Exercise 3 (Taking It Together)

- 1. Which of the following reagents listed below could be added to water to make 0.10 M solution of NH_4^+ ?
 - a) NH₃
- b) NH₄Cl
- c) NH₂Cl
- d) CH₃CONH₂
- 2. Autoionisation of NH3 is shown below
 - a) $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$
 - b) $2NH_3 + 2Na \rightleftharpoons 2NaNH_2 + H_2$
 - c) $NH_3 + NH_3 \rightleftharpoons NH_2^- + NH_4^+$
 - d) None of the above
- 3. In the reaction,

$$[AI(H_2O)_6^{3+}] + H_2O \rightleftharpoons [AI(H_2O)_5(OH)^{2+}] + H_3O^{-1}$$

- a) $AI(H_2O)_6^{3+}$ is a base b) $AI(H_2O)_6^{3+}$ is an acid
- c) Both (a) and (b)
- d) None of these
- Which is true about Zwitter ion NH₃CH₂COO?? 4.
 - a) NH₂CH₂COO⁻ is its conjugate base
 - b) H₃NCH₂COOH is its conjugate acid
 - c) Both (a) and (b)
 - d) None of the above
- 5. Autoionisation of liquid NH₃ is

$$2NH_3 \rightleftharpoons NH_4^+ + NH_2^-$$

with
$$K_{NH3} = [NH_4^+] [NH_2] = 10^{-30} \text{ at } -50^{\circ}\text{C}$$

Number of amide ions NH_2^- . Present per mm³ of pure liquid NH_3 is

- a) 600
- b) 300
- c) 200
- d) 100
- BOH is a weak base. Molar concentration of BOH that provides a [OH] of 1.5 x 10⁻³ M 6. $[K_b(BOH) = 1.5 \times 10^{-5} M]$ is

a) 0.15 M

b) 0.1515 M

c) 0.0015 M

- d) 1.5 x 10⁻⁵ M
- 7. pH of the solution containing 50.0 mL of 0.3 M HCl and 50.0 mL of 0.4 M NH₃ is

$$[pK_a(NH_4^+) = 9.26]$$

a) 4.74

b) 9.26

c) 8.78

d) 4.63

- 8. Which of the following solutions will have pH of 4.74?
 - a) 100 mL of 1 M CH₃COOH (pK_a = 4.74) at the equivalent point using NaOH
 - b) 50 mL of 1 M CH₃COONa + 25 mL of 1 M HCl
 - c) 50 mL of 1 M of CH₃COOH + 25 mL of 1 M NaOH
 - d) Both (b) and (c)
- 9. pH at which an acid indicator with $K_a = 1 \times 10^{-5}$ changes colour when the indicator is 1×10^{-3} M, is
 - a) 5

b) 3

c) 8

- d) 4
- 10. pH at which a basic indicator with $K_b = 1.0 \times 10^{-10}$ changes colour when the indicator is 10^{-2} M is
 - a) 10
- b) 2

c) 4

- d) 8
- 11. A weak base B, has basicity constant $K_b = 2 \times 10^{-5}$. The pH of any solution in which [B] = [BH⁺] is
 - a) 4.7
- b) 7.0
- c) 9.3
- d) 9.7
- 12. Which of the following mixtures will be a buffer solution when dissolved in 500.00 mL of water?
 - a) 0.200 mol of aniline and 0.200 mol of HCl
 - b) 0.200 mol of aniline and 0.400 mol of NaoH
 - c) 0.200 mol of NaCl and 0.100 mol of HCl

d) 0.200 mol of aniline and 0.100 mol of HCl

- 13. The correctly balanced net ionic equation for the reaction that occurs when a solution of acetic acid is mixed with a solution of sodium carbonate is
 - a) CH₃COOH (aq) + CO_3^{2-} (aq) \rightleftharpoons CH₃COO-(aq) + HC O_3^- (aq)
 - b) H_3O^+ (aq) + CO_3^{2-} (aq) $\rightleftharpoons HCO_3^-$ (aq) + H_2O
 - c) $CH_3COOH(aq) + Na_2CO_3(aq) \rightleftharpoons CH_3COO^{-}(aq) + NaHCO_3(aq) + Na^{+}(aq)$
 - d) $CH_3COOH(aq) + OH(aq) \rightleftharpoons CH_3COO(aq) + H_2O$
- 14. $S_2O_3^{2-}(aq) + 2H_3O^+(aq) \rightleftharpoons S(s) + H_2SO_3(aq) + H_2O$

Rate = k
$$[H_3O^+][S_2O_3^{2-}]$$

Reaction is faster in

- a) 0.1 M HCl
- b) 0.1 M CH₃COOH
- c) 0.1 M NH₄OH
- d) 0.1 M NaOH
- 15. pH of 0.01 M (NH₄)₂SO₄ and 0.02 M NH₄OH buffer (pK_a of NH₄⁺ = 9.26) is
 - a) 4.74 + log 2
- b) 4.74 log 2
- c) $4.74 + \log 1$
- d) $9.26 + \log 1$
- 16. 100 mL of pH = 6 (acidic) is diluted to 1000 mL by H_2O pH will increase approximately by
 - a) 9 unit
- b) 1 unit
- c) 0.7 unit
- d) 0.7 unit
- 17. HCOOH and CH_3COOH solution have equal pH. If K_1/K_2 (ratio of acid ionisation constants) is 4 their molar concentration ratio will be
 - a) 2

b) 0.5

c) 4

- d) 0.25
- 18. pH of Ca(OH)₂ is 12. Milliequivalents of Ca/(OH)₂ present in 100 mL solution will be
 - a) 1

- b) 0.5
- c) 0.05
- d) 5
- 19. A buffer solution constants 100 mL of 0.01 M CH_3COOH and 200 mL of 0.02 M CH_3COONa . 700 mL of water is added pH before and after dilution are (pK_a = 4.74)
 - a) 5.04, 5.04
- b) 5.04, 0.504

c) 5.04, 1.54

d) 5.34, 5.34

20. Which is the set of amphiprotic species?

a) H_3O^+ , HPO_4^{2-} , HCO_3^-

b) H_2O , HPO_3^{2-} , $H_2PO_2^{-}$

c) HSO_4^- , $H_2PO_4^-$, $H_2PO_3^-$

d) All of these

21. pH of a mixture containing 0.10 M X^- (base) and 0.20 M HX with pK_b(X^-) = 4 is

a) $4 + \log 2$

b) 4 - log 2

c) $10 + \log 2$

d) 10 - log 2

22. Assuming 100% ionisation which will have maximum pH?

a) 0.01 M NH₄Cl

b) 0.01 M (NH₄)₂SO₄

c) 0.01 M (NH₄)₃PO₄

d) Equal

23. $H_2O + H_3PO_4 \rightleftharpoons H_3O^+ + H_2PO_4^-$, pK₁ = 2.15

 $H_2O + H_2PO_4^- \rightleftharpoons H_3O^+ + HPO_4^{2-}$, pK₂ = 7.20

Hence, pH of 0.01 M NaH₂PO₄ is

a) 9.35

b) 4.675

c) 2.675

d) 7.350

24. To prepare a buffer of pH 8.26, amount of $(NH_4)_2$ SO₄ to be added into 500 mL of 0.01 M NH₄OH solution [pK_a(NH₄⁺) = 9.26]

a) 0.05 mol

b) 0.025 mol

c) 0.10 mol

d) 0.005 mol

25. % ionisation of a weak acid can be calculated using the formula

a) $100\sqrt{\frac{K_a}{c}}$

b) $\frac{100}{1+10^{[pk_a-pH]}}$

c) Both (a) and (b)

d) None of these

26. pH of a mixture of 1 M benzoic acid (p K_a = 4.20) and 1 M sodium benzoate is 4.5. In 200 mL buffer. Benzoic acid is

a) 200 mL

b) 150 mL

c) 100 mL

d) 50 mL

27. The solubility of A_2X_3 is S mol L⁻¹. Its solubility product is

a) 6 S⁴

b) 64 S⁴

	c) 36 S ⁵	d) 108 S ⁶				
28.	If the freezing point of 0.1 molal HA(aq) is -0.2046 $^{\circ}$ C, then pH of the solution [K _f (H ₂ O) = 1.86 $^{\circ}$ mol $^{-1}$ kgl					
	a) 1	b) 2				
	c) 1.3	d) 1.7				
29.	If the equilibrium const then pH of 0.1 M Na4 is	ant of the reaction of weak acid HA with strong base is 10^8 .				
	a) 5	b) 9				
	c) 7	d) 8				
30.	H ₂ O is Lewis acid and Lo	owry-Bronsted acid in				
	a) $H_2O + H_2O \rightleftharpoons H_3O^+ +$	НО				
	b) $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH$					
	c) CaO + $H_2O \rightleftharpoons Ca(OH)_2$					
	d) All of the above					
31.	pH of mixture of HA and	d A ⁻ buffer is 5 K _b of A ⁻ = 10^{-10} Hence [HA]/[A ⁻] will be				
	a) 1	b) 10				
	c) 0.1	d) 100				
32.	At 4° C. $K_w = 1 \times 10^{-16}$. A	solution with pH = 7.5 at 4° C will				
	a) turn the litmus red					
	b) turn red litmus blue					
	c) turn turmeric paper brown					
	d) be neutral to litmus					
33.	Maximum pH will be of					
	a) 0.005 M HCl	b) 0.005 N H ₂ SO ₄				
	c) 0.005 M CH₃COOH	d) equal				
34.		pain reliever with $pK_a = 2$. Two tablets each containing 0.09g in 100 mL solution. pH will be				

b) 1.0

a) 0.5

	c) 0.0	d) 2.0
35.	A monoacid base is 109	% ionised at 1 M. Hence, K₀ is
	a) 1.0 x 10 ⁻²	b) 1.1 x 10 ⁻²
	c) 1.0 x 10 ⁻²	d) 1.0 x 10 ⁻⁴
36.	At equal concentration	, which base has maximum pH?
	a) BOH $(K_b = 10^{-2})$	b) B^1OH ($K_b = 10^{-3}$)
	c) $B^{11}OH$ ($K_b = 10^{-5}$)	d) Equal
37.	Conjugate acid of ${\rm H}F_2^-$	is
	a) HF	b) H ₂ F ₂
	c) F_2^-	d) H ⁺
38.	$2H_2O \rightleftharpoons H_3O^+ + OH^-$	
	$K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C. H}$	lence, K _a is
	a) 1 x 10 ⁻¹⁴	b) 5.55 x 10 ⁻¹³
	c) 18 x 10 ⁻¹⁷	d) 1.00 x 10 ⁻⁷
39.	Number of (OH) ⁻ in 1 m	nL solution of pH = 13 is
	a) 1 x 10 ⁻¹³	b) 6.00×10^7
	c) 6.00 x 10 ¹³	d) 6.02 x 10 ¹⁹
40.		Cl are mixed to make total volume of 300 mL. If pH of the $_{3}(NH_{4}^{+})$ = 9.26 then volume ratio of NH ₄ OH and HCl will be
	a) 1:1	b) 1:2
	c) 2:1	d) 3:1
41.		x moles of lead acetate and 0.1 mole of acetic acid in 1 L on of pH = 5.04 . Hence, x is
	a) 0.2	b) 0.05
	c) 0.1	d) 0.02
42.	100 mL of 2 M of mono	bbasic acid (p K_a = 5) is noutralised by NaOH, at the equivalence
	a) 7	b) 6
	c) 95	d) 45

43. pH of a saturated solution of $Ba(OH)_2$ is 12 Hence k_{sp} of $Ba(OH)_2$ is

- a) $5 \times 10^7 \, \text{M}^3$
- b) $5 \times 10^4 \text{ M}^2$
- c) $1 \times 10^6 \, \text{M}^3$
- d) $4 \times 10^6 \text{ M}^4$

44. K_{sp} of CaSO₄ is 4 x 10⁻¹² CaSO₄ is precipitated on mixing equal volumes of the following solution.

- a) 3×10^6 M CaCl₂ and 3×10^6 M (NH₄)₂SO₄
- b) 4×10^6 M CaCl₂ and 3×10^6 M (NH₄)₂SO₄
- c) 6 x 106 M CaCl2 and 3 x 106 M (NH4)2SO4
- d) in all the above cases

45. A solution is a mixture of 0.05 M NaCl and 0.05 M Nal. The concentration of iodide ion in the solution when AgCl just starts precipitating is equal to

- a) 4 x 10⁶ M
- b) 2 x 10⁸ M
- c) 2 x 10⁻⁷ M
- d) 8 x 10¹⁶ M

46. The pK_a of acetylsalicylic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is about 2.3 and the pH in the small intestine is about 8 Aspirin will be

- a) unionised in the small intestine and in the stomach
- b) completely ionised in the small intestine and in the stomach
- c) ionised in the stomach and almost unionised in the small intestine
- d) ionised in the small intestine and almost unionised in the stomach
- 47. The following reaction occurs in the body

$$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3$$

If CO₂ escapes from the system

- a) pH will decrease
- b) hydrogen ion concentration will decrease
- c) H₂CO₃ concentration remains unaltered
- d) forward reaction will be promoted

48. The compound whose 0.1 M solution is basic, is

- a) ammonium acetate
- b) ammonium chloride
- c) ammonium sulphate
- d) sodium acetate

- 49. Which compound will liberate CO₂ from NaHCO₃?
 - a) CH₃OH
- b) CH₃NH₂
- c) (CH₃)₄N⁺OH
- d) CH₃NH₃Cl
- 50. The following equilibrium is established when hydrogen chloride is dissolved in acetic acid

$$HCI + CH_3COOH \rightleftharpoons CI + CH_3COOH_2^+$$

The set that characterises the conjugate acid-base pair is

- a) (HCl, CH₃COOH) and (CH₃COO H_2^1 , Cl)
- b) (HCl, $CH_3COOH_2^+$) and (CH_3COOH, Cl^-)
- c) (CH₃COOH₂⁺, HCl) and (Cl⁻, CH₃COOH)
- d) (HCl, Cl $^{-}$) and (CH $_{3}$ COO H_{2}^{+} , CH $_{3}$ COOH)
- 51. $H_3PO_4 + H_2O \rightleftharpoons H_3O^4 + H_2PO_4^-$; K_{a1}

$$H_2PO_4 + H_2O \rightleftharpoons H_3O^4 + HPO_4^{2-}$$
; K_{a2}

$$HPO_4^{2-} + H_2O \rightleftharpoons H_3O^4 + PO_4^{3-}$$
; K_{a3}

Which is the correct order of Ka values?

- a) $K_{a1} > K_{a2} < K_{a3}$
- b) $K_{a1} < K_{a2} < K_{a3}$
- c) $K_{a1} > K_{a2} > K_{a3}$
- d) $K_{a1} < K_{a2} > K_{a3}$
- 52. Some chemists at ISRO wished to prepare a saturated solution of a silver compound and they wanted it to have the highest concentration of silver ion possible. Which of the following compounds would they use?

$$K_{sp}(AgCI) = 1.8 \times 10^{-10}, K_{sp}(AgBr) = 5.0 \times 10^{-13},$$

$$K_{sp}(Ag_2CrO_4) = 2.4 \times 10^{-12}$$

- a) AgCl
- b) AgBr
- c) Ag₂CrO₄
- d) Any of them
- 53. "Ostwald dilution law" constitutes one of the postulates of the "Arrhenius theory" of "electrolytic dissociation" It ("Ostwald dilution law") is valid for
 - a) strong electrolyte
 - b) weak electrolyte
 - c) both strong and weak electrolytes

- d) None of the above
- 54. The pH of 10⁻⁸ N HCl is approximately
 - a) 8

b) 7.02

c) 7

- d) 6.96
- 55. NH₄OH is blue towards litmus. HCl is red towards litmus, hence, NH₄Cl will be... towards it.
 - a) red
- b) blue
- c) green
- d) colourless
- 56. pH of 0.01 M HS⁻ will be

a) pH =
$$7 + \frac{pK_a}{2} + \frac{\log C}{2}$$

b) pH =
$$7 - \frac{pK_b}{2} + \frac{\log C}{2}$$

c) pH =
$$\frac{pK_1 + pK_2}{2}$$

d) pH = 7 +
$$\left(\frac{pK_a - pK_b}{2}\right)$$

- 57. Solution of aniline hydrochloride is X due to hydrolysis of Y. X and Y are
 - a) basis $C_6H_5NH_3^+$
- b) acidic $C_6H_5NH_3^+$
- c) basis Cl-
- d) acidic Cl-
- 58. Which is a part of blood buffer?
 - a) HCO_3^- , H_2CO_3
- b) CO_3^{2-} , HCO_3^{-}
- c) CH₃COOH, CH₃COO⁻
- d) SO_4^{2-} , HSO_4^{-}
- 59. Which is not amphoteric?
 - a) HSO_4^-
- b) H₂P O_2^-
- c) H₂O
- d) NH₃
- 60. pH of the solution after NaCl solution is electrolysed will
 - a) remain constant
- b) increase
- c) decrease
- d) Can't be determined
- 61. FeCl₃ solution is acidic due to hydrolysis of
 - a) FeCl₃
- b) Fe³⁺

c) Cl

- d) None of these
- 62. Dissociation constant of a weak acid is decreased by

a, addition of a strong act	a)	addition	of a	strong	acio
-----------------------------	----	----------	------	--------	------

- b) addition of a salt of the above weak acid
- c) decreasing temperature
- d) diluting the solution
- 63. Silver iodide is used in cloud seeding to produce rain

$$AgI \rightleftharpoons Ag^+ (aq) + I^- (aq)$$
:

$$K_{sp} = 8.5 \times 10^{-7}$$

AgNO₃ and KI are mixed to give $[Ag^+] = 0.010 \text{ M}$; $[I^-] = 0.015 \text{ M}$. Will Agl precipitate?

- a) Yes
- b) No
- c) Can't say
- d) This depends on $[NO_3^-]$ and $[K^+]$
- Slaked lime, $Ca(OH)_2$ is used extensively in sewage treatment. What is the maximum pH that can be established in $Ca(OH)_2(aq)$?

$$Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2OH^{-}(aq), K_{sp} = 5.5 \times 10^{-6}$$

- a) 1.66
- b) 12.35

c) 7

- d) 14
- 65. There is no effect of dilution on pH of the following
 - a) 0.01 M CH₃COONa + 0.01 M CH₃COOH buffer
 - b) 0.01 M CH₃COONH₄
 - c) 0.01 M NaH₂PO₄
 - d) in all the above cases
- 66. pK_a of lactic acid is 5. pH of 0.005 M calcium lactate solution is
 - a) 10.5
- b) 8.5
- c) 5.0
- d) 9.7
- 67. K_{sp} of Mg(OH)₂ is 1 x 10⁻¹². 0.01 M MgCl₂ will be precipitating at the limiting pH
 - a) 8

b) 9

- c) 10
- d) 12

75.

68.	M(OH)	$_{x}$ has $K_{sp} = 4 \times 10^{-3}$	⁻¹² and solubility	10 ⁻⁴ M.	Hence, x is
	a) 1		b) 2		
	c) 3		d) 4		
69.	10 mL	of 10 ⁻⁶ M HCl sol	ution is mixed w	ith 90 m	L H₂O pH will change approximately
	a) by 1	unit	b) by 0.3 unit		
	c) by 0	.7 unit	d) by 0.1 unit		
70.	-	CH₃COO ⁻ has is 9 equivalence poir	*		n 0.01 M CH₃COOH is neutralised 50% e respectively
	a) 4.63	, 8.22	b) 4.74, 8.22		
	c) 2.37	, 4.11	d) 4.74, 8.37		
71.	Ionisat	ion constant of v	vater at 298 K (K	C _w = 1 x 1	.0 ⁻¹⁴) is
	a) 1 x 1	.0 ⁻¹⁴	b) 1 x 10 ⁻⁷		7.0
	c) 1.8 x	10 ⁻¹⁶	d) 1.8 x 10 ⁻⁵		
72.	-	the mixture con $5O_4$ is $[pK_a(NH_4^+)]$	_	of 0.01 N	M NH₄OH and 100 ML of 0.01 M
	a) 4.74		b) 9.26		
	c) 5.04		d) 9.56		
73.	the the	ere are no citrate n the lemon juic	salts present, th	nen wha	id in the lemon juice is citric acid and t will be the citric acid concentration e first hydrogen of citric acid is
		HCit ⇌ H ⁺ + Cit	$K_a = 8.4 \times 10^{-4}$	mol L ⁻¹	
	a) 8.4 x	(10 ⁻⁴ M	b) 4.2 x 10 ⁻⁴ M		
	c) 16.8	x 10 ⁻⁴ M	d) 12.0 x 10 ⁻² N	/	
74.	x 10 ⁻⁵ r	espectively. If a (0.01 M solution	of MX is	are 1.8×10^{-10} , 4×10^{-3} , 4×10^{-8} and 6 added dropwise to a mixture precipitated first will be
	a)	MA		b)	МВ
	c)	MC		d)	MD
Atmos	pheric b	ehaviour is shov	vn by		

H₂CO₃ and Al₂O₂

a)

 $HC\textbf{0}_3^-$ and H_2O

b)

	c)	HCO_3^- and H_3O^+	c)	H₂CO₃ and H₂O		
76.	Which	Which of the following will not function as buffer solution?				
	a)	NaCl + NaOH	b)	Borax + Boric acid		
	c)	Na H ₂ PO ₄ + Na ₂ HPO ₄	d)	NH ₄ Cl + NH ₄ OH		
77.		I –base indicator has a K_p of 3.0 x orm is blue. Then	(10 ⁻⁵ . 1	The acid form of the indicator is red and the		
	a)	pH is 4.05 when indicator is 75%	% red			
	b)	pH is 5.00 when indicator is 75%	% blue			
	c)	Both (a) and (b) are correct				
	d)	None of the above is correct				
78.	The pH added?		H increa	ses, when which of the following substance is		
	a)	Na HSO ₄	b)	HCIO ₄		
	c)	NH ₄ NO ₂	d)	K₂CO₃		
79.		OmL sample of 0.0100 M Ba (OH) lence point is)₂ is titra	ated with 0.0100 M HCl. The solution at the		
	a)	$3.33 \times 10^{-3} M Ba Cl_2$	b)	$5.00 \times 10^{-3} \ M \ Ba \ Cl_2$		
	c)	$2.50 \times \times 10^{-3} M Ba Cl_2$	d)	$1.00 \times \times 10^{-2} \ M \ Ba \ Cl_2$		
80.		contains 100.00 mL of 0.100 M Fing samples of barium acetate so		o prepare a buffer with pH =pK which of the nould be added to the flask?		
	a)	50.00 mL of 0.400 <i>M Ba</i> (<i>OAc</i>)	2			
	b)	25.00 mL of 0.200 <i>M Ba</i> (<i>OAc</i>))2			
	c)	50.00 mL of 0.0200 M Ba (OAc)2			
	d)	100.00 mL of 0.100 <i>M Ba (OAc</i>)2			
81.	require	•	t. What	th 0.1200 M KOH and 38.62 ml of base were was the pH of the titration mixture. When acid)=4.74)		
	a)	2.94	b)	3.54		
	c)	4.74	d)	5.74		

82. In the following reaction,

 $[Cu(H_2O)_3(OH)^+]+[Al(H_2O)_6^{3+}]\rightarrow [Cu(H_2O)_4^{2+}]+[A(H_2O)_5(OH)^{+2}]$

- (A)
- (B)
- (C)
- (D)
- a) (A) is a base and (B) the acid
- b) (C) is the conjugate acid of (A) and (D) is the conjugate base of (B)
- c) Both (a) and (b) are correct
- d) None of the above is correct
- 83. Which reacts with Na OH or which is an acid salt?
 - a) NaH₂PO₂

- b) Na₂HPO₃
- c) Both a) and b)
- d) None of these
- 84. pH of the following solution is not affected by dilution
 - a) 0.01 M NaHC O₃
 - b) buffer of 0.01 M CH₃COONa and 0.01 M CH₃COOH
 - c) 0.01 M CH₃COONH₄
 - d) All of the above
- 85. Which of the hydrated species can exist?

I: H₅O₂⁺

II: H₃O⁺

III: $H_3O_2^+$

IV: H₅O₃⁻

Select the correct alternate.

a) II only

b) I and II

c) I,II and III

- d) I,II,III and IV
- 86. For a polybasic acid stepwise ionisation constant are K_{eq}, K_{eq}, \dots . Their values are
 - a) $K_{eq} < K_{eq.} < K_{eq.}$
- b) $K_{eq} > K_{eq.} > K_{eq.}$
- c) $K_{eq} > K_{eq.} > K_{eq.}$
- d) $K_{eq} > K_{eq.} = K_{eq.}$
- 87. What is $[NH_4^+]$ in a solution that is 0.02 M NH₃ and 0.01 M NH₃ and 0.01 M KOH? $[K_s(NH_3)=1.8 \times 10^{-3}]$
 - a) $3.6 \times 10^{-5} M$
- b) $1.8 \times 10^{-8} M$

c) $0.9 \times 10^{-5} M$

d) $7.2 \times 10^{-5} M$

88.	Consid	ler the fo	ollowing examples						
	I: bloo	d	II: Saline solution	III: bei	nzoic acid + sodium benzoate				
	Solutio	Solution (s) with n buffer capacity is/are							
	a)	1, 11		b)	II				
	c)	11,111		d)	I, III				
89.	Buffer	index of	f a buffer of 0.1 M NH ₄ 0	OH and 0	.1 m NH₄ Cl is				
	a)	0.052		b)	0.115				
	c)	0.025		d)	0.230				
90.	pK_s of	a weak a	acid HA is 4.0. Effective	range of	a buffer of HA and A⁻is about pH				
	a)	3 to 4		b)	3 to 6				
	c)	3 to 5		d)	4 to 5				
91.	$p K_{\mathcal{S}}$ of	BH+ is 8	.0. A buffer of B and BH	I ⁺ has eff	ective range of about pH				
	a)	5 to 7		b)	6 to 8				
	c)	6 to 7		d)	7 to 9				
92.	K_a of HCl is	нсоон і	is 1.8x10 ⁻⁴ . [HCOO ⁻] in	a solutio	on that is both 0.015 M HCOOH and 0.020 M				
	a)	3.5x 10	$0^{-2}M$	b)	$1.5 \times 10^{-2} M$				
	c)	1.6 x 1	$0^{-3}M$	d)	$1.3.5 \times 10^{-4} M$				
93.	0.2 M	AcOH is	% dissociation in 0.1	M HCl (A	X_a of AcOH=1.8 x 10^{-5}).				
	a)	0.018%	6	b)	0.036%				
	c)	1.8%		d)	3.6%				
94.	-	H of a so .8x10 ⁻⁵)	•	0 mL of 0	0.2 M HCl is mixed with 50 mL of 0.20 M AcOH				
	a)	0.70		b)	0.30				
	c)	1.00		d)	4.51				
96.	The ac		ition (hydrolysis) const	ant of Zn	10^{2+} is 1.0 x 10^{-9} . Hence, pH of 0.001 M solution				
	a)	9.0		b)	3.0				
	c)	6.0		d)	7.0				

97.	Conjuga	ate base of Zn²+			
	a)	Zn(OH) ⁺		b)	Zn(OH)₂
	c)	ZnO	d)	Zn(H₂O) ²⁺
98.	Basic di	ssociation constant of Zn(OH)+ is	if acid	ionisati	on constant of Zn^{2+} is 1.0×10^{-9} .
	a)	1×10^{-9}	b)	1 x10 ⁹	
	c)	$1x10^5$	d)	1 x10 ⁻	5
99.	At what	t pH will a 1.0 x $10^{-3}\ M$ solution	of an inc	licator v	with $K_b = 1.0 \text{x} 10^{-10}$ change colour
	a)	3.0	b)	4.0	
	c)	10.0	d)	7.0	
100.	An acid	Indicator is% in its basic form	at a pH	of 5 [<i>K</i> _a	$=1\times10^{-5}.$
	a)	20%	b)	40%	
	c)	50%	d)	100%	
101.	Which	one of the following is most solu	ble?	C	
	a)	$Cus (K_{eq} = B \times 10^{17})$	b)	MnS (K	$X_{sp}=7\times 10^{-16})$
	c)	${\rm Bi_2S_3}(K_{eq}=7\times 10^{20})$	d)	Ag₂S(K	$_{sp} = 7 \times 10^{-51}$)
102.		. distilled water has [H₃O+] conce mperature will be	entration	n equal t	to 1 x 10^{-6} mol/L The value of K_W at
	a)	1x10 ⁻⁶	b)	1× 10	-9
	c)	1× 10 ⁻¹³	d)	1× 10	-15
103.	The sol	ubility of AgCl will be minimum i	n		
	a)	0.001 M Ag NO ₃	b)	0.01 M	Na Cl
	c)	0.01 M CaCl ₂	d)	pure w	ater
104.	The pH	value of a 10 M solution of HCl i	S		
	a)	less than 0	b)	equal t	0 0
	c)	equal to 1	d)	equal to	o 2
105.	pH yet	· ·	n of the	bufferin	3.85 that efficiently resists changes in ag agents. Which one of the following to use?

	a)	m-chlorobenzoic acid (p $K_a=3.98$)					
	b)	p-chlorocinnamic $\operatorname{acid}(pK_a=4.41)$					
	c)	2, 5-dthydroxy benzoic acid(p $K_a = 2.97$)					
	d)	acetoacetic acid (p $K_a = 3.58$)					
106.		lubility product of CuS, CdS and HgS are 10^{-31} , 10^{-44} , 10^{-64} , respectively. The solubility se sulphides are in the order					
	a)	CdS > HgS > CuS	b)	HgS > CdS > CuS			
	c)	CdS > CuS > HgS	d)	CuS > CdS > HgS			
107.		ncentration of [H ⁺] and concentra weak monobasic acid is [Ionic p		$[OH^{-}]$ of a 0.1 M aqueous solution of 2% f water =1 x 10^{-14}]			
	a)	$0.02x10^{-3} \text{ M} \text{ and } 5 x10^{-11} \text{ M}$					
	b)	$1x10^{-3}$ M and $3 x10^{-11}$ M					
	c)	2x10 ⁻³ M and 5 x10 ⁻¹² M					
	d)	$3x10^{-2}$ M and $5 x10^{-13}$ M					
108.	The sol		calcium	fluoride is 2 x10 ⁻⁴ mol L ⁻¹ . Its solubility			
	a)	12 x10 ⁻²	b)	14x10 ⁻⁴			
	c)	22 x10 ⁻¹¹	d)	32 x10 ⁻¹²			
109.	The ion	isation constant of phenol is hig	her than	that of ethanol because			
	a)	phenoxide ion is bulkier than et	hoxide				
	b)	phenoxide ion is stronger base	than eth	oxide			
	c)	phenoxide ion is stabilized thro	ough del	ocalisation			
	d)	phenoxide ion is less stable than ethoxide					
110.	A solut	ution having pH=13 contained H ⁺ ions in 1 ml of solution which is					
	a)	6.02x10 ⁷	b)	4.45x10 ⁵			
	c)	8.42x10 ⁸	d)	6.15x10 ⁷			
111.	How m	any times a solution of pH=2 has	higher	acidity than the solution of pH=6?			
	a)	400	b)	800			
	c)	1200	d)	10000			

112.	The K_c	$_{a}$ for formic acid is 2.0x10 $^{ ext{-4}}$ mol L	- ⁻¹ , then <i>I</i>	K_h for HCOO $^-$ is
	a)	2x10 ⁻⁵ mol L ⁻¹	b)	4x10 ⁻⁷ mol L ⁻¹
	c)	5x10 ⁻¹¹ mol L ⁻¹	d)	5x10 ⁻⁵ mol L ⁻¹
113.	A solu	tion having hydronium ion conce	entration	is 6.2x10 ⁻⁹ mol/L, it pH is
	a)	6.42	b)	7.34
	c)	8.21	d)	8.94
114.	Which	chemical decreases the H ⁺ ion c	oncentra	ation of an acetic acid solution?
	a)	AgNO₃	b)	CH₃COONa
	c)	Al ₂ (SO ₄) ₃	d)	NH ₄ Cl
115.	The ph	H of a 10 ⁻¹⁰ molar solution of Hcl	in water	is about
	a)	6.0	b)	7.0
	c)	10	d)	14
116.	An aci	d solution of 0.005 M has a pH o	f 5. The o	degree of ionisation of acid is
	a)	0.1x10 ⁻²	b)	0.2x10 ⁻²
	c)	0.5x10 ⁻⁴	d)	0.6x10 ⁻⁶
117.	The so	lubility product of BaCl ₂ is 4x10 ⁻¹	⁹ . Its solu	bility in mol L ⁻¹ is
	a)	4x10 ⁻³	b)	4x10 ⁻⁹
	c)	1x10 ⁻³	d)	1x10 ⁻⁹
118.	On dis	solving CO ₂ in water the following	-	
		$CO_2 + 2H_2O \rightleftharpoons$	H ₃ O ⁺	+HCO ₃
	For wh	nich the value of equilibrium con	stant is 3	8.8×10^{-7} and pH =6.0. The $\frac{[HCO_3^-]}{[CO_2]}$ ratio is
	a)	3.8	b)	0.38
	c)	13.8	d)	1.38
119.	The di	ssociation constant of a weak ac	id is 4.9x	10^{-8} , its percentage ionisation at $0.1~{ m M}$ is
	a)	0.07%	b)	0.007%
	c)	0.7%	d)	0.0007%

120.	Ionisati is	ion constant of acetic aci	id is 1.8x1	LO ⁻⁵ . Th	e concentration of H ⁺ ions in 0.1 M solution
	a)	1.8x10 ⁻³ M		b)	1.8x x10 ⁻⁵ M
	c)	1.3 x10 ⁻³ M		d)	1.34 x10 ⁻³ M
121.		ubility product of PbBr₂ i ty of salt is	is 10.8x1(O ⁻⁵ . It is	70% dissociated in saturated solution. The
	a)	4.285x10 ⁻²		b)	6.756x10 ⁻³
	c)	3.399x10 ⁻⁴		d)	5.435x10 ⁻²
122.	ion. If k				$^{+}$ and H^{2+} is treated with 10^{-16} M sulphide 23 , 10^{-20} and 10^{-54} respectively, which one will
	a)	FeS		b)	MgS
	c)	HgS		d)	ZnS
123.		weak acid ($K_a=10^{-5}$). It vsis of 0.1 M NaX is	forms asa	alt NaX	on reacting with caustic soda. The degree of
	a)	0.01%		b)	0.0001%
	c)	0.1%		d)	0.5%
124.		l of CH $_3$ NH $_2$ ($K_a=10^{-4}$) is Concentration in the solu		vith 0.08	8 mol of HCl and diluted to 1 L. What will be
	a)	8x10 ⁻² M		b)	8 x10 ⁻¹¹ M
	c)	1.6 x10 ⁻¹¹ M		d)	8 x10 ⁻⁵ M
	125.	$Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+$.			$k_1 = 3.5 \times 10^{-3}$
		$[Ag(NH_3)]^+ + NH_3 \rightleftharpoons [Ag($	[NH ₃) ₂] ⁺ .		$K_2 = 1.7 \times 10^{-3}$
		then the formation cons	stant of [Ag(NH ₃)	₂] ⁺ is
		a) 6.00 x 10 ⁻⁶	b) 6.00 x	∢ 10 ⁶	
		c) 6.00 x 10 ⁹	d) None	of thes	e
	126.	The silver ion in a solution is precipitated by addition of chloride ion. The final volume of solution is 500 ml. What 0.10 mg of Ag ⁺ ion ion remains unprecipitated?			
		$(K_{sp}(AgCI) = 1.0 \times 10^{-10})$			
		a) 5.4 x 10 ⁻⁶ M	b) 1.9 x	10 ⁻⁶ M	

c) 5.4 x 10⁻⁴ M

d) 1.9 x 10⁻⁷ M

127. For the reaction.

$$Hg^{2+} + 2Cl^{-} \rightleftharpoons HgCl_{2}$$

$$K = 1.65 \times 10^{13}$$

concentration of Hg²⁺ at the equivalence point in the titration of 2.0 mmol of Hg²⁺ with Cl⁻ when final volume is 100 mL., is

a) $8.25 \times 10^{14} \, \text{M}$ b) $1.65 \times 10^{13} \, \text{M}$

c) 2.87 x 10⁶ M

d) 6.72 x 10⁻⁶ M

- It is desired to prepare 100 mL of a buffer of pH 5.00. Acetic (pK_a = 4.74). benzoic (p 128. $K_a = 4.18$) and formic acids (p $K_a = 3.68$) and their salts are available for use. Which acid should be used for maximum effectiveness against increase or decrease in pH?
 - a) Acetic acid

b) Benzoic acid

c) Formic acid

- d) Any one of these
- K_{sp} of AgCl = 1.0 x 10⁻¹⁰. Select the incorrect statement(s) 129.

a)
$$P_{Ag} + P_{CI} = 10$$

- b) $P_{CI} = 8 \text{ in } 0.01 \text{ M Ag}^+$
- c) $P_{Ag} + P_{Cl} < 10$ in presence of Ag^+
- d) $P_{Ag} = P_{Cl} = 5$ in saturated AgCl solution
- At the equilibrium point in the titration of CrO_4^{2-} with Ag^+ 130.

$$2Ag^+ + CrO_4^{2-} \rightleftharpoons Ag_2CrO_4(s)$$

a)
$$p_{Ag} + 2p_{cro4} = pK_{si}$$

a)
$$p_{Ag} + 2p_{cro4} = pK_{sp}$$
 b) $3p_{cro4} = pK_{sp} + 2 \log 2$

c)
$$3 p_{Ag} + 2 log 2 = pK_{sp}$$

d) All of these

131. Internal proton transfer can take plae in one or more of the following acids

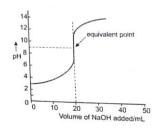
I: Glycine

II: Anthranilic acids

III : Sulphanilic acid

IV: Salicylic acids

Select such acids


a) I, II, III

b) I, III, IV

c) II, III, IV

- d) All of these
- 132. Select the correct statement(s)
 - a) When we add NH₄Cl to water, solution becomes acidic due to weak acid N H_4^+

- b) When we add CH₃COONa, solution becomes basic due to Na⁺
- c) At 100°C, pH = 6 in water thus, it is basic solution
- d) pH of 1×10^{-7} M HCl is 7
- 133. pK_{tn} of bromocresol green is 4 : 7. Thus, ratio of its yellow and blue forms at pH 3 : 7 is
 - a) 1:10
- b) 10:1
- c) 1:1
- d) 1:3
- 134. pK_{tn} of bromocresol green is 4 : 7. Thus, ratio of its yellow and blue forms at pH 4 : 7 is
 - a) 1:10
- b) 10:1
- c) 1:1
- d) 1:3
- 135. Fraction of the acid deprotonated is given by
 - a) $f = \frac{[conjugate\ base]_{equilibrium}}{[acid]_{actual}}$
 - b) $f = \frac{[acid]_{actual}}{[conjugate\ base]_{equilibrium}}$
 - c) $f = \frac{[conjugate\ acid]_{equilibrium}}{[conjugte\ base]_{actual}}$
 - d) $f = \frac{[conjugate\ base]_{equilibrium}}{[conjugate\ acid]_{equilibrium}}$
- 136. Select the correct statement(s)
 - a) When pH of blood rises above about 7.45, alkalosis occurs.
 - b) When pH of blood falls below about 7.35, acidosis occurs
 - c) Respiratory alkalosis is caused by hyperventilation, or excessive respiration
 - d) All of the above
- 137. Following is the titration curve of CH₃COOH against NaOH added with phenolphthalein as the indicator

 K_{in} value of phenolphthalein is 4.0×10^{-10} . Thus, incorrect statement is

- a) it begins to change colour from the pH 9.4
- b) it begins to change colour from acid colourless at pH 8.4 to the base form (reddish pink) at pH 10.4
- c) phenolphthalein is suitable indicator for CH₃COOH NaOH titration
- d) phenolphthalein is a weak acid
- 138. Select the correct statement(s).
 - a) Red colour of methyl red is due to the structure

b) Yellow colour of methyl red is due to the structure

$$H_3C$$
 N N O O

- c) pH = pK_{in} when I and II have equal concentrations
- d) All the above are correct statements
- 139. For an indicator HIn

$$\operatorname{HIn}_{A} \iff \operatorname{H}^{\oplus} + \operatorname{In}_{B}^{\ominus}$$

as the pH changes from $pK_{in} - 1$ to $pK_{in} + 1$, [B]/[A]

- a) will vary from 0.1 to 10
- b) will vary from 10 to 0.1
- c) will vary from 1 to 10
- d) will vary from 10 to 1
- Adding 0.25 ml of a strong monoprotic acid solution to 500 mL of water produced a pH of 2.00. Thus, concentration of the strong acid is
 - a) 10 M
- b) 20 M
- c) 5 N
- d) 2 M