. | . GAATTC is recognition site of restriction endonuclease                                                                                       |                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|     | (A)Hind –III                                                                                                                                   | (B)EcoR-I                                      |
|     | (C)Bam-I                                                                                                                                       | (D)Hae-III                                     |
| 25. | Restriction endonuclease is employed for cuttin                                                                                                | g                                              |
|     | (A)A single stranded DNA                                                                                                                       |                                                |
|     | (B) Double stranded DNA                                                                                                                        |                                                |
|     | (C)RNA fragment                                                                                                                                |                                                |
|     | (D)mRNA                                                                                                                                        |                                                |
| 26. | Restriction enzyme (s) of recombinant DNA techends is/are                                                                                      | nnology that make staggered cuts leavin sticky |
|     | (A)EcoR-I                                                                                                                                      | (B)Hind-II                                     |
|     | (C)Bam HI                                                                                                                                      | (D)All the above                               |
| 27. | 7. Cohen and Boyer isolated an antibiotic resistance gene by cutting out a piece of DNA from a plasmid having antibotic resistance in the year |                                                |
|     | (A)1963                                                                                                                                        | (B)1967                                        |
|     | (C) <mark>1972</mark>                                                                                                                          | (D)1982                                        |
| 28. | Amplification of gene of interest by using PCR m                                                                                               | nay go up to                                   |
|     | (A)0.1 million                                                                                                                                 | (B)1.0 million                                 |
|     | (C)10. billion                                                                                                                                 | (D)1.0 trillion                                |
| 29. | Enzymes necessary for recombinant DNA techn                                                                                                    | ology are                                      |
|     | (A)Endonucleases and polymerases                                                                                                               |                                                |
|     | (B) Restriction endonucleases and ligases                                                                                                      |                                                |
|     | (C)Peptidases and ligases                                                                                                                      |                                                |
|     | (D)Restriction endonucleases and topoisomeras                                                                                                  | res                                            |
|     |                                                                                                                                                |                                                |

| 30. | Read a and b and identify correct choice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|     | a. Agrobacterium tumefaciens causes crown gall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in dicots Statement                          |
|     | b. Agrobacterium tumefaciens enters host throu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gh wound and injuries                        |
|     | (A)b is correct, a is wrong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |
|     | (B)Both a and b are correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |
|     | (C)Both a and b are wrong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
|     | (D)a is correct, b are wrong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| 31. | In genetic engineering, restriction enzymes are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | used for cutting                             |
|     | (A)Bacterial DNA only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B)Eukaryortic DNA                           |
|     | (C)Vrial DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (D)Any DNA fragment                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~·O-                                         |
| 32. | Melting of DNA at 70°C is due to breakdown of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |
|     | (A)Phosphodiester bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B)Hydrogen bonds                            |
|     | (C)Glycosidic bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D)Disulphide bonds                          |
| 33. | Fragments of DNA formed after treatment with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | endonucleases are separated by the technique |
|     | (A)Polymerase chain reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
|     | (B)Souther blotting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |
|     | (C)Colony hybridisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |
|     | (D)Electrophoresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |
| 34. | Plasmids are suitable vectors for gene cloning b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ecause they are                              |
|     | (A) Small circular DNA molecules with their own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | origin of replication site                   |
|     | (B)Small ciruclar DNA molecules which can integrate the control of | grate with host chromosomal DNA              |
|     | (C)Having antibiotic genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |
|     | (D)Able to shuttle between prokaryotic and euk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aryotic cells                                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |

| 35. | dentify the plasmid:                                           |             |
|-----|----------------------------------------------------------------|-------------|
|     | (A)EcoR- I (B)pBR 322                                          |             |
|     | (C)Hind III (D)All of the abov                                 | e           |
| 36. | Automously replicating circular extrachromosomal DNA is called |             |
|     | (A)Chromatin                                                   |             |
|     | (B) <mark>Plasmid</mark>                                       |             |
|     | (C)Palindromic nucleotide sequence                             |             |
|     | (D)Nucleoid                                                    | <b>&gt;</b> |
| 37. | In recombinant DNA technology, the term vector refers to       |             |
|     | (A)Plasmid that can transfer foreign DNA into a living cell    |             |
|     | (B)Cosmids that can cut DNA at specific base sequence          |             |
|     | (C)Plasmids that can join defferent DNA fragments              |             |
|     | (D)Cosmids that can degrade harmful proteins                   |             |
| 38. | Vector for T-DNA is                                            |             |
|     | (A)Salmonell typhimurium                                       |             |
|     | (B)Thermus aquaticus                                           |             |
|     | (C) <mark>Agrobacterium tumefaciens</mark>                     |             |
|     | (D)Escherichia coli                                            |             |
| 39. | What is true of plasmid?                                       |             |
|     | (A)Found in viruses                                            |             |
|     | (B)Contains genes for vital activities                         |             |
|     | (C)Part of nuclear chromosome                                  |             |
|     | (D)Widely used in gene transfer                                |             |

| 40. | Ti plasmid is used for making transgenic plants.    | It is obtained from      |
|-----|-----------------------------------------------------|--------------------------|
|     | (A)Azotobacter                                      |                          |
|     | (B)Agrobacterium                                    |                          |
|     | (C) Rhizobium in leguminous root                    |                          |
|     | (D)Yeast                                            |                          |
| 41. | Tumor inducing plasmid used in producing trans      | sgenci plants is that of |
|     | (A)Escherichia coli                                 |                          |
|     | (B)Bacillus thuringiensis                           | <b>.</b>                 |
|     | (C)Agrobacterium tumefaciens                        |                          |
|     | (D)Stap[hylococcus aureus]                          | 7,0                      |
| 42. | In gel electrophoresis, differential mobility of DI | NA depends upon          |
|     | (A)Helical nature of DNA                            | 25                       |
|     | (B)Double strandard nature of DNA                   | O                        |
|     | (C)Charge and size of DNA                           |                          |
|     | (D)Hydrogen bonding between bases                   |                          |
| 43. | Restriction enzymes are also called                 |                          |
|     | (A)Molecular markers                                | (B)Vectors               |
|     | (C)Carriers                                         | (D) Molecular scissors   |
| 44. | Chemical knives/molecular scissors of DNA are       |                          |
|     | (A)Restriction en donucleases                       |                          |
|     | (B)Polymerases                                      |                          |
|     | (C)Ligases                                          |                          |
|     | (D)Transcriptases                                   |                          |

| 45. | Which one of the following palindromic base se middle by some particular restriction enzyme?                                                                                                   | quences in DNA can be easily cut at about the |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|     | (A)5'GATATG3'                                                                                                                                                                                  |                                               |
|     | 3'5'                                                                                                                                                                                           |                                               |
|     | (B) 5'GATTC3'                                                                                                                                                                                  |                                               |
|     | 3'5'                                                                                                                                                                                           |                                               |
|     | (C) 5'3'                                                                                                                                                                                       |                                               |
|     | 3'5'                                                                                                                                                                                           |                                               |
|     | (D) 5'CGTTCG3'                                                                                                                                                                                 |                                               |
|     | 3'5'                                                                                                                                                                                           |                                               |
| 46. | The enzyme capable of cutting DNA molecule a                                                                                                                                                   | t specificsites is                            |
|     | (A)Nuclease                                                                                                                                                                                    | 5                                             |
|     | (B)Restriction endonuclease                                                                                                                                                                    | 7                                             |
|     | (C)Lipase                                                                                                                                                                                      |                                               |
|     | (D)Ligase                                                                                                                                                                                      |                                               |
| 47  |                                                                                                                                                                                                |                                               |
| 47. | Biollistic technique is used in                                                                                                                                                                |                                               |
| 47. |                                                                                                                                                                                                |                                               |
| 47. | Biollistic technique is used in                                                                                                                                                                |                                               |
| 47. | Biollistic technique is used in  (A)Tissue culture process                                                                                                                                     |                                               |
| 47. | Biollistic technique is used in  (A)Tissue culture process  (B)Hybridisation process                                                                                                           |                                               |
|     | Biollistic technique is used in  (A)Tissue culture process  (B)Hybridisation process  (C)Germplasm conversation process                                                                        |                                               |
|     | Biollistic technique is used in  (A)Tissue culture process  (B)Hybridisation process  (C)Germplasm conversation process  (D)Gene transfer process                                              | (B)Free methylation                           |
|     | Biollistic technique is used in  (A)Tissue culture process  (B)Hybridisation process  (C)Germplasm conversation process  (D)Gene transfer process  The ends of DNA fragments are sticky due to | (B)Free methylation (D)Calcium ions           |

49. Recombinant DNA bearing ampicillin resistance gene is passed in *E. coli*. The latter are spread on agar plates containing ampicillin. Then

(A)Both transformed and untransformed cells die

(B)Both transformed and untransformed cells grow

(C)Transformed recipient cells die and untransforemed cells grow

(D)Transformed recipient cells die and untransformed cell grow

50. The most extensively used bacteria in genetic engineering is

(A)Bacillus (B)Clostridium

**(C)**Escherichia (D)Salmonella