Exercise 2(Going step-by-step)

Acid and Bases

1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ionises as
a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longleftrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}^{+}$
b) $\mathbf{2} \mathbf{C}_{2} \mathbf{H}_{5} \mathrm{OH} \longleftrightarrow \mathbf{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{2}+\mathbf{C}_{2} \mathbf{H}_{5} \mathrm{O}^{-}$
c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longleftrightarrow \mathrm{C}_{2} \mathrm{H}_{5}^{+}+\mathrm{OH}^{-}$
d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{--}+\mathrm{H}_{3} \mathrm{O}^{+}$
2. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Ona}$ is a \qquad in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
a) Strong base
b) Strong acid
c) Weak acid
d) weak base
3. $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is a
a) Strong base in NH_{3}
b) weak base in NH_{3}
c) Strong acid in NH_{3}
d) weak acid in NH_{3}
4. Select the correct statement(s).
a) Arrhenius theory isrestricted to aqueous solution
b) Franklin's theory is applicable also to other ionisable
c) Both a\&b
d) None of the above
5. In the following equilibrium,
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}$
a) Arrhenius acid-base concept is observed
b) Franklins acid -base concept is observed
c) Both $a \& b$
d) None of the above
6. Consider the following reactions,
$\mathrm{A}: \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \longleftrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
$\mathrm{B}: \mathbf{H F}(\mathbf{a q})+\mathrm{Cl}^{-}(\mathbf{a q}) \longleftrightarrow \mathrm{HCl}(\mathbf{a q})+\mathrm{F}^{-}(\mathbf{a q})$
$\mathrm{C}: \mathrm{HF}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \longleftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{F}^{-}(\mathrm{aq})$
$\mathrm{D}: \mathrm{HSO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \longleftrightarrow \mathrm{HCN}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
Reactions proceeding to the right are
a) A, B
b) C,D
c) A, C
d) B, D
7. Conjugate base of H_{2} is
a) H^{+}
b) $\mathrm{H}_{3}{ }^{+}$
c) \mathbf{H}^{-}
d) $\mathrm{H}_{3}{ }^{-}$
8. Conjugate base of $\mathrm{HO}_{2}-$ is
a) O_{2}^{-}(superoxide ion)
b) $\mathrm{H}_{2} \mathrm{O}_{2}$
c) $\mathbf{O}_{2}{ }^{2-}$ (peroxide ion)
d) $\mathrm{O}_{2}{ }^{+}$
9. In the following
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3}+\mathrm{HCO}_{3} \longleftrightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2}+\mathrm{H}_{2} \mathrm{CO}_{3}$
(A)
(B)
(C)
(D)

Species behaving as Bronsted- Lowry acids are
a) (A), (D)
b) (B), (C)
c) (B), (D)
d) (A), (C)
10. Which is Bronsted-Lowry acid as well as Arrhenius acid?
a) H_{2}
b) $\mathrm{HCO}_{3}{ }^{-}$
c) NH_{3}
d) $\mathrm{NH}_{2}{ }^{-}$
11. Following reaction,

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \longleftrightarrow \mathrm{HCN}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})
$$

Proceeds in
a) Forward direction
b) backward direction
c) In both sides equally
d) can't be predicted
12. Out of the following, amphiprotic species are
I: $\mathrm{H}_{2} \mathrm{PO}_{2}{ }^{-}$
II: $\mathrm{HPO}_{3}{ }^{2-}$

III: $\mathrm{HCO}_{3}{ }^{-}$
IV: $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$
$\mathrm{V}: \mathrm{HPO}_{4}{ }^{2-}$
a) I,II,III,IV
b) I,V
c) III,V
d) II,III,IV
13. What are th correct statement(s) about H^{-}(hydride)
a) It is Bronsted-Lowry base of H_{2}
b) It resembles halide
c) It is isoelectronic of He
d) All the above are correct statements
14. Consider the following reactions

I: $\left[\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+\mathrm{OH}^{-} \longleftrightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{-}\right]+\mathrm{H}_{2} \mathrm{O}$
II. $\left[\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]+\mathrm{H}_{3} \mathrm{O}^{+} \longleftrightarrow\left[\mathrm{Al}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{-}\right]+\mathrm{H}_{2} \mathrm{O}$

Select the correct statement.
a) X is an acid in I and base in II
b) X is a base in I and acid in II
c) X is a base in I and II both
d) X is an aid in I and II both
15.If the following proceed in forward side

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{HF} \Longleftrightarrow \mathrm{H}_{2} \mathrm{~F}^{+}+\mathrm{NO}_{2}^{-} \\
& \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HF} \Longleftrightarrow \mathrm{~F}^{-}+\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+} \\
& { }^{`} \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH} \Longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-}
\end{aligned}
$$

Then increasing order of acid strength is
a) $\mathbf{H}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{COOH}<\mathbf{H F}<\mathbf{H N O}_{2}$
b) $\mathrm{HNO}_{2}<\mathrm{HF}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{HNO}_{2}<\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{3} \mathrm{COOH}$
d) $\mathrm{HNO}_{2}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}$
16. Select the correct statement(s) about $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and $\mathrm{NH}_{4}{ }^{+}$
a) Both behave as Bronsted- lowry acid
b) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is a lewis -baseas well as Bronsted- lowry base
c) $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is amphiprotic
d) All the above are correct statemanets
17.In the interaction of $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$ with $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$
a) $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$ is a lewis base and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ is a lewis acid
b) $\mathbf{B}\left(\mathrm{CH}_{3}\right)_{3}$ is a lewis acid and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ is a lewis base
c) Both are lewis acids
d) Both are lewis bases
18. A carbocation (as CH_{3}) is
a) A lewis acid
b) an electrophilic reagent
c) Both a\&b
d) None of these
19. Which is/are Lewis acids out of $\stackrel{\ominus}{\mathrm{CH}}_{3}$ (carbon ion), $\stackrel{\oplus}{\mathrm{C}}_{5}$ (carbonium ion), CH_{3} (carbenium ion)?
b) $\mathrm{CH}_{3}, \mathrm{CH}_{3}$
c) $\stackrel{\oplus}{\mathrm{C}}_{3}$
d) $\stackrel{\oplus}{\mathrm{C}}_{5}$
20. Which behaves as a lewis base as well as Bronsted-Lowry base?
a) Carbonium ion b) carbenium ion
c) carbanion
d) All of these
21. Which s strongest acid?
a) $\mathbf{H C l O}_{4}$
b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
c) HNO_{3}
d) HCl
22. Relative strength cannot be compared in aqueous solution of the following pair
a) HClO_{4} and HBr
b) HClO_{4} and HNO_{3}
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}
d) All of these
23. $\mathrm{CH}_{3} \mathrm{COOH}$ (a weak acid)behaves as strong acid in
a) HF
b) NH_{3}
c) $\mathrm{H}_{2} \mathrm{O}$
HNO_{3}
24.Select the correct acid -base equilibrium
a) $\mathrm{HNO}_{3}+\mathrm{HF}$ $\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{F}^{-}$
b) $\mathrm{HNO}_{3}+\mathrm{HF} \Longleftrightarrow$
$\mathrm{H}_{2} \mathrm{~F}^{+}+\mathrm{NO}_{3}^{-}$
c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \Longleftrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}+\mathrm{NH}_{2}{ }^{-}$
d) $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \Longleftrightarrow \quad \mathrm{H}_{2} \mathrm{~F}^{+}+\mathrm{OH}^{-}$
25. Consider following statements

I: $\mathrm{CH}_{3} \mathrm{COOH}$ (a weak acid) behaves as a strong acid in NH_{3}
II: HNO_{3} (a astrong acid) behaves as a base in HF
III: $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates to a very small extent in glacial $\mathrm{CH}_{3} \mathrm{COOH}$.
Select correct alternate for these statements
a) I, III
b) II, III
c) I,II
d) I,II, III
26.100 ml of I M HCl is mixed with 50 ml of 2 M HCl . Hence, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is
a) 1.00 M
b) 1.50 M
c) 1.33 M
d) 3.00 M
27. [Cl^{-}] in a mixture of 200 ml of 0.01 M HCl and 100 ml of $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ is
a) 0.01 M
b) 0.0133 M
c) 0.03 M
d) 0.02 M
28.B;ue litmjus turns red in the following mixture of acid and base
a) 100 ml of $1 \times 10^{-2} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+100 \mathrm{Ml}$ of $1 \times 10^{-2} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
b) 100 ml of $1 \times 10^{-2} \mathrm{M} \mathrm{HCl}+100 \mathrm{Ml}$ of $1 \times 10^{-2} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$
c) 100 ml of $1 \times 10^{-2} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+100 \mathrm{MI}$ of $1 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$
d) 100 ml of $1 \times 10^{-2} \mathrm{M} \mathrm{HCl}+100 \mathrm{Ml}$ of $1 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$
29. [$\left.\mathrm{H}_{2} \mathrm{O}\right]$ in $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
a) $\mathbf{2 M}$
b) 1 M
c) 0.2 M
d) 0.1 M
$30 . \mathrm{HCl}$ exists as
a) Cl
b) $\mathrm{H}_{2} \mathrm{O}^{+}$
c) HCl
d) $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{Cl}$
31. Select aprotic solvnts out of Water, benzene, methylamine, carbntetrachloride
I
II
III
IV
a) I
b) II,IV
c) II,III,IV
d) I,III,IV
32.Strongest acid and strongest base pair is
a) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{OH}^{-}$
c) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}$
d) $\mathrm{OH}^{-} \cdot \mathrm{H}_{3} \mathrm{O}^{+}$
33. Autoprotolysis constant of NH_{3} is
a) $\left[\mathrm{NH}_{4}\right]\left[\mathrm{NH}_{3}\right]$
b) $\left[\mathrm{NH}_{2}\right]\left[\mathrm{NH}_{4}\right]$
c) $\left[\mathrm{NH}_{4}\right]\left[\mathrm{NH}_{2}\right]$
d) $\left[\mathrm{NH}_{4}{ }^{+}\right] /\left[\mathrm{NH}_{2}{ }^{-}\right]$
34. Autoprotolysis constant of a weak acid HA is 4×10^{-8} hence,
[A] is
a) $\mathbf{2 \times 1 0 ^ { - 4 }} \mathrm{M}$
b) $0.25 \times 10^{-6} \mathrm{M}$
c) $16 \times 10^{15} \mathrm{M}$
d) $4 \times 10^{-8} \mathrm{M}$
35. At $-50^{\circ} \mathrm{C}$ autoprotolysis of NH_{3} gives $\left[\mathrm{NH}_{4}{ }^{+}\right]=1 \times 10^{-15} \mathrm{M}$ hence, autoprotolusis constant of NH_{3} is
a) $\sqrt{1 \times 10^{-15}}$
b) $\sqrt{1 \times 10^{-30}}$
c) 1×10^{-15}
d) 2×10^{-15}

PH-Scale

36.pH of $10^{-8} \mathrm{~N} \mathrm{NaOH}$ is
a) 8.0
b) 6.0
c) 6.98
d) 7.02
37. Milliequivqlent of $\mathrm{Ba}(\mathrm{OH})_{2}$ present in 100 ml solution to have $\mathrm{pH}=13$, is
a) 10^{-2}
b) 10
c) 0.1
d) 0.01
38. At a temperature under high pressure

$$
\mathrm{K}_{\mathrm{w}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1 \times 10^{-10}
$$

A solution of pH 5.4 under these conditons is said to be
a) Acidic
b) basic
c) neutral
d) amphoteric
39.A weak monobasic acid is 0.1% ionised at 0.1 M hence, its pH is
a) 2
b) 3
c) 4
d) 5
40. Which has maximum pH ?
a) $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
b) 0.01 M HCl
c) $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
d) 0.01 M NaOH
41.In which case change in pH is maximum?
a) 1 ml of $\mathrm{pH}=2$ is diluted to 100 ml
b) 0.01 mol of NaOH is added into 100 ml of 0.01 M NaOH solution
c) 100 ml of $\mathrm{H}_{2} \mathrm{O}$ is added into 900 ml of $10^{-6} \mathrm{M} \mathrm{HCl}$
d) $\mathbf{1 0 0} \mathrm{ml}$ of $\mathbf{p H}=\mathbf{2}$ solution is mixed with $\mathbf{1 0 0} \mathbf{m l}$ of $\mathbf{p H}=\mathbf{1 2}$
42.A weak monoacid base has $\mathrm{pH}=10$ at $0.01 \mathrm{M} \%$ ionisation of base is
a) 0.01%
b) 0.001%
c) 0.0001%
d) 1.0%
43.100 ml of solution of $\mathrm{pH}=6$ is diluted to 1000 mlresulting solution has pH
a) 7.0
b) 6.7
c) 7.3
d) 6.4
44.In a basic solution pH is 12.3 . Hence $\left[\mathrm{OH}^{-}\right]$is
a) $\mathbf{2 \times 1 0 ^ { - 2 }} \mathrm{M}$
b) $5 \times 10^{-13} \mathrm{M}$
c) $3 \times 10^{-12} \mathrm{M}$
d)) $4 \times 10^{-16} \mathrm{M}$
45. When you calculate pHof a solution $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from $\mathrm{H}_{2} \mathrm{O}$ is required in the following
a) $10^{-5} \mathrm{M} \mathrm{HCl}$
b) $10^{-5} \mathrm{M} \mathrm{NaOH}$
c) $10^{-8} \mathrm{M} \mathrm{NaOH}$
d) $10^{-6} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$

Ostwald's Dilute Law

46. The K_{a} value for the acid HA is 1.0×10^{-6}. What is the vaue of K for the reaction?

$$
\mathrm{A}-+\mathrm{H}_{3} \mathrm{O} \Longleftrightarrow \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}
$$

a) 1.0×10^{-8}
b) 1.0×10^{8}
c) 1.0×10^{-3}
d) 1.0×10^{6}
47. pK_{b} of aq. NH_{3} is 1.74 , hence pH of $0.01 \mathrm{M} \mathrm{NH}_{3}$ solution is
a) 3.37
b) 10.63
c) 2.00
d) 12.00
48. $\mathrm{CH}_{3} \mathrm{COOH}$ is 2.0% ionised $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$, hence its molar concentration is
a) 0.045 M
b) 0.02 M
c) $3.6 \times 10^{-5} \mathrm{M}$
d) 0.090 M
49.A weak monobasic acid is 0.01% ionised when its concentration is 1 M . Hence, $\left[\mathrm{OH}^{-}\right]$is
a) $1 \times 10^{-4} \mathrm{M}$
b) $1 \times 10^{-10} \mathrm{M}$
c) $1 \times 10^{4} \mathrm{M}$
d) $1 \times 10^{10} \mathrm{M}$
$50 . \%$ ionisation of a weak acid is 1% at 1 M , hence $\%$ solution is \qquad At 4M
a) 4%
b) 5%
c) $\mathbf{0 . 5 \%}$
d) 0.2%
51. A mixture of weak acid is 0.1 M in $\mathrm{HCCOH}\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}\right)$ and 0.1 M in $\operatorname{HOCN}\left(\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}\right)$ hence $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is
a) $\mathbf{7 . 1 4 \times 1 0 ^ { - \mathbf { 3 } } \mathrm { M }}$
b) $4.1 \times 10^{-4} \mathrm{M}$
c) 0.20 M
d) 4.1×10^{-3}
52. At $25^{\circ} \mathrm{C},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{M}$ in water, hence K_{a} is
a) 1×10^{-14}
b) 5.55×10^{-15}
c) 1.8×10^{-16}
d) 55.5×10^{-10}
53. What is the value of K_{w} in 0.01 M NaOH ?
a) 1×10^{-15}
b) 1×10^{-13}
c) 1×10^{-16}
d) $\mathbf{1} \times 10^{-14}$
54.0.1 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$ should be diluted to -------- times so that pH is doubled.
a) Four times
b) 5.55×10^{4} times
c) 5.55×10^{6} times
d) 10^{-2} times
55. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ at two stages

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \leftrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-} \\
& \mathrm{HSO}_{4}^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \text { are } \\
& \begin{array}{ll}
\text { a) } 0.1 \mathrm{M}, 0.1 \mathrm{M} & \text { b) } 0.1 \mathrm{M}>0.01 \mathrm{M} \\
\text { C) }>0.1 \mathrm{M},>0.1 \mathrm{M} & \text { d) } \mathbf{0 . 1} \mathbf{M}<\mathbf{0 . 1} \mathbf{M}
\end{array}
\end{aligned}
$$

Buffer solution

56. The pH of blood is 7.40 . what is the ratio of $\left[\mathrm{HPO}_{4}{ }^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$in the blood? $\left(\mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)=7.10\right)$
a) $2: 1$
b) $1 .: 2$
c) $3: 1$
d) $1: 3$
57.20 ml of 0.2 M NaOH is added to 50 ml of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$, Hence $(\mathrm{pH}-$ pK_{a}) is
a) $\log \frac{3}{2}$
b) $\log _{\frac{2}{3}}$
c) $\log 2$
d) $2 \log 2$
58.50 .0 ml of $0.3 \mathrm{M} \mathrm{HCl}^{2}$ is mixed with $5 . \mathrm{ml}$ of $0.4 \mathrm{M} \mathrm{NH}_{3}$ solution. If pK_{a} of $\mathrm{NH}_{4}{ }^{+}$is $9.26, \mathrm{pH}$ of the mixture is
a) 5.22
b) 1.30
c) 8.78
d) 12.70
57. pH of a solution made by mixing 50 of $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and 75 ml of 0.1 M NaOH is $\left[\mathrm{pK}_{\mathrm{a}}\right.$ of $\left.\mathrm{NH}_{3} 9(\mathrm{aq})=4.74\right]$
a) 7.02
b) 13.0
c) 4.26
d)9.74
58. pH of a mixture which is 0.1 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.05 M in $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$ Ba is $\left[\mathrm{pK}_{\mathrm{a}}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.74\right]$
a) $\mathbf{4 . 7 4}$
b) 5.04
c) 4.44
d) 7.00
59. We have acidic buffer of $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{CH}_{3} \mathrm{COOH}$. One or more of the following operations will not change pH
I. Diluting the mixture ten times
II. Adding some HCl
III. Adding some NaOH
IV. Adding equal moles of $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{CH}_{3} \mathrm{COOH}$ into the buffer Select correct alternate.
a) I, II,III,IV
b)II,III
c)I,IV
d) II,IV
60. Which buffer solution has maximum pH ?
a) Mixture which is 0.1 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.1 M in $\mathrm{CH}_{3} \mathrm{COONa}$ $\left[\mathrm{pK}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=4.74\right]$
b) Mixture which is 0.2 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.2 M in $\mathrm{CH}_{3} \mathrm{COONa}$
c) Mixture which is 0.1 M in $\mathrm{NH}_{4} \mathrm{Cl}$ and 0.1 M in $\mathrm{NH}_{4} \mathrm{OH}\left[\mathrm{pK}_{\mathrm{a}}\right.$ $\left.\left(\mathrm{NH}_{4}{ }^{+}\right)=9.26\right]$
d) All the solutions have equal pH which is 4.74
63.The pK_{a} of an amino acid is 9.15 . at what pH amino acid is 5% dissociated?
a) 9.15
b) 4.85
c) 9.44
d) 7.87
64.In what volume ratio should you mix 1.0 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and NH_{3} to produce buffer solution of $\mathrm{pH} 9.80 ?\left[\mathrm{pK}_{\mathrm{a}}\left(\mathrm{NH}_{3}\right)=4.74\right]$
a) $\mathbf{1 : 3 . 5}$
b) $3.5: 1$
c) $2: 1$
d) $1: 2$
65.A weak acid HA has degree of dissociation X , thus $\left(\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}\right)$ is
a) P_{x}
b) P_{1-x}
c) $P_{1-x}+P_{x}$
d) $P_{1-x}-P_{x}$
61. pH of blood is
a) 7.4
b) 6.4
c) 8.0
d) 7.0
62. $\mathrm{pK}_{\mathrm{a} 1}$ of carbonic acid in blood at body temperature $\left(37^{\circ} \mathrm{C}\right)$ is $6: 1$, hence ratio $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ is approximately
a) $1.3: 1$
b) $1: 1.3$
c) $\mathbf{2 0 : 1}$
d) $1: 20$
68.Acidosis may cause------------of the pH of blood
a) Increase
b) decrease
c) no change
d)is not related term
69.Important diagnosic analysis in the blood is
a) $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{42^{2-}}{ }^{2-}\right.$
b) $\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{CO}_{2}\right]$
c) $\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}{ }^{2-}\right]$
d) $\left[\mathrm{PO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{4}{ }^{2-}\right]$
70.Oxygen from inhaled air combines with haemoglobin, and oxygenated haemoglobin ionises releasing a proton which is removed in the following reactions
a) $\mathrm{H}^{+}+\mathrm{CO}_{2} \leftrightarrow \mathrm{HCO}_{3}^{-}$
b) $\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3-}{ }^{2-}$
c) $\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
d) in all the above

Common Ion Effect

71. Which of the following reagents affect per cent dissociation

Of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COH}$?

a) NaOH
b) $\mathrm{NH}_{4} \mathrm{OH}$
c) HBr
d) All of these
72.Ionisation of NaoH is decreased in presence of
a) AcOH
b) MeOH
c) EtOH
d) None of these
$73 . \mathrm{K}_{\mathrm{a}}$ of AcOH is 1.8×10^{-5}. what is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution which is .001 M AcOH and 0.005 M calcium acetate?
a) $\mathbf{1 . 8} \times \mathbf{1 0}^{-5} \mathrm{M}$
b) $3.6 \times 10^{-5} \mathrm{M}$
c) $0.9 \times 10^{-5} \mathrm{M}$
d) 0.005 M
74. pK_{b} of NH_{3} is 4.74 ; moles of ammonium sulphate to be added to 0.5 L of $0.01 \mathrm{M} \mathrm{aq} \mathrm{NH}_{3}$ to have pH of 9.26 is
a) 0.005
b) 0.0025
c) 0.01
d) 0.002
75. $\left[\mathrm{Ag}^{+}\right]$in saturated AgCl in presence of $1 \mathrm{M} \mathrm{KCl}\left[\mathrm{K}(\mathrm{AgCl})=1 \times 10^{-10}\right]$ is
a) $1 \times 10^{-5} \mathrm{M}$
b) $1 \times 10^{-20} \mathrm{M}$
c) $\mathbf{1} \times 10^{-10} \mathrm{M}$
d) $2 \times 10^{-10} \mathrm{M}$
76. Degree of ionisation of 1 M HCOOH is decreased to a maximum extent in presenceof
a) I M HCHO
b) 1 M NaOH
c) 1 MHCOONa
d) equally for all
77. Solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is decreased in presence of
a) $\mathbf{A g N O}_{3}$
b) AgCl
c) BaCrO_{4}
d) PbCrO_{4}
78. Blood pH is controlled by concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and HCO_{3}. in presence of $\mathrm{NaHCO}_{3}, \mathrm{pH}$ of blood is
a) Increased
b) decreased
c) no change
d) statement is wrong
79.A weak acid (HA) is 4% ionised at 1 M percent ionisation is 1% presence of A^{-}of
a) 0.04 M
b) 0.16 M
c) 0.02 M
d) 0.10 M
80. $\left[\mathrm{OH}^{-}\right]$in a solution prepared by mixing equal volumes of $0 . \mathrm{M}$ methyl amine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{~K}_{\mathrm{b}}=3.7 \times 10^{-4}\right)$ and $0.60 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$
a) $3.7 \times 10^{-4} \mathrm{M}$
b) $7.4 \times 10^{-4} \mathrm{M}$
c) $3.7 \times 10^{-2} \mathrm{M}$
d) $1.85 \times 10^{-4} \mathrm{M}$

Solubility Product

81.Expression for K_{sp} of $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ is
a) $\left[\mathrm{Hg}^{+}\right]^{2}\left[\mathrm{NO}_{3}^{-}\right]^{2}$
b) $\left[\mathrm{Hg}_{2}{ }^{+}\right]^{2}\left[\mathrm{NO}_{3}{ }^{-}\right]^{2}$
c) $\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{NO}_{3}^{-}\right]^{2}$
d) $\left[\mathrm{Hg}_{2}{ }^{2+}\right]^{2}\left[\mathrm{NO}_{3}^{-}\right]^{2}$
82. Solubility of BaSO_{4} in aqueous solution is $1 \times 10^{-5} \mathrm{M}$. hence, solubility in $0.1 \mathrm{M} \mathrm{BaCl}_{2}$ is
a) $1 \times 10^{-1} \mathrm{M}$
b) $1 \times 10^{-9} \mathrm{M}$
c) $1 \times 10^{-4} \mathrm{M}$
d) $1 \times 10^{-5} \mathrm{M}$
83. Molar solubility of $\mathrm{Al}(\mathrm{OH})_{2}$ is increased in presence of
a) NaOH
b) HCl
c) Both a\&b
d) None of these
84. A saturated solution prepared by dissolving $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in water has $\left[\mathrm{Ag}^{+}\right]=$ $2.56 \times 10^{-4} \mathrm{M}$, its K_{sp} is
a) 8.4×10^{-12}
b) 1.68×10^{-13}
c) 6.6×10^{-8}
d) 1.6×10^{-2}
$85 . \mathrm{K}_{\mathrm{sp}}\left(\mathrm{BaSO}_{4}\right)$ is 1.1×10^{-10}. in which caseis BaSO_{4} precipitated?
a) 100 ml of $\mathbf{4} \times 10^{-3} \mathrm{M} \mathrm{BaCl}_{2}+300 \mathrm{ml}$ of $6.0 \times 10^{-4} \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
b) 100 ml of $4 \times 10^{-4} \mathrm{M} \mathrm{BaCl}_{2}+300 \mathrm{ml}$ of $6.0 \times 10^{-8} \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
c) 300 ml of $4 \times 10^{-4} \mathrm{M} \mathrm{BaCl}_{2}+300 \mathrm{ml}$ of $6.0 \times 10^{-8} \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
d) In all cases
$86 . \mathrm{K}_{\mathrm{sp}}$ of $\mathrm{Al}(\mathrm{OH})_{3}$ is $1.0 \times 10^{-15} . \mathrm{pH}$ of the saturated solution is about
a) 5.0
b) 9.0
c) 4.1
d) 10.4
87. K_{sp} of $\mathrm{H}_{2} \mathrm{~S}$ is 1×10^{-22}. [S^{2-}] in a buffer of pH 6 is
a) $1 \times 10^{-16} \mathrm{M}$
b) $1 \times 10^{-12} \mathrm{M}$
c) $\mathbf{1} \times 10^{-10} \mathrm{M}$
d) $1 \times 10^{-8} \mathrm{M}$
88. $\mathrm{K}_{\text {sp }}$ of CdS is 8.0×10^{-27} and that of $\mathrm{H}_{2} \mathrm{~S}$ is $1 \times 10^{-22} .1 \times 10^{-14} \mathrm{M}, \mathrm{CdCl}_{2}$ solution is precipitated on passing $\mathrm{H}_{2} \mathrm{~S}$ when pH ia about
a) 4
b) 6
c) 5
d) 7
89. K_{sp} of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.8×10^{-11} at $30^{\circ} \mathrm{C}$. Its molar solubility is......at $\mathrm{pH}=12$
a) $1.8 \times 10^{-11} \mathrm{M}$
b) $1.8 \times 10^{-9} \mathrm{M}$
c) $1.8 \times 10^{-54} \mathrm{M}$
d) $1.8 \times 10^{-7} \mathrm{M}$
90.In group III analysis buffer used to precipitate cations as hydroxide is
a) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$
b) $\mathrm{HCO}_{3}+\mathrm{CO}_{2}$
c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$
d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$

Hydrolysis

91.100 ml of 0.02 M benzoic acid $\left(\mathrm{pK}_{\mathrm{n}}=4.2\right)$ is titrated using 0.02 M NaOH . pH after 50 ml and 100 ml of NAOH have been added are
a) $3.50,7$
b) $4.2,7$
c)4.2, 8.1
d) $4.2,8.25$
92.pH of 0.01 M aqueous solution of $\mathrm{NaX}, \mathrm{NaY}$ and NaZ are 8,9 and 10 respectively. Strongest acidof HX, HY and HZ is
a) $\mathbf{H X}$
b) HY
c) HZ
d) Cant be predicted
93.40 ml of 0.025 M solution of the protonated form of the amino acid phenyl alanine $\left(\mathrm{H}_{2} \mathrm{~A}^{+}\right)$is treated with ml of 0.1 M NaOH . pH at this stage is
$\left(\mathrm{pK}_{\mathrm{a} 1}=1.82, \mathrm{pK}_{\mathrm{a} 2}=9.13\right.$ of $\left.\mathrm{H}_{2} \mathrm{~A}^{+}\right)$
a) $\mathbf{5 . 4 8}$
b) 7.00
c) 1.82
d) 9.13
94. pH of 0.05 M calcium acetate solution $\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$ is
a) 8.72
b) $\mathbf{8 . 8 7}$
c) 7.00
d) 1.30
95. Which of the aqueous solution turns blue litmus red?
a) $\mathrm{NH}_{4} \mathrm{Cl}$
b) $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
c) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
d) all of these
96. $\mathrm{pK}_{\mathrm{a} 1}, \mathrm{pK}_{\mathrm{a} 2}$, and $\mathrm{pK}_{\mathrm{a} 3}$ of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are respectively x ,yand z . pH of 0.01 M $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution is
a) 2
b) $\frac{x+y}{2}$
c) $\frac{y+z}{2}$
d) $\frac{x+y+z}{2}$
97.100 ml of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is titrated with 0.01 MKOH . At wat point pH is maximum?

a) After addition of 100 ml of $\mathbf{K O H}$

b) After addition of 75 ml of KOH
c) After addition of 50 ml of KOH
d) After addition of 25 ml of KOH
98. pK_{b} of NH_{3} is 4.74 and pK_{b} of $\mathrm{A}^{-}, \mathrm{B}^{-}$, and C^{-}are 4,5 , and 6 respectively.

Aqueous solution of 0.01 M ha pH in the increasing order
a) $\mathrm{NH}_{4} \mathrm{~A}<\mathrm{NH}_{4} \mathrm{~B}<\mathrm{NH}_{4} \mathrm{C}$
b) $\mathrm{NH}_{4} \mathrm{C}<\mathrm{NH}_{4} \mathrm{~B}<\mathrm{NH}_{4} \mathrm{~A}$
c) $\mathrm{NH}_{4} \mathrm{C}<\mathrm{NH}_{4} \mathrm{~A}<\mathrm{NH}_{4} \mathrm{~B}=7$
d) All have equal pH being salt of weak acid and weak base
99. pK_{1} and pK_{2} of $\mathrm{H}_{2} \mathrm{CO}_{3}$ are respectively 6.38 and $10.26 . \mathrm{pH}$ of 1 M and 0.1 M NaHCO 3 are respectively
a) $8.32,7.32$
b) $7.32,8.32$
c) $8.32,8.32$
d) $7.32,7.32$
100. Degree of hydrolyss of the following is independent od concentration
I. $\mathrm{NH}_{4} \mathrm{CN}$
II. $\mathrm{NH}_{4} \mathrm{HCO}_{3}$
III. NaHS
IV. $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$
a) I,II,III,IV
b)I,IV
c) I,III,IV
d) I,II,III

Acid - base Titration and indicator

101. Following are some of the certain facts of Ostwalds theory of acidbase indicators
A. Ionised and unionised foms have different colours
B. Colour change is indicated at the end point when unionised form changes to ionised form due to change in pH
C. Benzenoid form changes to quinonoid form and vice-versa due to change in pH

Select the correct facts.
a) $\mathrm{A}, \mathrm{B}, \mathrm{C}$
b) A,C
c) \mathbf{A}, \mathbf{B}
d) B, C
102. Select the correct statements
a) Methyl orange is red in alkali solution and yellow in acid solution
b) Phenolphthalein is pink in alkali solution and colourless in acid solution
c) Both $\mathrm{a} \& \mathrm{~b}$
d) None of the above
103. Indicator can exist in two forms depending on the medium

Benzenoid form (A)

quinonoid form (B)

Select the correct statements.
a) Methyl orange assumes form (A) in alkali solution and form (B) in acid solution
b) Phenolphthalein assumes form (A) in acid solution and form (B) in alkaline solution
c) Thymoohthalein assumes form (A) ain acid solution and form (B) in alkali solution
d) All Of the above
104. For any weak acid indicator HIn ionising as

$$
\mathrm{HIn} \leftrightarrow \mathrm{H}^{+}+\mathrm{In}^{-}
$$

Colour the unionised form (HIn) is observed when
a) $\frac{I n}{H I n}=\frac{1}{10}$
b) $\mathrm{pH}=\mathrm{pK}_{\mathrm{n}}-1$
c) Both $\mathbf{a \& b}$
d) None of these
105. In the above case colour of the ionised form $\left(\mathrm{In}^{-}\right)$is observed when
a) $\frac{I n}{H I n}=10$
b) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+1$
c) both a\&b
d) None of thes
106. Select the correct statements about indicators.
a) Near the equivqlence point $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ for weak acid indicator and $\mathrm{pH}=$ (14- pK_{b}) for weak base indicator
b) Most indicators have a transition range of two pH points
c) Methyl orange assumes quinonoid form in acid solution
d) All of the above statements are correct
107. pK_{a} of the indicator is. At the equivalence point pH is
a) 5
b)10
c)
d) 7.0
108. An indicator is a weak acid and pH range of its colour s 3 to5. If the neutral points of the indicator lies in the centre of the hydrogen ion concentration corresponding to given pH range then pH at the equivalence points is
a) 3.3
b) 4.0
c) 7.0
d) 5.0
109. In the titration of weak acid with strong base which indicator cant be used
a) Methyl orange
b) phenolphthalein
c) both a\&b
d) none of these
110. In the titration of weak base with strong acid indicator cant be used
a) Methyl orange
b) phenolphthalein
c) both a\&b
d) none of these
111. Suitable indicator to be used in the titration of weak acid versus strong base is
a)phenolphthalein
b)thymophthalein c)botha\&b
d)None of these
112. Titration curve if a strong base is titratd with stron acid is

113. Phenolphthalein cant be used in the titration of
a) HCl with NaOH
b) $\mathrm{CH}_{3} \mathrm{COOH}$ with NaOH
c) $\mathbf{H C l}$ with $\mathrm{NH}_{4} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$ with $\mathrm{NH}_{4} \mathrm{OH}$
114. In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl , indicator used is
a) Phenolphthalein
b)methyl red
c) both $a \& b$
d) none of these
115. 100 ml of 0.1 M HCl is titrate using 0.1 M NaOH using phenolphthalein indicator. pH after 50 ml of NaOH has been added is
a) 7.0
b) -1.48
c) 6.0
d)1.48

