SECTION –A TOPIC WISE QUESTIONS

TOPIC-1: mendel's law inheritance

1	.Read	thae	fol	lowing	statements	and	find	out the	e incorrect	statement/
				\mathcal{C}						

- a) Genetics deals with the inheritance as well as variation of characters from parents to offspring.
- b) Variation is the process by which characters are passed of from parent to progeny
- c) Inheritance is the basis of heredity
- d) Inheritance is the degree by which progeny fro their parents
- e) Human knew from as early as 8000-1000B.C. that one of the causes of variation was hidden in sexual reproduction
- (A) b, d and e(B) a, c and e(C) ba nd d only(D) e only
- 2. gregor mendel conducted hybridization experiments
 - (A) Seven years (1865-1872)
 - (B) Seven years (1856-1863)
 - (C) Seven years (1853-1860)
 - (D) Fourteen years(1853-2860)
- 3. sahiwal cow in ...a... was developed by... b...
 - (A) a—Punjab, b natural selection and domestrication
 - (B) a Haryana, b— natural selection and artificial selection
 - (C) a —Haryana, b artificial selection and domestication
 - (D) a Punjab, b— artificial selection and domestication
- 4. occasionally, a single gene may express more than one effect. This is
 - (A) polygenec ingeritance
- (B) plciotropy

- (C) multiple allelism
- (D) co-diminance

- 5. read the following statements regarding mendelian in heritance and choose the correct option
 - (A) Mendel's experiments had small sample size which gave greater credibility to the data
 - (B) A true breeding line shows a stable trait inheritance and expression for several generations
 - (C) In a dissimilar pair of factors, one member of the pair dominates over the other.
 - (D) A recessive parental trait is expressed only in its heterozygous condition'

Two allelws of a gene are located on homologous sites of homolohous chromosomes

- (A) 2 alone is correct
- (B) 2,3 and 5 are correct
- (C) 1 and 4 are correct
- (D) 1,3 and 5 are correct
- 6. Mendel conducted hybridisaion experiments of garden pea for
 - (A) 4 years

(B) 5 years

(C) 6 years

- (D) 7 years
- 7. Which of the following is not a correct dominant –recissive trait pairs of *pisum saivum?*
 - (A) Axial terminal flower position. Tall- dwarf stem height
 - (B) Yellow-green pod colour. Round wrinkled seed shape
 - (C)Full constricted pod shape, yellow –green seed colour
 - (D)Violet- white flower colour, inflated constricted pod shape

8. Biological unit controlling hered	ity is				
	B) chromosome <mark>D) gene</mark>				
9. Vanations found in offspring are impor	tant component of				
(A) genetics (C) species fization	(B) speciation(D) heredity				
10.Test cross is a cross between					
 (A) Hybrid> dominant parent ((B) Hybrid > recessive parent((C) Hybrid > hybrid (Tt>Tt) (D) All the above 					
11. The term genetics was proposed by					
(A) johnnsen (B) mor (C) mendel (D) bate					
12. A gamete normally contains					
(A) Many alletes of a gene(B)All alleles of a gene(C)Two alleles of a gene(D)One allele of a gene					
13 Branch of biology dealing with heredity and	variation is				
	B) evolution D) genetics				
14 Phenotype of an organism is the result of					
(A)Mulations and linkages(B)Genotype and environment into(C)Cytoplasmic effects and nutirit(D)Environmental changes and sex	ion				

15 Word genetics comes	from		
(A) g	ene	(B) genesis	
(C) ge	enome (D) genomics	
16 Genes controlling seve	en treaits pea stu	died by mendel	were actually located on
(A)	Seven chromos	somes	(B) six chromosomes
(C) fo	ur chromosomes		(D) five chromosomes
17 . pea wrinkling of absence of encym		non-formation	of starch because of the
(A) amylase (C) branchin) invertase (D) diastase	e
18. Father of huma	nn genetics is	C	
(A)curvierf	(B) bateson	
(C) mendel	(L	<mark>)) garrod</mark>	
19. Which is wrong	g about mendel?		
(A) He was	born in 1822	
		carried out his e died in 1884	experiments of 7 years
20.For a given cha	racter, a gamete	is always	
(A) ho © hyb	omozygous orid	(B) p (D) h	<mark>oure</mark> neterozygous

- 21. Gregor johann mendel, the father of agenetics was
 - (A) Austrain monk

(B) british monk

(C) Italian monk

(D) german scientist

Topic:2

Law of dominance, law of segregation, incomplete dominance and co-dominance

22. Genes which code for a pair of contrasting traits are known as

(A) Cistron

(B) allele

(C) exon

(D) intron

- 23. Alleles are
 - (A) Similar forms of different gene
 - (B) Slightly different forms of the different gene
 - (C) Similar forms of the same gene
 - (D) Slightly different forms of the same gene
- 24. In punnett square, the possible gametes are written of two sides, usually the
 - (A) Top row and left columns
 - (B)Top row and right columns
 - (C)Bottom row and right columns
 - (D)Bottom row and left columns
- 25. Punnett square was developed by
 - (A)British zoologist, Reginald C. punnett
 - (B)German botanist, Reginald C. punnett

- (C)Stanford geneticist Reginald C. punnett
- (D)British gent\eticish reginald C. punnett
- 26. Select one word for the statement.

Dominance, co-dominance, incomplete dominance

- a) IfF1resembled both the parents
 - a. IfF1 did not resembled either of the two parents and was in bête\ween the two
 - b. IfF1 resembled either of the two parents
 - (A)C dominance, b-Co dominance, a-incomplete dominance,
 - (B)a-dominance, c -Co dominance, b-incomplete dominance,
 - (C)b- dominance, a-co- dominance, c- incomplete dominance
 - (D)C dominance, a–co- dominance, b-incomplete dominance,
- 27. When a violet flower of unknown henotype is crossed with white flower, the progenies are violet and white in equal proportion. Then read the following statements.
 - i. This is called test cross
 - ii. Unknown flower is homozygous
 - iii. Unknown flower is heterozygous
 - iv. This test is used to determine the phenotype of the plant at f_{2-}
 - v. In test cross, violet or white flower is crossed with the recessive parent instead of self-crossing

Select the incorrect statement:

(A)Iii,iv, v

- (B) ii, iv
- (C) i, ii, v

- (D) ii, iv, v
- 28. "both the characters in a monohybrid cross are recovered as such in the f_2 generation though one of these in not seen at the f_1 stage". This interpretation is based of the
 - (A)First law of mendel
 - (B)Second law of mendel
 - (C)Second set of generalizations
 - (D)Incomplete dominance

29. In case of <i>an</i>	tirrhinum sp. The	recessive trait is seen in progenies due to the
i. ii. iii. iv.	The normal enz Less-efficient e Non-functional No enzyme at a Select the corre (A)Ii, iii	nzyme enzyme
	(C) i, iii	(D) I, ii
30.The proportion	on of 3:1 at the f_2	generation is explained by the
(B)Law of (C)Law of (D)Test cro		rtment ow many are recombinants?
(A)37	7.2%	(B) 62.8%
(C) 3	<mark>37.5%</mark>	(D) 62.5%
	-	d is controlled by one gene. Th has two alleles B and b. as the phenotype, then from this angle allele show
(B)Ind (C)Cd	ultiple allele complete dominar o-dominance olygenic inheritan	
33. In incomplete monohybrid cros		ration which not deviates from the mendelian
(A)Geno	otypic ratio	(B) phenotypic ratio
(C) both	1	(D) either Aor B

34. Which is correct?						
54. WHICH IS COHECT?						
(A)Each bank cross is test cross						
(B) Each test cross is back cross (C) Crossing f with f is called test cross						
(C)Crossing f_2 with f_1 is called test cross (D)Crossing f_2 with either parent is called test cross						
(D)Crossing J_2 with either	parent is cancel test closs					
	ed plant and white flowered plant yielded grey flowered					
plants. The phenomenon is						
(A)Co – dominance						
(B)Pseudo-dominance						
(C)Incomplete dominance						
(D)Epistasis						
36.Mendel proposed something w	vas being stably passed down unchanged from parents to					
offspring called						
(A)Genes	(B) genotype					
(C) gactors	(D) alleles					
37. /tt mates Tt, what will be cha	racteristic of off spring?					
(A)75% recessive	(B) 50% recessive					
(C) 25% recesseve	(D) all dominant					
38.Sexually reproducing organism	ns contribute in their off spring					
(A)All of the genes						
(B)One half of their gene	<mark>s</mark>					
(C)One fourth of their ge	nes					
(D)Double the number of	genes					
39.An allele is dominant if it is ex	expressed in					

(A)Both homozygous and heterozygous states

(B)Second generation

(C)Heterozygous combination (D)Homozygous combination

40. A child of O –	group has B-group father. The gen	notype of father will be
(A) ii	(B) $I^B I^B$	
(c) $I^A I^B$	(d) $I^B i$	
41. Mendel's of pr	rinciple of segregation is based on	separation of alleles during
<u>(</u> 2	A) Gamete formation	
(]	B)Seed formation	
((C)Pollination	(7)
(1	D)Embroyonic development	
42.law of dominar	nce – recessiveness in proved by	
	ck cross	
(B) inc	omplete dominance	
	onohybrid cross	\.O
(D) dih	ybrid cross	
	er with O group child sues AB gro	up for fathership of child. What is
0 1	true?	
	(A) the claim is correct	
	(B) father is true but mother is not	,
	© both parent are false	
(]	E) Mother is true but father's claim	is wrong
	s located on same locus but having	
	(A) multiple alleles	(B) oncogenes
	(C)polygenes	(D) co-dominants
45. A cro	ss between hybrid and its parent is	
	(A) back cross	(B) reciprocal cross
	(C) monohybrid cross	(D) dihybrid cross

- 46. blood grouping in human beings is controlled by
 - (A) 4 alleles in which A is dominant
 - (B) 3 alleles in which A and Bis codominant, are recessive
 - (C) 3 alleles in which none is dominant'
 - (D) 3 alleles in which A is dominant
- 47. sickle cell anaemia is an example of
 - (B)Epistasis
 - (C) Codominance
 - (D)Pleiotropy
 - (E) Incomplete dominance
- 48. heterozygous tall plant is selfed. It produces both tall dwarf plants. This confirms mendel's
 - (A) Law of dominance
 - (B) Law of segregation
 - (C) Law of independent assortment
 - (D) Incomplete dominance
- 49. which of the following cross determines heterozygous of homozogosity?
 - (A) Monohybrid cross
 - (B) Dihybrid cross
 - (C) Test cross
 - (D) Back cross
- 50. the allele which is unable to express its effect
 - (A) Co-dominant
 - (B)Supplementary
 - (C)Complementary
 - (D)Recessive
- 51. alleles are
 - (A) Alternate forms of a gene
 - (B) Pairs of sex chromosomes
 - (C) Homolohous chromosomes

(D) None of the above					
52. incomplete dominance was discovered by					
(A) correns	(B) mendel				
(C) johannsen	(D) bateson				
53. A polygenen inheritance in hum	an beings is				
(A) skin colour	(B) phenylketonuria				
(C) colour blindness	(D) sickle cell anemia				
54. in case of incomplete dominance,	f_2 generation has				
(A) Genotypic ra	ation equal to phenotypic ratio				
(B) Genotypic ra	ation is 3:1				
(C) Phenotypic	ratio in 3:1				
(D) None of the	above				
55 . Human skin colour is polyge	nic trait with each dominant determining a				
part of melanin deposition wl	hile the recessive are coding for no				
melanin. If a very dark skinn	ned person marries a very light skinned				
womer, the chance of a very	dark skinned offspring are				
.(A) 0	(B)1/4				
(C) 5/8	(D) 9/64				
56. how many types of gametes will be produced by individuals of AABbcc					
genotype?					
(A) two	(B) four				
(C) six	(D) none				
57. A pure tall Pea plant is crossed v	with poure dwarf Pea plant. The progeny is				
self-polinated. The ratio of true	breeding tall pea plants of true breeding				
dwarf pea plants shall be					
(A) 2:1 (C) 3:1	(B) 1:1				
(C) 3:1	(D) 1:2				
58. the offspring of mating between two pure breeding strains are called					
(A) hybrid	(B) progeny				
(C) cybrid	(D) heterosis				
59. in heterozygous condition, both	59. in heterozygous condition, both the alleles express in				
(A) colour blindness	(B) AB blood group				
(C) Rh factor	(D) Aand B blood types				

60. when both alleles express their effect o	of being present together, the
(A) dominance	(B) codominance
(C) pseudodominance	(D) amphidominance
61. inheritance of blood group is a comdition	n of
 a) Codominance b) Incomplete dominance c) Multiple allelism d) Dominance (A) A,b 	(B) b, d
(C)a,c and d	(D) b,c
62. the graphical representation to calculate genotypes of offspring in a genetic	
(A) Pedigree analysis (B) Punnet square (C) Chromosome map (D) Genotypic ratio 63. In a polygenic cross Aa Bb Cc * Aa Bb 1:6 'X':20:X:6:1 what is the value of 'X (A) 3 (C) 15 64. children in a family have blood types O are the genotypes of their parents?	Cc, the phenotypic ratio offspring C'? (B) 7 (D) 25
(A) I^A i and I^B i (B) I^AI^B and ii (C) I^BI^B and I^AI^A (D) I^AI^A and I^B i	

Topic 3: inheritance of two genes

Law of independent assortment, chromosomal theory of inheritance, linkage oan decombination

65. read the following statements and find out the incorrect statement.

- a) Though the genotypic ratios can be calculated using mathematical probability, by simply looking at the phenotype of recessive trait, it is not possible to know the genotypic composition.
- b) The $\frac{1}{4}$: $\frac{1}{2}$ ration of TT : Tt : It is mathematically condensable to form of the binomial expression $(ax + by^2)$, that has the gametes bearing genes T and t in equal frequency of $\frac{1}{2}$
- c) Based on his observation of dihybrid crosses mendel proposed two urles that are called principles or laws of inheritance; the first law law of dominance and the second law or law of segregation.
- d) If in test cross, all the progenies shows dominant trait then the unknown parent is heterozygous dominant
- e) ABO blood group are controlled by three alleles I^AI^B and i. I^A and I^B produce a slightly different type of the sugar

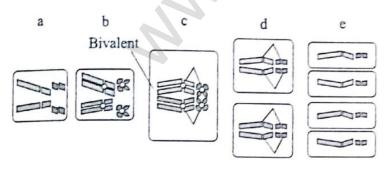
(A_) a,c, and d

(B) b, d and e

(C) a and c only

(D) c and d only]

66. the chromosome movement during meiosis had been worked out by the year


(A) 1865

(B) 1900

(C) 1902

(D) 1891

67. recognize the figure and find out the correct matching.

(A) $a - G_1$, b - S, $c - G_2$, d - M, e - germ cells

(B) a - G_1 , , b- G_2 , c – meiosis Imetaphase, d – meiosis II metaphase, e- germ cells

- (C) a G_1 , , b- G_2 , c meiosis prophase, d meiosis II prophase, C meiosis II telophase
- (E)a G_1 , , b- G_2 , c meiosis anaphase, d meiosis II anaphase, e- germ cells
- 68. who argued that the pairing and separation of pair of chromosomes would lead to the segregation of a pair of factors they carried?

(A) Sutton and boveri

(B) T,H. morgan

(C) Alfred sturtecant

(D) both B and C

69. In the question no.....the srength of linkage between y and w is

(A) higher than w and m

(B) lower than w and m

(C) same as w and m

(D) can't be predicted

70. in mendelian dihybrid cross the yellow and green colour of seed is segregated in the ratio of

(A) 3:1

(B) 10:6

(C) 9:4

(D) 9:7

- 71. read the following statements.
 - i. Morgan carried out several monohybrid crosses in *drosophila* to study genes that were sex linked.
- ii. Morgan attributed that proportion of parental gene combination is less than the non-parental type due to the physical association
- iii. Term recombination was coined by morgan to describe the generation of nonparental bene combinations
- iv. Alfied strutevent used the frequency of linkage between gene pairs of the same chromosome and find genetic map;

Selection how many are incorrect statement

(A) 3 (B) 1 (C) 4 (D) 2

- 72. drosophila melanogaster is found to be very suitable for genetic studies because
 - i. They could be grown in simple synthetic medium in the laboratory
 - ii. They complete their life cycle in about 14 days
 - iii. A single matin could produce a large number of progenies
 - iv. Male and females are clearly distinguishable
 - v. It has few hereditary variations that can be seen with high power microsopes

Select how many correct statement

(A) 5 (C) 2 (D) 3

- 73. if a pea plant produces 2560 seeds during a dihybrid cross between round- yellow and wrinkled greenplant. Them how many seed are wrinkled yellow, round-yellow and wrinkled green respectively
 - (A) 640, 480, 1280
 - (B) 480, 1440, 160
 - (C) 640, 1280, 320
 - (D) 160, 1440, 480
 - 74. in *drosopohila melanoguster*, the henes white and yellow showsa....recombination and genes white and miniature wing shows

.....b.....linkage

(A)
$$a \rightarrow 98.7\%, b \rightarrow 37.2\%$$

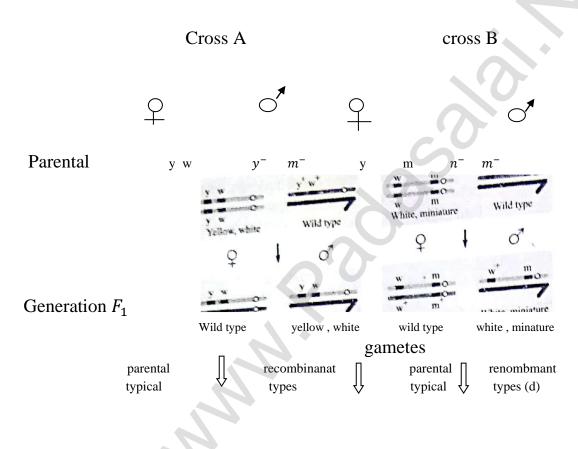
(B)
$$a \rightarrow 98.7\%, b \rightarrow 62.8\%$$

(C)
$$a \rightarrow 1.3\%, b \rightarrow 37.2\%$$

(D)
$$a \to 1.3\%, b \to 62.8\%$$

- 75. carl correns, a rediscoverer of mendel's work belongs to
 - (A) Austria

(B) germany


(c) Holland

(D) Denmark

- 76. who used frequency of recombination between gene pairs on the same chromosome as a measure of distance between genes and mapped their position on chromosome?
 - (A) Alfred Sturtevant
- (B) gregor mendel

(C) correns

- (D) tschermak
- 77. walter Sutton is famous for his contribution to
 - (A) chromosomal theory of ingeritance
 - (B) genetic engineering
 - (C) totipotency
 - (D) quantitative genetics
- 78. recognize the figure and findout the correct matching

(A)
$$a - 37.2\%$$
, $b - 62.8\%$, $c - 1.3\%$, $d - 98.7\%$

(B)
$$b - 37.2\%$$
, $a - 62.8\%$, $d - 1.3\%$, -98.7%

(C)
$$c - 37.2\%$$
, $d - 62.8\%$, a- 1.3%, $b - 98.7\%$

(D)
$$d - 37.2\%$$
, $c - 62.8\%$, $b - 1.3\%$, $ad - 98.7\%$

79. experimental verification of c	hromosomal theory of inheritance was given by					
(A) Thomas hun	<mark>t morgan</mark>					
(B) Gregor johann mendel						
(C) Hugo de vrie	(C) Hugo de vries					
(D) Langdon dov	wn					
80. in morgan's experiments on l	linkage, the percentage of white eyed miniature winged					
renombinatins in f_2 generation	ation is					
(A) 1.3	(B) 62.8					
(C) 37.2	(D) 37.5					
	BB is crossed with, aabb. The genotypic ratio of					
progeny will be						
(A) 9:3:3:1	(B) 1:2:1					
(c) 1:1:1:1	(d) 3:1					
-	mum number of phenotypes would be					
(A) 8	(B) 4					
(C) 2	(D) 16					
83. mendel did not propose						
(A) Dominate	Lawring and S. C.					
(B) Incomplete (C) Segregaries	iominance					
(C) Segregation (D) Independent	assartment]					
(D) Independent	es a, b, c and d in map units is $a-d = 3.5$, $b-c = 1$, $a-b$					
=6, c-d= 1.5 and a-c = 5.find out the sequence of the gene (A) a d c b (B) a c d b						
(C) a b c d	(D) a c b d					
85. match the genetic phenomen						
a. inhibitory gene ratio	1. 9:3:4					
b. complementary gene ra						
c. dihybrid test cross ratio						
d. recessive epiastasis rat						
e. dominant epistasis ratio						
(A) a -5, b-4, c-3, d-2,e-1						
(B) a -4, b-5, c-1,d-2, e-3						
(C) a -1, b-2, c-4,d-3, e-5						
(D) a -2, b-1, c-4,d-5, e-3						

•	-	t with round seeds				
	(TTRR) is crossed with a dwarf wrinklw seeded plant (ttrr).					
f_1 ha	s tall į	plants with rounded seeds. What is the proportion of dwarf plants				
with v	wrinkle	ed seeds n F_2 GENERATION?				
		(A) zero (B) $\frac{1}{2}$				
		$(C) \frac{1}{4}$ (D) $\frac{1}{16}$				
•		st cross ratio is				
(A) 9	:3:3:1	(B) 1:1:1:1				
(C) 3	3:1	(D) 1:1				
88. in me	ndel's	experiments with gardenpea, round seed shape (RR) was dominant				
.(YY)) was d	ominant over green cotyledons(yy) . what are expected phenotypes f_2				
gener	ation F	RRYY * rryy?				
(A)	Only	wrinkled seeds with green cotyledons				
(B)	Only	wrinkled seeds with yellow cotyledons				
(C)	•	round seeds with green cotyledons				
(D)	Rour	nd seeds with yellow cotyledons and wrinkled seeds with green				
co	tyledo	<mark>ns</mark>				
89. which	h of the	e following is correct for dihybrid cross?				
	(A)	1 YYRR. 2 Yyrr, 2 yy Rr, 4 YrRr				
	(B)	1 YYRR. 3 Yyrr, 2 yy Rr, 3 YrRr				
	(C)	3 YYRR. 3 Yyrr, 2 yy Rr, 4 YrRr				
	(D)	1 YYRR. 2 Yyrr, 2 yy Rr, 3 YrRr				
90. which	of the	following is the most suitable medium for culture of drosophila				
melano	gaster	?				
(A) cov	v dung	(B) moist bread				
(C) aga	ar agar	(D) ripe banana				
91. geneti	ic maps	s of chromosome sare based on the frequency of				
	(A)	No – disjunction				
	(B)	Translocation				
((C)	Translocation				
((D)	Genetic recombination				
92. for fi	nding t	the different types of gametes produce by genotype AaBb, it should				
be cros	sed wi	th genotype				
(4	A)AAE	BB (B) aabb				

(C) AaBb

(D) aaBB

- 93. Mendel's law of segregation in applicable to
 - (A) dihybrid cross only
 - (B) both dihybrid and monohybrid crosses
 - (C) monohybrid cross only
 - (D) dihybrid but not monohybrid cross
- 94. The number of henotypes produce whenindividuals genotype' YyRrTt' are crossed with each other is

(A) 4

(B) 45

(C) 28

(D) 27

95. independent assortment can be deduced from

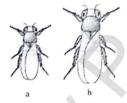
(A) monohybrid cross

(B) test cross

(C) back cross

(D) dihybrid cross

96. lack of independent assortment between two genes A and B would be due to


(A) crossing over

(B) linkage

(C) repulsion

(D) recombination

97. recognize the figure and find out the correct matching

- (A) a- male drosophila, b- female drosophila
- (B) a- female drosophila, b-male drosophila
- (C) a- male butterfly, b-female butterfly
- (D) a- female butterfly, b-male butterfly
- 98. Percentage of recombination between A and B is 9% A and C 17% and B and C 26% . the arrangement of genes would be

(A) A-B-C

(B) A-C-B

(C) B-C-A

(D) B-A-C

99. Self fertilizing tri-hybrid plants from

(A)	Eight different gametes and 64 different zygotes
(B)	Four different and sixteen different zygotes
(C)	Eight different gametes and sixteen different zygotes
(D)	Eight different gamete and thirty two different zygotes
100. genetic map is one th	nat
(A)	Establishes sites of the gene on a chromosome
(B)	Establishes the various stages in gene evoluthion
(C)	Shows the stage during cell division
(D)	Shows distribution of vgarious species in region
101.phenotypic dihybrid	ratio is
(A) 9:3:3:1	(B) 15:1
(C) 9:6:1	(D) 1:2:1
102. phenotypic dihybrid	ratio is
(A) 1:4:6:4:	(B) 15:1
(C) 12:3:1	(D) 9:7
103. out of a population of	of 800 individuals in F_2 generation of a cross between yellow
round and green wrinkled	pea plants, what would be number of yellow and wrinkled
seeds?	
(A) 80	0 (B) 400
(C) 200	O (D) 150
104. what is true of law of	f independent assortment?
(A)	Applicable to all the dominant alleles
(B)	Applicable to all gene s on the same chromosome
<u>(C)</u>	Not applicable to genes present on the same chromosome
(D)	Applicable to all recessive alleles
105. linkage was discove	ered by
(A) Blakeslee	(B) sutton
(C) muller	(D) bateson and punnet

106. sex-linked genes were discovered by

(A) joha	nssen	(B) mendel			
(C) mor	<mark>cgan</mark>	(D) muller			
107. independent assorti	nent is absent in vas	se of			
(A)	Genes located on t	he same chromosome			
(B)	Genes located on homolohous chromosomes				
(C)	Gene slocated on a	non-homologous chromosomes			
(D)	All of the above				
108. source of mendelia	an recombination is				
(A)	Linkage				
(B)	Independent assor	t <mark>ment</mark>			
(C)	Mutations				
(D)	Dominant traits				
109. number of henoty	pes found in F_2 prog	eny of a dihybrid cross is			
(A) 9	(B)	6			
(C) 3	(D)	1			
110. linkage in plants v	was first shown in				
(A) zea ma	ys	(<mark>B) lathyrus odoratus</mark>			
(C) oemoth	era lamarckiana	(D) pisum sativum			
111. if there is comple	te linkage in F_2 gen	eration			
(A	A) Parental typ	es and recombinatnts appear in equal ratio			
(H	Recombinar	nts are less than parental types			
(0	C) Recombinar	nts are more than parental types			
(I	There will b	<mark>e only parental types</mark>			
112.mendel did not ob	serve linkage due t)			
(A) Mutation				
(B) Synapsis					
(C) Synapsis					
(D) Independent assor	<mark>tment</mark>			
113. In a dihybrid cross AABB \times aabb, F_2 Progency of AABB, AABb, AaBB and					
AaBb occurs in the ration of					

(A) 1:1:1:1

(B) 9:3:3:1

(C) 1:2:2:1

(D) 1:2:2:4

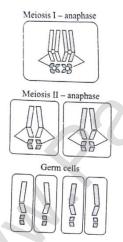
114. crossing over in diploid organism is responsible

- (A) Dominance of genes
- (B) Linkage between genes
- (C) Recombination of linked genes
- (D) Segregation of alleles

115. mendel's laws of heredity can be explained with the half of

- (A) mitosis
- (B) meiosis
- (C) cloning
- (D) both A and B

116. number of phenotypes possible from AaBbCc × AaBbCc is


(A) 16

(B) 9

(C) 8

(D) 4

117. the following figure shows

- (A) Independent assortment of genes
- (B) Linkage
- (C) Chromosome theory of sex determination
- (D) Independent segregation of genes

118. genotypic raton of a dihybrid cross is

- (A) 12:3:1
- (B) 15:1
- (C) 1:2:1

(D)	1 2 2 1	1 .
())	1 . / . / . / 1 .	1
(D)	1:2:2:4:	1.4.1.4.1

119. mendel 's law of independent assortment is based of F_2 ratio of

(A) 1:2:1

(B) 9:3:3:1

(C) 2:1

(D) 3:1

120. mendel 's work was rediscovered in

(A) 1756

(B) 1865

(C) 1900

(D) 1910

121. mendel enunciated principles of inheritance

(A) two

(B) three

(C) four

(D) five

122. cross AABb * aaBb yields AaBB : AaBy : Aabb: aabb

Offspring in the ratio of

(A)0:3:1:1

(B) 1:2:1:0

(C) 1:1:1:1

(D) 1:2;1:1

123. read the following statements

- I. In haplo-diploid sex determination system, the males do not have father and thus cannot have soons, but have grandfather and can have grandsons.
- II. In honey bee, workers are developed by the unfertilized egg by means of parthenogenesis
- III. In human skin colour, the effect of each allele is additive
- IV. In XO type sex determination , male have half number of chromosome than the female

Select the incorrect statement

(A) i, iii

(B) ii, iii

(C) ii, iv

(D) i, iv

124.in certain taxon of insects some have 32 chromosome and the others have 31 chromosomes. The 31 and 31 chromosome – bearing organisms are

(A) male and females, respectively

(B) females and males, respectively

- (C) drones and males, respectively
- (D) males and drones, respectively

125.identify the wrong statement

- (A) Human males have one sex chromosome much shorter than others
- (B) In domesticated fowl, sex of progeny depends upon type of sperm that rertilizes the egg
- (C) In male grasshopper, 50% of sperms have no sex chromosones
- (D) Female birds produce two types of gametes based on sex chromosome

126. read the following statements and find out the correct statement.

- a) The sex determination in honey bee is based on the number of sets of chromosomes an individual receives
- b) An offspring formed from the union of a sperm and an egg develops as a female(queen or worker), and an unfertilized egg develops as a male drone by means of parthenogenesis
- c) The females are diploid having 32 chromosomes and males are haploid, i.e., having 16 chromosomes
- d) This is called as haplo –diploid sex determination system and has special characteristic features such as the male produce sperms by mitosis they do not have father and thus cannot have sons, but have a grandfather and can have grandsons.
 - (A) a and b
 - (B) b,c and d
 - (C) a,c and d
 - (D) a,b,c and d
- 127. match the columns I and II, and choose the correct combination from the options given.

Column I	column II
a. XO type	1. Male heterogamety
b. XY type	2. Female
c. ZW type	

(A) a-1, b-2, c-2

(B) a-2, b-1, c-1

(C) a-1, b-1, c-2

(D)) a-2, b-2, c-1

- 128. the initial clue about the genetic chromosomal mechanism of sex determination can be traced bank to some of the experiments carried out in
 - (A) humans
- (B) birds

(C) plants

- (D) insects
- 129.choose the wrong statement.
 - (A) In grasshoppers, besides autosomes, males have only one X chromosome whereas females have a pair of X –chromosomes.
 - (B) In *drosophila*, males have one X –and one Y –chromosome whereas females have a pair of x- chromosome besides autosomes.
 - (C) In birds, females have one Z and one W Chromosome, whereas males have a pair of Z –CHROMOSOMES BESIDES AUTOSOMES
 - (D) Insects with XO type of sex determination, all sperms have X Chromosome besides autosomes.
- 130. ZW, XO, XY and haplo-diploid typeof sex determination in seen in respectively
 - (A) Parrot, cockroach, *melandrium* and honey bee
 - (B) Aptenodytes, grasshopper, drosophila and apis
 - (C) Pavo, grasshopper, man and honey bee
 - (D) All of the above
- 131. sex of child is due to
 - (A) Size of ovum
 - (B) Health of father
 - (C) Sex chromosome of father / sperm
 - (D) Sex chromosome of mother / ovum
 - 132. sex is determined in human beings
 - (A) By ovum
 - (B) At time of fertilization
 - (C) 40 days after fertilization
 - (D) Seventh to eight week when genital differentiate in foetus 133. when certain character is inherited only through female parents, it probably represents
 - (A) Multiple plastid inheritance

- (B) Cyloplasmic inheritance
- (C) Incomplete dominance
- (D) Mendelian nuclear inheritance
- 134. XY sex chromosomes were discovered by
 - (A) gregor johann mendel
- (B) M.J.D. white

(C) nettie stevens

- (D) Robert brown
- 135.genes located Y chromosomes are
 - (A) mutant genes
- (B) sex linked genes
- (C) autosomal gene s
- (D) holandric genes
- 136. A strong mutagen is
 - (A) cold

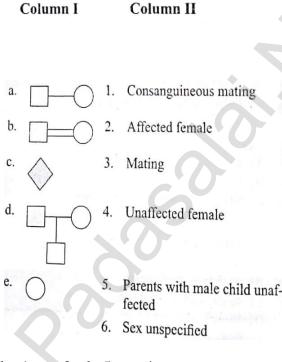
(B) heat

(C) water

- (D)X -ray
- 137. recognize the figure and find out the correct matching

- (A) A-male, b-female
- (B) A-female, b-male
- (C) Cant be predicted
- (D) Both A and B are possible
- 138. what is true in case of honey bee?
 - (A) Male diploid, female haploid
 - (B) Male haploid, female diploid
 - (C) Male haploid, female haploid
 - (D) Male haploid, female haploid

139. in human zygote male sex is determ	ined by
(A)	Strength of father
(B)	Nutrition of mother
(C)	Composition of required chromosome pair
(D)	None of the above
140. which pteridophtye has the maximu	m chromosome number?
(A)Ophioglossum retucula	<mark>atum</mark>
(B)Azolla pinnata	
(C)Lycopodium cernum	. (7)
(D)Selaginella apus	
141. plant in which chromosomal basis	of sex determination ws discovered first is
(A) rumex	(B) melandrium
(C) coccinia	(D) sphaerocarpus
142. drosophila melanogster possesses	\' O'
(A)3 pairs autosom	es + 1 pair sex chromosomes
(B) 2 pairs autosor	mes + 2 pair sex chromosomes
(C) 1 pairs autosom	es + 3 pair sex chromosomes
(D) 2 pairs autosom	nes + 1 pair sex chromosomes
143. foetal sex can be determined from	cells present in amniotic fluid by looking for
(A) Kinetochi	res
(B) Chiasmat	a
(C) <mark>Barr bodi</mark>	<mark>es sex chromosomes</mark>
(D) Autosome	es
144. genetic identity of human male is	known by
(A) nucleolus	(B) cell organelles
(C) autosomes	(D) sex chromosomes
145. broadly genetic disorder may be g	grouped into two categories as
(A) Mendelian disorders a	<mark>nd chromosomal disorders</mark>
(B) Autosomal disorders a	nd sex linked disorders
(C) Recessive disorders an	nd dominant disorders
(D) Aneuploidy and polyp	oidy
146. sickle cell anemia is an example	of
I. Mendelian disorder	
II. Genetic disorder	
III. Chromosomal disor	der


- IV. Inborn error of metabolism
- V. Point mutation'
- VI. Frame shift mutation
- VII. Sex linked disease
- VIII. Recessive disorder
 - IX. Qualitative disorder
 - X. Quantative disorder
 - XI. Autosomal disorder
 - (A) I, ii, iv, v, viii, x, xi
- (B) i, v, viii, ix, xi
- (C) i,ii,v, viii, ix, xi
- (D) ii, iii, v, vii, ix
- 147. the inheritance pattern of a gene over generation s among humans is studied by the character studied in the pedigree analysis is equivalent to
 - (A) qualitative trait
- (B) quantative trait
- (C) pleotropic trait
- (D) mendelian trait
- 148. in sickle cell anaemia, the sequence of amino acids from first to seventh position of β-chain of hemoglobin S (HbS) IS
 - a) His, Leu, Thr, Pro, Glu, Val, Val
 - b) Val, His, Leu, Thr, Pro, Glu, Glu
 - c) Glu, His, Leu, , Pro, Val, Glu
 - d) Val, His, Leu, Thr, Pro, Val, Glu
- 149. in this figure which of the progeny is younger?

- (A) 3
- (B) 4
- (C) 2
- (D) 1

150. whic	h of the following i	s not a mendelian disorder?
(A) t	urner's syndrome	(B) thalassemia
(C) l	haemophilia	(D) cystic fibrosis
151. which	is incorrect regardi	ng pedigree analysis?]
reces (B (C (D	ssive.) It confirms that to the position of the property of the position of	
(A) (C) I 154. which (A) g	affected with pher	nylketonuria lack an enzyme that converts amino acid nylalanine into (B) proline (D) tyrosine is not hereditary? (B) gametic (D) germinal

- 155. point mutation may occur due to
 - (A) Gain of a segment of DNA
 - (B) Deletion of segment of DNA
 - (C) Alteration in DNA sequence
 - (D) Change in a single base pair of DNA
- 156. Match the columns and choose the correct option

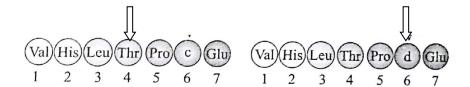
- (A) a-3, b-1, c-2, d-5, e-4
- (B) a-2, b-1, c-6, d-3, e-4
- (C) a-3, b-4, c-1, d-5, e-2
- (D) a-3, b-1, c-6, d-5, e-4
- 157. mutations are induced mostly by
 - (A) UV radiations
- (B) polyploidy

(C) alpha rays

- (D) gamma rays
- 158. the technique employed in human genetic vounselling is
 - (A) serological technique
- (B) polyploidy

(C) pedigree analysis (D) amniocentesis 159. which is not a mutagen? (A) acetic acid (B) gamma rays (C) nitrous acid (D) hydroxylamine 160. pattern bald ness, moustaches and beard in human male are example of sex – linked traits (A) sex differentiating traits (B) sex limited traits (C) sex determining traits (D) 161. the symbol of empty circles used in pedigree analysis represents *(A) normal females (B) normal males (C) affected females (D) affected males 162. muller was awarded nobel prize in 1946 for his work of protein synthesis (A) chemistry of nucleic acids (B) (C) cancer X – ray induced mutations (D) **Topic 6: mendelian disorders**

- 163. A" disease which shows its transmission from unaffected carrier female to some of the male progeny". Find the nature of the trait
 - (A) autosomal recessive
- (B) autosomal dominant
- (C) sex linked recessive
- (D) sex linked dominant
- 164. which is incorrect about colour blindness?
 - (A) This due to defect in either red or green once cone of eye resulting in failure to discriminate between red and green colour
 - (B) A daughter will not normally be colour blind, unless her mother is a carrier and her father is colour blind.


- (C) If female has Xc X then it is called carreer but when male has then Xc Y then it will be colour blind
- (D) The son of a woman who carries the gene has 25 per cent chance of being colour blind.
- 165. which incorrect about thalassemia?
 - (A) This blood disease is transmitted from parents to the offspring when both the partners are unaffected carrier for the gene(or *heterozygous*.)
 - (B) The defect due to either mutation or deletion which ultimately results in redudced rate of synthesis of one of the globin chains that make up haemoglobin/
 - (C) Thalassemia differs from sickle cell anaemia in that the former is a qualititative problem of synthesizing an incorrectly funtionning globin while the latter is a quantitative problem of synthesizing too few globin molecules/
- 166. read the following statements and find out the incorrect statement
 - (A) Alpha thalassemia is controlled by two closely linked genes HBA 1 and HBA 2 on chromosomes 16 of each parent and it is observed due to mutation or deletion of one or more of the four genes.
 - (B) Beta thalassemia is controlled by a single gene HBB oc chromosome 11 of each parent and occurs due to mutation of one or both the genes.
 - (C) Beta thalassemia is also called cooley's anemis\a a or thalassemia major
 - (D) None of the above
- 167. recognize the figrer and find out the correct matching.

Mrna --- GAG ---

Mrna ---- GUG ---

(A) C- clu, d- val, a- normal Hn (A) gene, b – sickle cell Hb (S) gene.

- (A) c—Glu, d—Val, a—normal Hb (A) gene, b—sickle cell Hb (S) gene
- (B) c—Glu, d—Val, b—normal Hb (A) gene, a—sickle cell Hb (S) gene
- (C) d—Glu, c—Val, a—normal Hb (A) gene, b—sickle cell Hb (S) gene
- (D) c—Glu, d—Val, b—normal Hb (A) gene, a—sickle cell Hb (S) gene

168. how many types of genotypes are possible in the inheritance pkattern of sickle cell anaemia?

(A) 1

(B) 2

(C) 3

(D) 4

169. which of the following genotype will show ithe disased

Condition in sickle cell anaemia?

 $(A)Hb^AHb^A$

(B) Hb^AHb^S

 $(C) Hb^SHb^S$

- (D) both B and C
- 170. Sickle cell anaemia is controlled by
 - (A) single allele
 - (B) single pair of allele
 - (C) multiple allele
 - (D) polygene
- 171. heterozygous (Hb^AHb^S) undividuals have how much per cent of probability of trensmossion of the mutant gene to progeny?
 - (A) 25%

(B) 50%

(C) 75%

- (D) 100%
- 172. down's syndrome and truner's syndrome are due to respectively
 - (A) monosomec and nullisomic conditions
 - (B) trisome and monosomic conditions
 - (C) monosomic and trisomic conditions
 - (D) trisomic and tetrasomic conditions
- 173. match the columns

	Column I		column II
a. Monopploidy		1.	2n-1
b. Monosomy		2.	2n + 1
c. Nullisomy		3.	2n-2
d. Trisomy		4.	2n-2
e. Tetrasomy		5.	n
		6.	3n

- (A) a -6, b -5, c-3, d -4, e-2
- (B)a-5, b-2, c-4, d-1, e-3
- (C)a 5, b 1, c 4, d 2, e 3
- (D)a -1, b -5, c-3, d -2, e-4

- 174. read the following statements and choose the correct option
 - failure of segregation of chromatids during cell division results in aneuploidy.
 - ii. Chromosomal disorders are mainly determined by alteration or mutation in an single gene.
 - iii. Thalassemia and cystic fibrosis are mendelian disorders
 - iv. Sickle cell anaemia is an X –linked trait
 - v. Haemophilia is an autosome linked recessive desease.
 - (A) I and III alone are correct
 - (B) I, III k and IV alone are correct
 - (C) III and IV alone are correct
 - (D) II and IV alone are correct
 - 175. choose the wrond\g statements.
 - (A) failure of segregation of chromatids during cell division results in aneuploidy
 - (B) additional copy of 'X' chromosome in males results in klinefelter's syndrome.
 - (C) closely located genes in a chromosome always assort independently resulting in recombinations.
 - (D) failure of cytokinesis after DNA replication result in polypoidy
- 176. select the autosomal dominant, autosomal recessive, sex linked recessive and Y sex linked recessive disorder respectively.
 - (A) myotonic dystrophy, SCA, haemopbilia and hyper trechosis
 - (B) huntingron 's chorea, PKU (Phenylketonuria),
 - (C) polydactlyly, thalassemia G –6—P Dehydrogenase deficiency and long hairs of pinna
 - (E) all of the above

- 177. numerical change in chromosome number which is not the exact multiple of haploid genome is
 - (A) triploid

- (B) allopolyploid
- (C) autopolyploid
- (D) aneuploid
- 178. A colour blind man (X^C, Y) has a colour blind sist $(X^C X^C)$ and a normal brother (XY), what is the genoty of father and mother?
 - (A) $X^C Y$, $X^C X^C$
- (B) $X^{C}Y, X^{C}, X$

(c) XY, $X^{C}X^{C}$

- (D) XY, $X^C X$
- 179. Which genotype will indicate colour blindness in male?
 - $(A) X^{C} Y$

(B) $X^{C}Y^{C}$

 $(C) X^{C} X^{C}$

- (D) $A^{C}A^{C}$
- 180. A woman with two genes, one for haemopjilia and on for color blindness on one of its X chromosomes, marries a normal man. The progeny will be
 - (A) All sons haemophilic and colour blind
 - (B) 50% haemophilic and colour blind sons and 50% normal sons
 - © All daughters haemophilic and colour blind
 - (D) 50% haemophilic daughters and 50% colour blind daughters
- 181. Match the columns I ans II, and choose the correct combination from the options given.

Column I

- a. Pleiotropy
- b. Polygenic inheritance
- c. Autosomal recessive disorder
- d. Y sex linked disorder
- e. Sex influenced character
- f. Sex limited character
- (A) a -6, b -5, c-3, d -4, e-2
- (B) a -5, b -2, c-4, d -1, e-3
- (C) a -5, b -1, c-4, d -2, e-3
- (D) a -1, b -5, c 3, d -2, e 4

Column II

- 1. Baldness
- 2. Pattern baldness
- 3. Thalassemia
- 4. Phenylketonuria
- 5. Hypertrichosis
- 6. Human ski colour

- 182. Down's syndrome is due to trisomy of 21st chromosome caused by
 - (A) Nondisjunction during egg formation
 - (B) Nondisjunction during sperm formation

(D) E	Either A or B	
183. Mental reta	rdation in men asso	ciated with sex chromosome abnormality is due
to		
(A)	Increase in X-cor	<mark>nplement</mark>
(B)	Decrease in X-cor	mplement
(C)	Large increase in	Y-compliment
(D)	Moderate increase	e in Y-complement
184. How many	genomes are preser	nt in a typical green plant cell?
(A) Ten	(B) T	<mark>'wo</mark>
(C) Five	(D) T	Three
185. Monosomic	es are	
(A) n	(B) 2	n + 1
(C) 2n - 2	(D) 2	<u>n – 1</u>
186. First child of	f a normal pigment	ed couple is albino. The possibility of second
	child bein	ng an albino is
(A) 25%	(B) 5	0%
(C) 75%	(D) 1	00%
187. Albinism is	due to non-synthesi	is of melanin on account of absence of
(A) Melana	ase	(B) Luciferase
(C) Tyrosii	nase 🔪 🐧	(D) Lysine
188. In albinism,	the absence of which	ch pigment makes the skin and hair light coloured
(A) Melani	<mark>n</mark>	(B) Carotine
(C) Hemog	globin	(D) Chlorophyll
	oria of England was	
(A) Haemo	philic carrier	(B) Colour blind
(C) AIDS p	patient	(D) Deaf
190. If haploid ch	nromosome number	is 10, the monosomic number shall be
(A) 9		(B) 18
(C) 10		(D) 19
		uman are carried by
(A) Mother	r	(B) Father

© Addition of extra chromosome during mitosis of zygote

(C) Both	(D) Abnormal sex
192. Mental retar	dation in men associated with sex chromosome abnormality is due to
(A)	Glumatic acid by valinen $\alpha - chain$
(B)	Glumatic acid by valinen $\beta - chain$
(C)	Valine by glumatic acid in $\alpha - chain$
(D)	Valine by glumatic acid in β – <i>chain</i>
193. In humans,	Philadelphia chromosomes is formed by reciprocal translocation between chromosomes
(A) 9 and 2	
(C) 9 and 2	· · · · · · · · · · · · · · · · · · ·
(C) 7 and 2	(D) 20 and 10
194. Mental retarc	lation in men associated with sex chromosome abnormality is due to
(A)	Sex-linked recessive
(B)	Sex-linked dominant
(C)	Autosomal character Sex-limited character
(D)	Sex-innited character
195. Sex-linked t	raits are generally
(A) Lethat	(B) Recessive
(C) Domin	ant (D) Pleiotropic
196. Tay sach's d	lisease is due to
(A)	Sex linked recessive gene
(B)	Sex linked dominant gene
(C)	Autosomal dominant gene

(D) Autosomal recessive gene

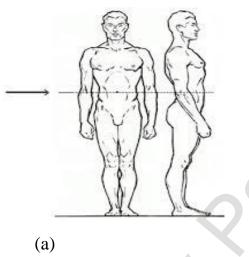
197. Wilson dete	cted colour blindn	ess in		
(A) 1921		(B) 1	911	
(C) 1910		(D) 1	914	
198. The Christma	as disease patient l	acks an	tihaemophili	c
(A)	Homogentisic ac	id oxida	ase	
(B)	Factor VIII			
(C)	Factor XI			(7)
(D)	Factor IX			
199. Ishiara chart	s are used by opha	athalmo	logists for de	etecting
(A)eye infe	ection	(B) night blin	dness
(C) colour	blindness	(D) finger prin	nts
born	e infections desea	ise	90	ntial savior from a mosquito
(A) thalass (C) leuken			B) sickle cell D) pernicious	
201. Christr	mas disease is anot	ther nar	me of	
	(A) sleepin	g sickn	ess	(B)_ down's syndrome
	(C) hepati	tis		(D)haemophilia B
202. Acolou	ur blind person car	not dis	tinguish	
	(A) red and green	1	(B) green an	nd blue
	(C) yellow and v	vhite	(D) black an	nd yellow
203. albinis	m is a result of ina	bility o	f the system	to convert amono acid
	(A) alanini	(B) ta	ryptophan	

© lysine	(D) phenyl	lalanine e e e e e e e e e e e e e e e e e e
204. genes for colour	blindness/sex linked	traits are located on
	(A) X –chromosome	
	(B) Y – chromosome	
	(C) x or Y – chromo	
	(D) both X and Y - cl	
205. phenyldetonuria		nused by a defect in metabolism of
1 0	(A) fatty acids	
	(C) amino acids	
206. Philadelphia chr		atients suffering from
•	(A) leukemia	(B) rickets
	© hepatitis	(D) albinism
207. A male human is	s heterozygous for au	tosomal genes A and B . he is also
		nophilic gene h. what proportion o
	sperms will carry abl	1?
	(A) 1/8	(B) 1/32
	(C) ½	(D) 1/16
208. recessive gene p	resent on one X – chr	romosome of human will be
	(A) lethal	(B) sub –lethal
	(C) expressed in mal	les (D) expressed in female
209. haemophilia is a	genetic disorder in w	hich
	(A) blood clots in blo	ood vessels
	(B) there is delayed o	coagulation of blood
	(C) blood fails to coa	agulate
	(Dblood cell count fa	alls
B		
210. Wilson disease	is associated with abr	normal metabolished of
	(A) iron (B)	potassium
	(C) copper (D)	-
211. melanuea (blacl		abnormal catabolism of
`	(A) alanine	(B) tyrosine
	(C) proline	(D) tryptophan
	_	· -

212. which is not an X -	- linked recessive desease	?
(A)	<mark>) β - thalassemia</mark>	
(B)	haemophilia	
(C) colour blindness	
(D)) glucose 6 – phosphate de	ehydrogenase deficiency
213. Haemophila is mor	re common in male sbecau	ise it is a
(A)) recessive character carri	ed by Ychromosome
)dominant character carri	
) dominant trait carried by	
) recessive trait carreed by	
214. trisomy has chrome	·	
) 2n -1	(B) 2n-1-1
· /) 2n+1+1	(D) 2n+1
,	come is human is caused b	vy .
	(A) trisomy of 21 st chro	7
(B)	less of half of short arm	
) loss of half of long arm	
) fertilized of an XX egg b	
	erm.	
216. A Colour blind r	nother and normal father	would have
(A)	Colour blind sons and n	ormal / carrier daughters
(B)	Colour blind sons and da	nughters
(C)	All colour blind	
(D)	All normal	
To	opic 7: chromosome diso	orders
	l disorders are caused due	
(A)	Absence of one or more	chromosome
(B)	Excess of one or more c	hromosome
(C)	Abnormal arrangement of	of one or more chromosome
(D)	All of the above	
218. polyploidy con	dition is often seen in	
(A	A) animals	(B) humans
((C) plants	(D) birds

- 219. chromosomal condition of down's syndrome is
 - (A) Allosomal hypoaneuploidy
 - (B) Autosomal aneuploidy
 - (C) Allosomal hypouneuploidy
 - (D) Partial autosomal deletion
- 220. which chromosomes condition is Jacob syndrome?

$$(A) 44 + XO$$


(B)
$$44 + XXY$$

$$(c) 44 + XYY$$

$$(D0) 45 + XYY$$

221. Recognise the figure and find out the correct match

The elbows line up with the navel

(b)

- (A) $a-down\ s\ syndrome\ ,\ c-klinfelter\ 's\ syndrome\ ,\ b-turner's\ syndrome$
- (B) c down s syndrome, a klinfelter 's syndrome, b turner's syndrome
- (C) $b-down\ s\ syndrome$, c-klinfelter 's syndrome, a-turner's syndrome
- (D) $c-down\ s\ syndrome$, $b-klinfelter\ 's\ syndrome$, $a-turner\ 's\ syndrome$

222.	chromosome	number	of d	lown '	S	syndrome /	monogo	lism

(A) 46

(B) 47

(C) 45

(D) 23

223. gynaeomastia is a symptom of

- (A) down 's syndrome
- (B) klinefelter 's syndrome
- (C) turner 's syndrome
- (D) haemophilic syndrome'
- 225. pick out the correct statements.
 - a. Haemophilia is a sex linked recesseve character
 - b. Down 's syndrome is due to aneuploidy
 - c. Phenylketonuria is an autosomal dominant gene disorder
 - d. Phenylketonuria is an autosomal recesseve gene disorder
 - e. Sickle cell anaemia is an X linked recessive gene disorder
 - (A) a, b, d, correct
 - (B) a, c, e correct
 - (C) a, c correct
 - (D) b, e correct

226. epicanthus skin fold above the eyes and transversepalmer crease are typical symptoms of

- (A) cri du chat
- (B) klinefilter 's syndrome
- (C) down 's syndrome
- (D) turner 's syndrome

227. A MONOSOMIC (2N-1) abnormality in human is

- (A) klinefilter 's syndrome
- (B) turner 's syndrome
- (C) edward's syndrome
- (D) down 's syndrome

228. the chromosomal pattern of individual is shown her this individual is suffering from

(A)down 's syndrome

- (B) turner 's syndrome
- (C) klinefilter 's syndrome
- (D) edward's syndrome
- 229. frequency of down's syndrome increase when maternal,age is
 - (A) below 35 years
 - (B) above 35 years
 - (C) at the time of first pregnancy
 - (D) after bearing three children
- 230. A mother afficted ;by down's syndrome caused by an extra copy of chromosome 21. Father is normal. Percentage of offspring affected by the disorder would be
 - (A) 100 %

(B) 75 %

© 50 %

(D) 25 %