Exercise 2(Going step-by-step)

Acid and Bases

1.	C_2H_5OH ionises as						
	a) $C_2H_5OH \longleftarrow C_2H_5O^- + H^+$						
	b) $2C_2H_5OH \longleftarrow C_2H_5OH_2 + C_2H_5O^-$						
	c) $C_2H_5OH \longrightarrow C_2H_5^+ + OH^-$						
	d) $C_2H_5OH + H_2O \longleftarrow C_2H_5O^{} + H_3O^+$						
2.	C_2H_5Ona is ain C_2H_5OH .						
	a) Strong base b) Strong acid						
	c) Weak acid d) weak base						
3.	NH ₄ NO ₃ is a						
	a) Strong base in NH_3 b) weak base in NH_3						
	c) Strong acid in NH ₃ d) weak acid in NH ₃						
4.	Select the correct statement(s).						
	a) Arrhenius theory is restricted to aqueous solution						
	b) Franklin's theory is applicable also to other ionisable						
	c) Both a&b						
	d) None of the above						
5.	In the following equilibrium,						
	$B + H_2O \iff BH^+ + OH^-$						
	a) Arrhenius acid-base concept is observed						
	b) Franklins acid –base concept is observed						
	c) Both a&b						
	d) None of the above						
6.	Consider the following reactions,						
	A: $H_2CO_3(aq) + HSO_4(aq) \leftrightarrow H_2SO_4(aq) + HCO_3(aq)$						
	B: HF (aq) + Cl ⁻ (aq) \longrightarrow HCl(aq) + F ⁻ (aq)						
	C: $HF(aq) + NH_3(aq) \longrightarrow NH_4^+ + F^-(aq)$						
	D: $HSO_4^-(aq) + CN^-(aq) \longrightarrow HCN(aq) + SO_4^{2-}(aq)$						
	Reactions proceeding to the right are						
	a) A,B b) C,D c) A,C d) B,D						
7.	Conjugate base of H_2 is						
_	a) H^+ b) H_3^+ c) H^- d) H_3^-						
8.	Conjugate base of HO_2 is						
	a) O_2^- (superoxide ion) b) H_2O_2						
	c) O_2^{2-} (peroxide ion) d) O_2^+						

9. In the following $[Al(H_2O)_6]^3 + HCO_3 \quad \longleftarrow \quad [Al(H_2O)_5OH]^2 + H_2CO_3$ (A) **(B)** (C) (D) Species behaving as Bronsted- Lowry acids are b) (B), (C) d) (A), (C) a) (A), (D) c) (B), (D)10. Which is Bronsted-Lowry acid as well as Arrhenius acid? **b) HCO**₃⁻ c) NH₃ a) H₂ d) NH_2^- 11. Following reaction, $NH_4^+(aq) + CN^-(aq)$ $HCN(aq) + NH_3(aq)$ Proceeds in a) Forward direction b) backward direction c) In both sides equally d) can't be predicted

12.Out of the following, amphiprotic species are

I: $H_2PO_2^-$	II: HPO_3^{2-}
III: HCO ₃ -	IV: $CH_3 CO_2^-$
V: HPO ₄ ²⁻	
a) I,II,III,IV	b) I,V
c) III,V	d) II,III,IV

13. What are th correct statement(s) about H⁻ (hydride)

- a) It is Bronsted-Lowry base of H₂
- b) It resembles halide
- c) It is isoelectronic of He
- d) All the above are correct statements

14.Consider the following reactions

I: $[Al(OH)_3 (H_2 O)_3] + OH^- \qquad [Al(OH)_4 (H_2 O)_2^-] + H_2O$ II. $[Al(OH)_3 (H_2 O)_3] + H_3O^+ \qquad [Al(OH)_2 (H_2 O)_4^-] + H_2O$ Select the correct statement. a) **X** is an acid in L and base in **H**

- a) X is an acid in I and base in II
- b) X is a base in I and acid in II
- c) X is a base in I and II both
- d) X is an aid in I and II both

15.If the following proceed in forward side

HNO₂ +HF \longleftrightarrow H₂F⁺ + NO₂⁻ CH₃COOH + HF \iff F⁻ +CH₃COOH₂⁺ `H₂O +CH₃COOH \iff H₃O⁺CH₃COO⁻

Then increasing order of acid strength is

a) $H_2O < CH_3COOH < HF < HNO_2$

- b) $HNO_2 < HF < CH_3COOH < H_2O$
- c) $HNO_2 < HF < H_2O < CH_3COOH$
- d) $HNO_2 < CH_3COOH < HF < H_2O$

16.Select the correct statement(s) about H₂PO₄⁻ and NH₄⁺

- a) Both behave as Bronsted- lowry acid
- b) H₂PO₄⁻ is a lewis –baseas well as Bronsted- lowry base
- c) $H_2PO_4^-$ is amphiprotic

d) All the above are correct statemanets

- 17.In the interaction of B(CH₃)₃ with N(CH₃)₃
 - a) B(CH₃)₃ is a lewis base and N(CH₃)₃ is a lewis acid
 - b) B(CH₃)₃ is a lewis acid and N(CH₃)₃ is a lewis base
 - c) Both are lewis acids
 - d) Both are lewis bases
- 18.A carbocation (as CH_3) is
 - a) A lewis acid b) an electrophilic reagent

c) Both a&b

d) None of these

- 19. Which is/are Lewis acids out of CH₃ (carbon ion), CH₅(carbonium ion), CH₃ (carbonium ion)?
 - a) CH₅, CH₃ (carbenium ion)? b) CH₃, CH₃ c) CH₃ d) CH₅
- 20. Which behaves as a lewis base as well as Bronsted-Lowry base?
 - a) Carbonium ion b) carbenium ion

c) carbanion d) All of these

- 21. Which s strongest acid?
 - a) **HClO**₄ b) H_2SO_4 c) HNO_3 d) HCl

22. Relative strength cannot be compared in aqueous solution of the following pair a) HClO₄ and HBr b)HClO₄ and HNO₃ c) $H_2 SO_4$ and HNO_3 d) All of these 23.CH₃COOH (a weak acid)behaves as strong acid in a) HF b) NH_3 c) H_2O HNO₃ 24.Select the correct acid –base equilibrium a) $HNO_3 + HF \iff$ $H_2NO_3^+ + F^$ b) $HNO_3 + HF \iff$ $H_2F^+ + NO_3^ CH_3COOH_2^+ + NH_2^$ c) $CH_3COOH + NH_3$ \longleftrightarrow d) HF +H₂O \iff $H_2F^+ + OH^-$ 25. Consider following statements I: CH₃COOH(a weak acid) behaves as a strong acid in NH₃ II: HNO₃ (a astrong acid) behaves as a base in HF III: H₂SO₄ dissociates to a very small extent in glacial CH₃COOH. Select correct alternate for these statements d) I,II, III a) I, III b) II, III c) I,II 26.100 ml of I M HCl is mixed with 50ml of 2 M HCl. Hence, $[H_3O^+]$ is a) 1.00M b)1.50M c)1.33M d)3.00M 27.[Cl⁻] in a mixture of 200ml of 0.01M HCl and 100 ml of 0.01 M BaCl_{2 is} a) 0.01 M b) 0.0133 M c) 0.03M d) 0.02M 28.B;ue litmjus turns red in the following mixture of acid and base a) 100ml of 1×10^{-2} M H₂SO₄ + 100Ml of 1×10^{-2} M Ca(OH)₂ b) 100ml of 1×10^{-2} M HCl + 100Ml of 1×10^{-2} M Ba(OH)₂ c) 100ml of 1 ×10⁻² M H₂SO₄ + 100Ml of 1 ×10⁻² M NaOH d) 100ml of 1×10^{-2} M HCl + 100Ml of 1×10^{-2} M NaOH 29.[H₂O] in M H₂SO₄ a) **2M** b) 1M c) 0.2M d) 0.1M 30.HCl exists as **a)** Cl **b**) H_2O^+ c) HCl d) H₃O⁺Cl 31.Select aprotic solvnts out of Water, benzene, methylamine, carbntetrachloride Ι Π III IV a) I b) II.IV c) II,III,IV d) I,III,IV 32.Strongest acid and strongest base pair is a) H_3O^+, H_2O **b**) $H_{3}O^{+}$, OH^{-} c) H_2O, H_3O^+ d) $OH^{-,}H_{3}O^{+}$

33. Autoprotolysis constant of NH3 is

C)[NH4] [NH2]	$d)[NH_4]/[NH_2]$

34. Autoprotolysis constant of a weak acid HA is 4×10^{-8} hence,

[A] is

- a) $2 \times 10^{-4} M$ b) $0.25 \times 10^{-6} M$
- c) 16×10^{15} M d) 4×10^{-8} M
- 35.At -50°C autoprotolysis of NH₃ gives $[NH_4^+]=1\times 10^{-15}$ M hence,

autoprotolusis constant of NH3 is

- a) $\sqrt{1 \times 10^{-15}}$ b) $\sqrt{1 \times 10^{-30}}$
- c) 1×10^{-15} d) 2×10^{-15}

PH-Scale

36.pH of 10⁻⁸ N NaOH is

a) 8.0 b) 6.0 c) 6.98 **d**) 7.02

37.Milliequivalent of $Ba(OH)_2$ present in 100ml solution to have pH = 13, is

a) 10⁻² b) 10 c) 0.1 d)0.01

38.At a temperature under high pressure

$$K_w(H_2O) = 1 \times 10^{-10}$$

A solution of pH 5.4 under these conditons is said to be

a) Acidic **b) basic** c) neutral d) amphoteric

39.A weak monobasic acid is 0.1% ionised at 0.1M hence, its pH is

a) 2 b) 3 c)4 d)5

40. Which has maximum pH?

a) 0.01 M H₂SO₄ b) 0.01 M HCl

c) 0.01 M Ca(OH)₂ d) 0.01 M NaOH

41.In which case change in pH is maximum?

a) 1 ml of pH = 2 is diluted to 100 ml

b) 0.01 mol of NaOH is added into 100ml of 0.01M NaOH solution

c) 100ml of H_2O is added into 900ml of 10^{-6} M HCl

d) 100ml of pH =2 solution is mixed with 100ml of pH =12

42.A weak monoacid base has pH = 10 at 0.01M% ionisation of base is

a) 0.01% **b**)0.001% **c**) 0.0001% **d**) **1.0%**

43.100ml of solution of pH =6 is diluted to 1000ml resulting solution has pH

a) 7.0 **b) 6.7** c)7.3 d)6.4

44.In a basic solution pH is 12.3. Hence[OH⁻] is

a) $2 \times 10^{-2} M$ b) $5 \times 10^{-13} M$

c) 3×10^{-12} M d)) 4×10^{-16} M

45. When you calculate pHof a solution $[H_3O^+]$ from H_2O is required in the

following

a) 10⁻⁵ M HCl b)10⁻⁵ M NaOH

c)10⁻⁸ M NaOH d)10⁻⁶ M Ca(OH)₂

Ostwald's Dilute Law

46.The K_a value for the acid HA is 1.0×10^{-6} . What is the vaue of K for the

reaction?

A- $+H_3O \iff HA + H_2O$ b) 1.0×10⁸ c) 1.0×10⁻³ **a)** 1.0×10^{-8} d) 1.0×10⁶ $47.pK_b$ of aq. NH₃ is 1.74, hence pH of 0.01 M NH₃ solution is d)12.00 b)10.63 c) 2.00 a) 3.37 48.CH₃COOH is 2.0% ionised ($K_a = 1.8 \times 10^{-5}$), hence its molar concentration is b)0.02 M c) 3.6×10⁻⁵ M a) 0.045 M d)0.090 M 49.A weak monobasic acid is 0.01% ionised when its concentration is 1M. Hence, [OH⁻] is d) $1 \times 10^{10} \, \text{M}$ a) 1×10⁻⁴ M b)1×10⁻¹⁰ M c) $1 \times 10^4 \, \text{M}$ 50.% ionisation of a weak acid is 1% at 1M, hence % solution is At 4Ma) 4% b)5% c)0.5% d)0.2%

51.A mixture of weak acid is 0.1 M in HCCOH ($K_a = 1.8 \times 10^{-4}$) and 0.1 M in HOCN ($K_a = 3.3 \times 10^{-4}$) hence [H_3O^+] is a) 7.14 ×10⁻³ M c)0.20M d) 4.1×10^{-3} b) $4.1 \times 10^{-4} \,\mathrm{M}$ 52. At 25°C, $[H_3O^+] = 1 \times 10^{-7}$ M in water, hence K_a is a) 1×10⁻¹⁴ b)5.55×10⁻¹⁵ c) 1.8×10⁻¹⁶ d) 55.5×10⁻¹⁰ 53. What is the value of K_w in 0.01 M NaOH? d) 1×10⁻¹⁴ **a)** 1×10⁻¹⁵ b)1×10⁻¹³ c)1×10⁻¹⁶ 54.0.1M solution of CH₃COOH should be diluted to ------ times so that pH is doubled. b) 5.55×10⁴ times a) Four times c) 5.55×10^{6} times d) 10^{-2} times 55. $[H_3O^+]$ in 0.1 M H₂SO₄ at two stages $H_2SO_4 \leftrightarrow H^+ + HSO_4^ HSO_4^- \leftrightarrow H^+ + SO_4^{2-}$ are a) 0.1M, 0.1 M b) 0.1M > 0.01M

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

d) 0.1M<0.1M

C) >0.1M, >0.1M

Buffer solution

56. The pH of blood is 7.40. what is the ratio of $[HPO_4^{2-}]/[H_2PO_4^{-}]$ in the blood? ($pK_a(H_2PO_4) = 7.10$) a) **2:1** b) 1.:2 c) 3:1 d)1:3 57.20 ml of 0.2M NaOH is added to 50ml of 0.2M CH₃COOH, Hence (pHpK_a) is b) \log_3^2 c) $\log 2$ a) $\log_{\frac{3}{2}}^{3}$ d) 2log 2 58.50.0 ml of 0.3 M HCl is mixed with 5.ml of 0.4M NH₃ solution. If pK_a of NH_4^+ is 9.26, pH of the mixture is a) 5.22 b)1.30 c) 8.78 d)12.70 59.pH of a solution made by mixing 50 of 0.2M NH₄Cl and 75ml of 0.1 M NaOH is $[pK_a \text{ of } NH_39(aq) = 4.74]$ b) 13.0 c) 4.26 **a)** 7.02 d)9.74 60.pH of a mixture which is 0.1M in CH₃COOH and 0.05M in (CH₃COOH)₂ Ba is $[pK_a \text{ of } CH_3COOH = 4.74]$ b) 5.04 a) 4.74 c) 4.44 d) 7.00 61.We have acidic buffer of CH₃COONa and CH₃COOH. One or more of the following operations will not change pH I. Diluting the mixture ten times

- II. Adding some HCl
- III. Adding some NaOH

- IV. Adding equal moles of CH₃COONa and CH₃COOH into the buffer Select correct alternate.
- a) I, II,III,IV b)II,III c)**I,IV** d) II,IV

62. Which buffer solution has maximum pH?

- a) Mixture which is 0.1M in CH₃COOH and 0.1 M in CH₃COONa [pK_a(CH₃COOH)=4.74]
- b) Mixture which is 0.2M in CH₃COOH and 0.2 M in CH₃COONa
- c) Mixture which is 0.1M in NH₄Cl and 0.1 M in NH₄OH [pK_a

 $(NH_4^+)=9.26]$

d) All the solutions have equal pH which is 4.74

63.The pK_a of an amino acid is 9.15. at what pH amino acid is 5% dissociated?

a) 9.15 b) 4.85 c) 9.44 d)**7.87**

64. In what volume ratio should you mix 1.0M solution of NH₄Cl and NH₃

to produce buffer solution of pH $9.80?[pK_a(NH_3) = 4.74]$

a) **1:3.5** b) 3.5:1 c) 2:1 d)1:2

65.A weak acid HA has degree of dissociation X, thus $(pH - pK_a)$ is

a) P_x **b)** P_{1-x} **c)** $P_{1-x} + P_x$ **d)** $P_{1-x} - P_x$ 66.pH of blood is

a) **7.4** b) 6.4 c) 8.0 d)7.0

 $67.pK_{a1}$ of carbonic acid in blood at body temperature (37°C) is 6:1, hence ratio $[HCO_3^-]/[H_2CO_3]$ is approximately a) 1.3:1 b)1:1.3 c) 20:1 d)1:20 68. Acidosis may cause-----of the pH of blood a) Increase **b)** decrease c) no change d)is not related term 69.Important diagnosic analysis in the blood is a) $[H_2PO_4^-]/[H_2PO_{42}^{2-}]$ b) [HCO₃⁻]/[CO₂] d) [PO₃²⁻]/ [HCO4²⁻] c) $[CO_3^{2-}]/[HCO_3^{2-}]$

70.Oxygen from inhaled air combines with haemoglobin, and oxygenated haemoglobin ionises releasing a proton which is removed in the following reactions

- a) $H^+ + CO_2 \leftrightarrow HCO_3^-$
- b) $HCO_3^- + H_2O \leftrightarrow H_3O^+ + CO_3^{-2-}$
- c) $HCO_3^- + H^+ \leftrightarrow H_2CO_3$
- d) in all the above

www.Trb Tnpsc.Com

Common Ion Effect

a) 0.005	b)0.0025	c) 0.01	d)0.002
75.[Ag ⁺] in saturate	ed AgCl in presence	e of 1M KCl[K(Ag	Cl) = 1×10^{-10}] is
a) 1×10 ⁻⁵ M	b) 1×10 ⁻²⁰ M	c)1×10 ⁻¹⁰ M	d) 2×10 ⁻¹⁰ M

76.Degree of ionisation of 1 M HCOOH is decreased to a maximum extent

in presenceof	
---------------	--

- a) I M HCHO b) 1 M NaOH
- c) 1 M HCOONa d) equally for all

77.Solubility of Ag_2CrO_4 is decreased in presence of

a) AgNO₃ b)AgCl c)BaCrO₄ d)PbCrO₄

78.Blood pH is controlled by concentration of H_2CO_3 and HCO_3^- . in

presence of NaHCO3, pH of blood is

- a) **Increased** b) decreased
- c) no change d) statement is wrong

79.A weak acid (HA) is 4% ionised at 1 M percent ionisation is 1%

presence of A⁻ of

a) 0.04M b)0.16M c)0.02M d)0.10M

80.[OH⁻] in a solution prepared by mixing equal volumes of 0.M methyl

amine (CH₃NH₂, $K_b = 3.7 \times 10^{-4}$) and 0.60 M CH₃NH₃⁺Cl⁻

a) 3.7×10^{-4} M b)7.4 $\times 10^{-4}$ M c) 3.7×10^{-2} M d)1.85 $\times 10^{-4}$ M

Solubility Product

- 81. Expression for K_{sp} of $Hg_2 (NO_3)_2$ is
 - a) $[Hg^+]^2 [NO_3^-]^2$ b) $[Hg_2^+]^2 [NO_3^-]^2$
 - c) $[Hg^{2+}][NO_3^-]^2$ d) $[Hg_2^{2+}]^2 [NO_3^-]^2$

82. Solubility of BaSO₄ in aqueous solution is 1×10^{-5} M. hence, solubility in

- $0.1M \; BaCl_2 is$
- a) 1×10^{-1} M b) 1×10^{-9} M c) 1×10^{-4} M d) 1×10^{-5} M

83.Molar solubility of Al(OH)2 is increased in presence of

- a) NaOH b) HCl
- c) Both a&b d) None of these

84.A saturated solution prepared by dissolving Ag_2CO_3 in water has $[Ag^+] =$

- $2.56{\times}10^{\text{--}4}\,M,$ its $K_{sp}\,is$
- a) **8.4**×**10**⁻¹² b) 1.68×10⁻¹³
- c) 6.6×10^{-8} d) 1.6×10^{-2}

85.K_{sp} (BaSO₄) is 1.1×10^{-10} . in which case is BaSO₄ precipitated?

a) 100 ml of 4×10^{-3} M BaCl₂ + 300ml of 6.0×10^{-4} M Na₂SO₄

- b) 100 ml of 4×10^{-4} M BaCl₂ + 300ml of 6.0×10^{-8} M Na₂SO₄
- c) 300 ml of 4×10^{-4} M BaCl₂ + 300ml of 6.0×10^{-8} M Na₂SO₄
- d) In all cases

86.K_{sp} of Al(OH)₃ is 1.0×10^{-15} . pH of the saturated solution is about

a) 5.0 b) 9.0 c) 4.1 **d**)**10.4**

 $87.K_{sp}\, of\, H_2S$ is $1{\times}10^{-22}$. [S^2-] in a buffer of pH 6 is

a) $1 \times 10^{-16} M$ b) $1 \times 10^{-12} M$ c) $1 \times 10^{-10} M$ d) $1 \times 10^{-8} M$

88.Ksp of CdS is 8.0×10^{-27} and that of H₂S is 1×10^{-22} . 1×10^{-14} M, CdCl₂

solution is precipitated on passing H₂S when pH ia about

a) 4 b) 6 c) **5** d)7

89.K_{sp} of Mg(OH)₂ is 1.8×10^{-11} at 30°C. Its molar solubility is.....at pH =12

a) $1.8 \times 10^{-11} \text{ M}$ b) $1.8 \times 10^{-9} \text{ M}$ c) $1.8 \times 10^{-54} \text{ M}$ d) $1.8 \times 10^{-7} \text{ M}$

90.In group III analysis buffer used to precipitate cations as hydroxide is

- a) NH₄Cl +NH₄OH
- b) $HCO_3 + CO_2$
- c) $CH_3COOH + C_6H_5COONa$
- d) $C_6H_5COOH + C_6H_5COONa$

Hydrolysis

91.100 ml of 0.02 M benzoic acid ($pK_n = 4.2$) is titrated using 0.02M NaOH.

pH after 50ml and 100ml of NAOH have been added are

a) 3.50, 7 b)4.2, 7 c)4.2, 8.1 d)4.2, 8.25

92.pH of 0.01 M aqueous solution of NaX, NaY and NaZ are 8,9 and 10 respectively. Strongest acidof HX, HY and HZ is

a) **HX** b)HY c) HZ d) Cant be predicted

93.40 ml of 0.025M solution of the protonated form of the amino acid phenyl alanine (H_2A^+) is treated with ml of 0.1M NaOH. pH at this stage is

 $(pK_{a1}=1.82, pK_{a2}=9.13 \text{ of } H_2A^+)$

a) **5.48** b)7.00 c)1.82 d)9.13

94.pH of 0.05M calcium acetate solution ($pK_a=4.74$) is

a) 8.72 b) 8.87 c)7.00 d)1.30

95. Which of the aqueous solution turns blue litmus red?

a) NH₄Cl **b)** Al(H₂O)₆³⁺ **c)** Fe(H₂O)₆³⁺ **d)** all of these

96.pK_{a1}, pK_{a2}, and pK_{a3} of H_3PO_4 are respectively x,yand z. pH of 0.01 M

Na₂HPO₄ solution is

a) 2 b) $\frac{x+y}{2}$ c) $\frac{y+z}{2}$ d) $\frac{x+y+z}{2}$

97.100ml of 0.01 M CH₃COOH is titrated with 0.01 MKOH. At wat point

pH is maximum?

- a) After addition of 100ml of KOH
- b) After addition of 75ml of KOH
- c) After addition of 50ml of KOH
- d) After addition of 25ml of KOH

 $98.pK_b$ of NH_3 is 4.74 and pK_b of A^- , B^- , and C^- are 4,5, and 6 respectively.

Aqueous solution of 0.01 M ha pH in the increasing order

a) $NH_4A < NH_4B < NH_4C$

b) $NH_4C < NH_4B < NH_4A$

- c) $NH_4C < NH_4A < NH_4B = 7$
- d) All have equal pH being salt of weak acid and weak base

 $99.pK_1$ and pK_2 of H_2 CO₃ are respectively 6.38 and 10.26. pH of 1M and

0.1M NaHCO3 are respectively

a) 8.32, 7.32 b) 7.32, 8.32 c) 8.32, 8.32 d) 7.32, 7.32

100. Degree of hydrolyss of the following is independent od

concentration

- I. NH₄CN
- II. NH₄HCO₃
- III. NaHS
- IV. CH₃NH₃Cl

a) I,II,III,IV b)I,IV c) I,III,IV d) I,II,III

Acid – base Titration and indicator

- 101. Following are some of the certain facts of Ostwalds theory of acidbase indicators
 - A. Ionised and unionised foms have different colours
 - B. Colour change is indicated at the end point when unionised form changes to ionised form due to change in pH

C. Benzenoid form changes to quinonoid form and vice-versa due to change in pH

Select the correct facts.

- a) A,B,C b) A,C c) A,B d) B, C
- 102. Select the correct statements
 - a) Methyl orange is red in alkali solution and yellow in acid solution
 - b) Phenolphthalein is pink in alkali solution and colourless in acid solution
 - c) Both a&b
 - d) None of the above
- 103. Indicator can exist in two forms depending on the medium

Select the correct statements.

- a) Methyl orange assumes form (A) in alkali solution and form (B) in acid solution
- b) Phenolphthalein assumes form (A) in acid solution and form (B) in alkaline solution
- c) Thymoohthalein assumes form (A) ain acid solution and form (B) in alkali solution
- d) All Of the above

104. For any weak acid indicator HIn ionising as $HIn \leftrightarrow H^+ + In^-$ Colour the unionised form (HIn) is observed when a) $\frac{In}{HIn} = \frac{1}{10}$ b) pH =pK_n-1 c) Both a&b d) None of these

105. In the above case colour of the ionised form (In⁻) is observed when

a) $\frac{In}{HIn} = 10$ b) pH =pK_a+1 c) both a&b d) None of thes

106. Select the correct statements about indicators.

- a) Near the equivalence point $pH = pK_a$ for weak acid indicator and $pH = (14 pK_b)$ for weak base indicator
- b) Most indicators have a transition range of two pH points
- c) Methyl orange assumes quinonoid form in acid solution
- d)All of the above statements are correct
- 107. pK_a of the indicator is. At the equivalence point pH isa) 5b)10c)7.5d)7.0
- 108. An indicator is a weak acid and pH range of its colour s 3 to5. If the neutral points of the indicator lies in the centre of the hydrogen ion concentration corresponding to given pH range then pH at the equivalence points is

a) **3.3** b)4.0 c)7.0 d)5.0

109. In the titration of weak acid with strong base which indicator cant be used

a) Methyl orange b) phenolphthalein

c)both a&b d) none of these

110. In the titration of weak base with strong acid indicator cant be useda) Methyl orangeb) phenolphthalein

c)both a&b d) none of these

111. Suitable indicator to be used in the titration of weak acid versus strong base is

a)**phenolphthalein** b)thymophthalein c)botha&b d)None of these

112. Titration curve if a strong base is titratd with stron acid is

113. Phenolphthalein cant be used in the titration ofa) HCl with NaOHb) CH₃COOH with NaOH

c) HCl with NH₄OH d)CH₃COOH with NH₄OH

- 114. In the titration of Na₂CO₃ with HCl, indicator used isa) Phenolphthalein **b)methyl red**
 - c) both a&b d) none of these
- 115. 100ml of 0.1M HCl is titrate using 0.1M NaOH using phenolphthalein indicator. pH after 50ml of NaOH has been added is
 a) 7.0 b)-1.48 c)6.0 d)1.48