Exercise 3 (Taking It Together)

1. Which of the following reagents listed below could be added to water to make 0.10 M solution of NH_{4}^{+}?
a) NH_{3}
b) $\mathrm{NH}_{4} \mathrm{Cl}$
c) $\mathrm{NH}_{2} \mathrm{Cl}$
d) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
2. Autoionisation of NH_{3} is shown below
a) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
b) $2 \mathrm{NH}_{3}+2 \mathrm{Na} \rightleftharpoons 2 \mathrm{NaNH}_{2}+\mathrm{H}_{2}$
c) $\mathrm{NH}_{\mathbf{3}}+\mathrm{NH}_{\mathbf{3}} \rightleftharpoons \mathrm{NH}_{\mathbf{2}}^{-}+\mathrm{NH}_{\mathbf{4}}^{+}$
d) None of the above
3. In the reaction,

$$
\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\right]+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}\right]+\mathrm{H}_{3} \mathrm{O}^{+}
$$

a) $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ is a base
b) $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6}^{3+}$ is an acid
c) Both (a) and (b)
d) None of these
4. Which is true about Zwitter ion $\mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$?
a) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}$is its conjugate base
b) $\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{COOH}$ is its conjugate acid
c) Both (a) and (b)
d) None of the above
5. Autoionisation of liquid NH_{3} is

$$
2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}
$$

with

$$
\mathrm{K}_{\mathrm{NH} 3}=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NH}_{2}\right]=10^{-30} \text { at }-50^{\circ} \mathrm{C}
$$

Number of amide ions NH_{2}^{-}. Present per mm^{3} of pure liquid NH_{3} is
a) $\mathbf{6 0 0}$
b) 300
c) 200
d) 100
6. BOH is a weak base. Molar concentration of BOH that provides a $\left[\mathrm{OH}^{-}\right]$of $1.5 \times 10^{-3} \mathrm{M}$ $\left[\mathrm{K}_{b}(\mathrm{BOH})=1.5 \times 10^{-5} \mathrm{M}\right]$ is
a) 0.15 M
b) 0.1515 M
c) 0.0015 M
d) $1.5 \times 10^{-5} \mathrm{M}$
7. pH of the solution containing 50.0 mL of 0.3 M HCl and 50.0 mL of $0.4 \mathrm{M} \mathrm{NH}_{3}$ is

$$
\left[\mathrm{pK}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=9.26\right]
$$

a) 4.74
b) 9.26
c) 8.78
d) 4.63
8. Which of the following solutions will have pH of 4.74 ?
a) 100 mL of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$ at the equivalent point using NaOH
b) 50 mL of $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}+25 \mathrm{~mL}$ of 1 M HCl
c) 50 mL of 1 M of $\mathrm{CH}_{3} \mathrm{COOH}+25 \mathrm{~mL}$ of 1 M NaOH
d) Both (b) and (c)
9. pH at which an acid indicator with $\mathrm{K}_{\mathrm{a}}=1 \times 10^{-5}$ changes colour when the indicator is $1 \times 10^{-3} \mathrm{M}$, is
a) 5
b) 3
c) 8
d) 4
10. pH at which a basic indicator with $\mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-10}$ changes colour when the indicator is $10^{-2} \mathrm{M}$ is
a) 10
b) 2
c) 4
d) 8
11. A weak base B, has basicity constant $K_{b}=2 \times 10^{-5}$. The pH of any solution in which [B] $=\left[\mathrm{BH}^{+}\right]$is
a) 4.7
b) 7.0
c) 9.3
d) 9.7
12. Which of the following mixtures will be a buffer solution when dissolved in 500.00 mL of water?
a) 0.200 mol of aniline and 0.200 mol of HCl
b) 0.200 mol of aniline and 0.400 mol of NaoH
c) 0.200 mol of NaCl and 0.100 mol of HCl

d) 0.200 mol of aniline and 0.100 mol of $\mathbf{~ H C l}$

13. The correctly balanced net ionic equation for the reaction that occurs when a solution of acetic acid is mixed with a solution of sodium carbonate is
a) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
b) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})$
d) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
14. $\quad \mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{S}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$

$$
\text { Rate }=\mathrm{k}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]
$$

Reaction is faster in
a) 0.1 M HCl
b) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
c) $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$
d) 0.1 M NaOH
15. pH of $0.01 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $0.02 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ buffer $\left(\mathrm{pK}_{\mathrm{a}}\right.$ of $\left.\mathrm{NH}_{4}^{+}=9.26\right)$ is
a) $4.74+\log 2$
b) $4.74-\log 2$
c) $4.74+\log 1$
d) $9.26+\log 1$
16. 100 mL of $\mathrm{pH}=6$ (acidic) is diluted to 1000 mL by $\mathrm{H}_{2} \mathrm{O} \mathrm{pH}$ will increase approximately by
a) 9 unit
b) 1 unit
c) 0.7 unit
d) -0.7 unit
17. HCOOH and $\mathrm{CH}_{3} \mathrm{COOH}$ solution have equal pH . If $\mathrm{K}_{1} / \mathrm{K}_{2}$ (ratio of acid ionisation constants) is 4 their molar concentration ratio will be
a) 2
b) 0.5
c) 4
d) 0.25
18. pH of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 12 . Milliequivalents of $\mathrm{Ca} /(\mathrm{OH})_{2}$ present in 100 mL solution will be
a) 1
b) 0.5
c) 0.05
d) 5
19. A buffer solution constants 100 mL of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 200 mL of 0.02 M $\mathrm{CH}_{3} \mathrm{COONa} .700 \mathrm{~mL}$ of water is added pH before and after dilution are $\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$
a) $5.04,5.04$
b) $5.04,0.504$
c) $5.04,1.54$
d) $5.34,5.34$
20. Which is the set of amphiprotic species?
a) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HPO}_{4}^{2-}, \mathrm{HCO}_{3}^{-}$
b) $\mathrm{H}_{2} \mathrm{O}, \mathrm{HPO} \mathrm{O}_{3}^{2-}, \mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
c) $\mathrm{HSO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{H}_{2} \mathrm{PO}_{3}^{-}$
d) All of these
21. pH of a mixture containing $0.10 \mathrm{M} \mathrm{X}^{-}$(base) and 0.20 M HX with $\mathrm{pK}_{b}\left(\mathrm{X}^{-}\right)=4$ is
a) $4+\log 2$
b) $4-\log 2$
c) $10+\log 2$
d) $10-\log 2$
22. Assuming 100% ionisation which will have maximum pH ?
a) $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
b) $0.01 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
c) $0.01 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
d) Equal
23. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{pK}_{1}=2.15$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{2-}, \mathrm{pK}_{2}=7.20$
Hence, pH of $0.01 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ is
a) 9.35
b) 4.675
c) 2.675
d) 7.350
24. To prepare a buffer of pH 8.26 , amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to be added into 500 mL of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ solution $\left[\mathrm{pK}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=9.26\right.$]
a) 0.05 mol
b) 0.025 mol
c) 0.10 mol
d) 0.005 mol
25. \% ionisation of a weak acid can be calculated using the formula
a) $100 \sqrt{\frac{K_{a}}{C}}$
b) $\frac{100}{1+10^{[p k} a^{-p H]}}$
c) Both (a) and (b)
d) None of these
26. pH of a mixture of 1 M benzoic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.20\right)$ and 1 M sodium benzoate is 4.5 . In 200 mL buffer. Benzoic acid is
a) 200 mL
b) 150 mL
c) 100 mL
d) 50 mL
27. The solubility of $\mathrm{A}_{2} \mathrm{X}_{3}$ is $\mathrm{S} \mathrm{mol} \mathrm{L}{ }^{-1}$. Its solubility product is
a) $6 S^{4}$
b) $64 \mathrm{~S}^{4}$
c) $36 \mathrm{~S}^{5}$
d) $\mathbf{1 0 8} \mathrm{S}^{\mathbf{6}}$
28. If the freezing point of 0.1 molal $\mathrm{HA}(\mathrm{aq})$ is $-0.2046^{\circ} \mathrm{C}$, then pH of the solution is $\left[\mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86^{0} \mathrm{~mol}^{-1} \mathrm{kgl}\right.$
a) 1
b) 2
c) 1.3
d) 1.7
29. If the equilibrium constant of the reaction of weak acid HA with strong base is 10^{8}. then pH of 0.1 M Na 4 is
a) 5
b) 9
c) 7
d) 8
30. $\mathrm{H}_{2} \mathrm{O}$ is Lewis acid and Lowry-Bronsted acid in
a) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HO}$
b) $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}$
c) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Ca}(\mathrm{OH})_{2}$
d) All of the above
31. pH of mixture of HA and A^{-}buffer is $5 \mathrm{~K}_{b}$ of $\mathrm{A}^{-}=10^{-10}$ Hence $[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$will be
a) 1
b) 10
c) 0.1
d) 100
32. At $4^{0} \mathrm{C} . \mathrm{K}_{\mathrm{w}}=1 \times 10^{-16}$. A solution with $\mathrm{pH}=7.5$ at $4^{\circ} \mathrm{C}$ will
a) turn the litmus red
b) turn red litmus blue
c) turn turmeric paper brown
d) be neutral to litmus
33. Maximum pH will be of
a) 0.005 M HCl
b) $0.005 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
c) $0.005 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
d) equal
34.
(Aspirin) is a pain reliever with $\mathrm{pK}_{\mathrm{a}}=2$. Two tablets each containing 0.09 g of aspirin are dissolved in 100 mL solution. pH will be
a) 0.5
b) 1.0
c) 0.0
d) 2.0
35. A monoacid base is 10% ionised at 1 M . Hence, K_{b} is
a) 1.0×10^{-2}
b) 1.1×10^{-2}
c) 1.0×10^{-2}
d) 1.0×10^{-4}
36. At equal concentration, which base has maximum pH ?
a) $\mathrm{BOH}\left(\mathrm{K}_{\mathrm{b}}=10^{-2}\right)$
b) $\mathrm{B}^{1} \mathrm{OH}\left(\mathrm{K}_{\mathrm{b}}=10^{-3}\right)$
c) $\mathrm{B}^{11} \mathrm{OH}\left(\mathrm{K}_{\mathrm{b}}=10^{-5}\right)$
d) Equal
37. Conjugate acid of HF_{2}^{-}is
a) HF
b) $\mathrm{H}_{2} \mathrm{~F}_{2}$
c) F_{2}^{-}
d) H^{+}
38. $\quad 2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
$K_{w}=1 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$. Hence, K_{a} is
a) 1×10^{-14}
b) 5.55×10^{-13}
c) 18×10^{-17}
d) 1.00×10^{-7}
39. Number of $(\mathrm{OH})^{-}$in 1 mL solution of $\mathrm{pH}=13$ is
a) 1×10^{-13}
b) 6.00×10^{7}
c) 6.00×10^{13}
d) 6.02×10^{19}
40. $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ and 1 M HCl are mixed to make total volume of 300 mL . If pH of the mixture is 9.26 and $\mathrm{pK}_{a}\left(\mathrm{NH}_{4}^{+}\right)=9.26$ then volume ratio of $\mathrm{NH}_{4} \mathrm{OH}$ and HCl will be
a) $1: 1$
b) $1: 2$
c) $2: 1$
d) $3: 1$
41. $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is 4.74. x moles of lead acetate and 0.1 mole of acetic acid in 1 L solution make a solution of $\mathrm{pH}=5.04$. Hence, x is
a) 0.2
b) 0.05
c) 0.1
d) 0.02
42. 100 mL of 2 M of monobasic acid $\left(\mathrm{pK}_{\mathrm{a}}=5\right)$ is noutralised by NaOH , at the equivalence point pH is
a) 7
b) 6
c) 95
d) 45
43. pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 Hence k_{sp} of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
a) $\mathbf{5 \times 1 0 ^ { 7 }} \mathrm{M}^{\mathbf{3}}$
b) $5 \times 10^{4} \mathrm{M}^{2}$
c) $1 \times 10^{6} \mathrm{M}^{3}$
d) $4 \times 10^{6} \mathrm{M}^{4}$
44. $\quad \mathrm{K}_{\text {sp }}$ of CaSO_{4} is $4 \times 10^{-12} \mathrm{CaSO}_{4}$ is precipitated on mixing equal volumes of the following solution.
a) $3 \times 10^{6} \mathrm{M} \mathrm{CaCl}_{2}$ and $3 \times 10^{6} \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
b) $4 \times 10^{6} \mathrm{M} \mathrm{CaCl}_{2}$ and $3 \times 10^{6} \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
c) $\mathbf{6 \times 1 0 ^ { 6 }} \mathrm{M} \mathrm{CaCl}_{2}$ and $\mathbf{3 \times 1 0 ^ { 6 } \mathrm { M } (\mathrm { NH } _ { 4 }) _ { 2 } \mathrm { SO } _ { 4 } , ~}$
d) in all the above cases
45. A solution is a mixture of 0.05 M NaCl and 0.05 M Nal . The concentration of iodide ion in the solution when AgCl just starts precipitating is equal to
a) $4 \times 10^{6} \mathrm{M}$
b) $2 \times 10^{8} \mathrm{M}$
c) $\mathbf{2 \times 1 0 ^ { - 7 }} \mathrm{M}$
d) $8 \times 10^{16} \mathrm{M}$
46. The pK_{a} of acetylsalicylic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is about 2.3 and the pH in the small intestine is about 8 Aspirin will be
a) unionised in the small intestine and in the stomach
b) completely ionised in the small intestine and in the stomach
c) ionised in the stomach and almost unionised in the small intestine
d) ionised in the small intestine and almost unionised in the stomach
47. The following reaction occurs in the body

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}
$$

If CO_{2} escapes from the system
a) pH will decrease
b) hydrogen ion concentration will decrease
c) $\mathrm{H}_{2} \mathrm{CO}_{3}$ concentration remains unaltered
d) forward reaction will be promoted
48. The compound whose 0.1 M solution is basic, is
a) ammonium acetate
b) ammonium chloride
c) ammonium sulphate
d) sodium acetate
49. Which compound will liberate CO_{2} from NaHCO_{3} ?
a) $\mathrm{CH}_{3} \mathrm{OH}$
b) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
c) $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$
50. The following equilibrium is established when hydrogen chloride is dissolved in acetic acid

$$
\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}
$$

The set that characterises the conjugate acid-base pair is
a) $\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}\right)$ and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{1}, \mathrm{Cl}\right)$
b) $\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}\right)$and $\left(\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{Cl}^{-}\right)$
c) $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}, \mathrm{HCl}\right)$ and $\left(\mathrm{Cl}^{-}, \mathrm{CH}_{3} \mathrm{COOH}\right)$
d) $\left(\mathrm{HCl}, \mathrm{Cl}^{-}\right)$and $\left(\mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}, \mathrm{CH}_{3} \mathrm{COOH}\right)$
51. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{4}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} ; \mathrm{K}_{\mathrm{a} 1}$
$\mathrm{H}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{4}+\mathrm{HPO}_{4}^{2-} ; \mathrm{K}_{\mathrm{a} 2}$
$\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{4}+\mathrm{PO}_{4}^{3-} ; \mathrm{K}_{\mathrm{a} 3}$
Which is the correct order of K_{a} values?
a) $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}<\mathrm{K}_{\mathrm{a} 3}$
b) $K_{a 1}<K_{a 2}<K_{a 3}$
c) $K_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3}$
d) $\mathrm{K}_{\mathrm{a} 1}<\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3}$
52. Some chemists at ISRO wished to prepare a saturated solution of a silver compound and they wanted it to have the highest concentration of silver ion possible. Which of the following compounds would they use?

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}(\mathrm{AgCl})=1.8 \times 10^{-10}, \mathrm{~K}_{\mathrm{sp}}(\mathrm{AgBr})=5.0 \times 10^{-13}, \\
& \mathrm{~K}_{\mathrm{sp}}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=2.4 \times 10^{-12}
\end{aligned}
$$

a) AgCl
b) AgBr
c) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
d) Any of them
53. "Ostwald dilution law" constitutes one of the postulates of the "Arrhenius theory" of "electrolytic dissociation" It ("Ostwald dilution law") is valid for
a) strong electrolyte

b) weak electrolyte

c) both strong and weak electrolytes
d) None of the above
54. The pH of $10^{-8} \mathrm{~N} \mathrm{HCl}$ is approximately
a) 8
b) 7.02
c) 7
d) 6.96
55. $\mathrm{NH}_{4} \mathrm{OH}$ is blue towards litmus. HCl is red towards litmus, hence, $\mathrm{NH}_{4} \mathrm{Cl}$ will be... towards it.
a) red
b) blue
c) green
d) colourless
56. pH of $0.01 \mathrm{M} \mathrm{HS}^{-}$will be
a) $\mathrm{pH}=7+\frac{p K_{a}}{2}+\frac{\log C}{2}$
b) $\mathrm{pH}=7-\frac{p K_{b}}{2}+\frac{\log C}{2}$
c) $\mathrm{pH}=\frac{p K_{1}+p K_{2}}{2}$
d) $\mathrm{pH}=7+\left(\frac{p K_{a}-p K_{b}}{2}\right)$
57. Solution of aniline hydrochloride is X due to hydrolysis of $Y . X$ and Y are
a) basis $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
b) acidic $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}$
c) basis Cl^{-}
d) acidic Cl^{-}
58. Which is a part of blood buffer?
a) $\mathrm{HCO}_{3}^{-}, \mathrm{H}_{2} \mathrm{CO}_{3}$
b) $\mathrm{CO}_{3}^{2-}, \mathrm{HCO}_{3}^{-}$
c) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COO}^{-}$
d) $\mathrm{SO}_{4}^{2-}, \mathrm{HSO}_{4}^{-}$
59. Which is not amphoteric?
a) HSO_{4}^{-}
b) $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$
c) $\mathrm{H}_{2} \mathrm{O}$
d) NH_{3}
60. pH of the solution after NaCl solution is electrolysed will
a) remain constant
b) increase
c) decrease
d) Can't be determined
61. FeCl_{3} solution is acidic due to hydrolysis of
a) FeCl_{3}
b) Fe^{3+}
c) Cl^{-}
d) None of these
62. Dissociation constant of a weak acid is decreased by
a) addition of a strong acid
b) addition of a salt of the above weak acid
c) decreasing temperature
d) diluting the solution
63. Silver iodide is used in cloud seeding to produce rain

$$
\mathrm{Agl} \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}): \quad \mathrm{K}_{\mathrm{sp}}=8.5 \times 10^{-7}
$$

AgNO_{3} and KI are mixed to give $\left[\mathrm{Ag}^{+}\right]=0.010 \mathrm{M} ;\left[\mathrm{I}^{-}\right]=0.015 \mathrm{M}$. Will Agl precipitate?
a) Yes
b) No
c) Can't say
d) This depends on [NO_{3}^{-}] and $\left[\mathrm{K}^{+}\right]$
64. Slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$ is used extensively in sewage treatment. What is the maximum pH that can be established in $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$?

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}), \quad \mathrm{K}_{\mathrm{sp}}=5.5 \times 10^{-6}
$$

a) 1.66
b) $\mathbf{1 2 . 3 5}$
c) 7
d) 14
65. There is no effect of dilution on pH of the following
a) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}+0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ buffer
b) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
c) $0.01 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$
d) in all the above cases
66. pK_{a} of lactic acid
 is $5 . \mathrm{pH}$ of 0.005 M calcium lactate solution is
a) 10.5
b) 8.5
c) 5.0
d) 9.7
67. K_{sp} of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1×10^{-12}. $0.01 \mathrm{M} \mathrm{MgCl}_{2}$ will be precipitating at the limiting pH
a) 8
b) 9
c) 10
d) 12
68. $\mathrm{M}(\mathrm{OH})_{\mathrm{x}}$ has $\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-12}$ and solubility $10^{-4} \mathrm{M}$. Hence, x is
a) 1
b) 2
c) 3
d) 4
69. 10 mL of $10^{-6} \mathrm{M} \mathrm{HCl}$ solution is mixed with 90 mL H O OH will change approximately
a) by 1 unit
b) by 0.3 unit
c) by 0.7 unit
d) by 0.1 unit
70. pK_{b} of $\mathrm{CH}_{3} \mathrm{COO}^{-}$has is 9.26. pH of solution when $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is neutralised 50% and at equivalence point using 0.01 M NaoH are respectively
a) $4.63,8.22$
b) $4.74,8.22$
c) $2.37,4.11$
d) $4.74,8.37$
71. Ionisation constant of water at $298 \mathrm{~K}\left(\mathrm{~K}_{\mathrm{w}}=1 \times 10^{-14}\right)$ is
a) 1×10^{-14}
b) 1×10^{-7}
c) 1.8×10^{-16}
d) 1.8×10^{-5}
72. pOH of the mixture containing 100 mL of $0.01 \mathrm{M} \mathrm{NH} 4{ }_{4} \mathrm{OH}$ and 100 ML of 0.01 M $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is $\left[\mathrm{pK}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=9.26\right]$
a) 4.74
b) 9.26
c) 5.04
d) 9.56
73. Lemon juice normally has a pH of 2. If all the acid in the lemon juice is citric acid and the there are no citrate salts present, then what will be the citric acid concentration [HCit] in the lemon juice ? (Assume that only the first hydrogen of citric acid is important)

$$
\mathrm{HCit} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cit}^{-}, \mathrm{K}_{\mathrm{a}}=8.4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}
$$

a) $8.4 \times 10^{-4} \mathrm{M}$
b) $4.2 \times 10^{-4} \mathrm{M}$
c) $16.8 \times 10^{-4} \mathrm{M}$
d) $12.0 \times 10^{-2} \mathrm{M}$
74. The solubility products of $M A, M B, M C$ and $M D$ are $1.8 \times 10^{-10}, 4 \times 10^{-3}, 4 \times 10^{-8}$ and 6 $\times 10^{-5}$ respectively. If a 0.01 M solution of MX is added dropwise to a mixture containing A, B, C and D ions then the one to be precipitated first will be
a) $\quad \mathrm{MA}$
b) $\quad \mathrm{MB}$
c) MC
d) $\quad \mathrm{MD}$
75. Atmospheric behaviour is shown by
a) $\quad \mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{2}$
b) HCO_{3}^{-}and $\mathrm{H}_{2} \mathrm{O}$
c) HCO_{3}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$
c) $\quad \mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$
76. Which of the following will not function as buffer solution?
a) $\quad \mathrm{NaCl}+\mathrm{NaOH}$
b) Borax + Boric acid
c) $\quad \mathrm{Na} \mathrm{H} \mathrm{P}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
d) $\quad \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$
77. An acid-base indicator has a K_{p} of 3.0×10^{-5}. The acid form of the indicator is red and the basic form is blue. Then
a) $\quad \mathrm{pH}$ is 4.05 when indicator is 75% red
b) $\quad \mathrm{pH}$ is 5.00 when indicator is 75% blue
c) Both (a) and (b) are correct
d) None of the above is correct
78. The pH of a solution of $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ increases, when which of the following substance is added?
a) $\quad \mathrm{Na} \mathrm{HSO} 4$
b) $\quad \mathrm{HClO}_{4}$
c) $\quad \mathrm{NH}_{4} \mathrm{NO}_{2}$
d) $\quad \mathrm{K}_{2} \mathrm{CO}_{3}$
79. A 50.00 mL sample of $0.0100 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is titrated with 0.0100 M HCl . The solution at the equivalence point is
a) $\quad 3.33 \times 10^{-3} \mathrm{M} \mathrm{BaCl} 2$
b) $\quad 5.00 \times 10^{-3} \mathrm{M} \mathrm{BaCl} l_{2}$
c) $\quad 2.50 \times \times 10^{-3} \mathrm{M} \mathrm{BaCl}_{2}$
d) $\quad 1.00 \times \times 10^{-2} \mathrm{M} \mathrm{BaCl}_{2}$
80. A flask contains 100.00 mL of $0.100 \mathrm{M} \mathrm{HO} \mathrm{Ac} \mathrm{To} \mathrm{prepare} \mathrm{a} \mathrm{buffer} \mathrm{with} \mathrm{pH}=$.pK which of the following samples of barium acetate solution should be added to the flask?
a) $\quad 50.00 \mathrm{~mL}$ of $0.400 \mathrm{MBa}(O A c)_{2}$
b) $\quad \mathbf{2 5 . 0 0} \mathrm{mL}$ of $0.200 \mathrm{MBa}(O A c)_{2}$
c) $\quad 50.00 \mathrm{~mL}$ of $0.0200 \mathrm{MBa}(O A c)_{2}$
d) $\quad 100.00 \mathrm{~mL}$ of $0.100 \mathrm{M} \mathrm{Ba}(O A c)_{2}$
81. A50.00 ml sample of acetic acid was titrated with 0.1200 M KOH and 38.62 ml of base were required to reach the equivalence point. What was the pH of the titration mixture. When 19.31 ml of base has been added? $\left(\mathrm{p} K_{a}\right.$ (acetic acid)=4.74)
a) 2.94
b) $\quad 3.54$
c) $\quad 4.74$
d) $\quad 5.74$
82. In the following reaction,
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})^{+}\right]+\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\right] \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}\right]+\left[\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{+2}\right]$
(A)
(B)
(C)
(D)
a) (A) is a base and (B) the acid
b) $\quad(C)$ is the conjugate acid of (A) and (D) is the conjugate base of (B)
c) Both (a) and (b) are correct
d) None of the above is correct
83. Which reacts with NaOH or which is an acid salt?
a) $\quad \mathrm{NaH}_{2} \mathrm{PO}_{2}$
b) $\quad \mathrm{Na}_{2} \mathrm{HPO}_{3}$
c) Both a) and b)
d) None of these
84. pH of the following solution is not affected by dilution
a) $\quad 0.01 \mathrm{M} \mathrm{NaHC} \mathrm{O}_{3}$
b) buffer of $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ and $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
c) $\quad 0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$
d) All of the above
85. Which of the hydrated species can exist?
I: $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$
II: $\mathrm{H}_{3} \mathrm{O}^{+}$
III: $\mathrm{H}_{3} \mathrm{O}_{2}^{+}$
IV: $\mathrm{H}_{5} \mathrm{O}_{3}^{-}$

Select the correct alternate.
a) II only
b) I and II
c) I,II and III
d) I,II,III and IV
86. For a polybasic acid stepwise ionisation constant are $K_{e q .} K_{e q .}$.....Their values are
a) $\quad K_{e q}<K_{e q .}<K_{e q .}$
b) $\quad K_{\text {eq }}>K_{\text {eq. }}>K_{\text {eq. }}$
c) $\quad K_{e q}>K_{\text {eq. }}>K_{\text {eq. }}$.
d) $\quad K_{e q}>K_{e q .}=K_{e q}$.
87. What is $\left[\mathrm{NH}_{4}^{+}\right]$in a solution that is $0.02 \mathrm{M} \mathrm{NH}_{3}$ and $0.01 \mathrm{M} \mathrm{NH}_{3}$ and 0.01 M KOH ? $\left[K_{S}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-3}\right]$
a) $\quad 3.6 \times 10^{-5} \mathrm{M}$
b) $\quad 1.8 \times 10^{-8} \mathrm{M}$
c) $\quad 0.9 \times 10^{-5} \mathrm{M}$
d) $\quad 7.2 \times 10^{-5} \mathrm{M}$
88. Consider the following examples
I: blood
II: Saline solution
III: benzoic acid + sodium benzoate

Solution (s) with n buffer capacity is/are
a) I, II
b) II
c) II,III
d) I, III
89. Buffer index of a buffer of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~m} \mathrm{NH}_{4} \mathrm{Cl}$ is
a) 0.052
b) 0.115
c) $\quad 0.025$
d) $\quad 0.230$
90. $\mathrm{p} K_{S}$ of a weak acid HA is 4.0. Effective range of a buffer of HA and A^{-}is about pH
a) 3 to 4
b) 3 to 6
c) $\quad 3$ to 5
d) $\quad 4$ to 5
91. $\mathrm{p} K_{s}$ of BH^{+}is 8.0. A buffer of B and BH^{+}has effective range of about pH
a) 5 to 7
b) 6 to 8
c) 6 to 7
d) $\quad 7$ to 9
92. K_{a} of HCOOH is 1.8×10^{-4}. $\left[\mathrm{HCOO}^{-}\right]$in a solution that is both 0.015 M HCOOH and 0.020 M HCl is
a) $\quad 3.5 \times 10^{-2} \mathrm{M}$
b) $\quad 1.5 \times 10^{-2} M$
c) $\quad 1.6 \times 10^{-3} \mathrm{M}$
d) $\quad 1.3 .5 \times 10^{-4} M$
93. 0.2 M AcOH is $\ldots . \%$ dissociation in $0.1 \mathrm{M} \mathrm{HCl}\left(K_{a}\right.$ of $\left.\mathrm{AcOH}=1.8 \times 10^{-5}\right)$.
a) 0.018%
b) 0.036%
c) 1.8%
d) 3.6%
94. The pH of a solution resulting when 50 mL of 0.2 M HCl is mixed with 50 mL of 0.20 M AcOH $\left(K_{a}=1.8 \times 10^{-5}\right)$ is
a) 0.70
b) 0.30
c) $\quad 1.00$
d) $\quad 4.51$
96. The acid ionisation (hydrolysis) constant of Zn^{2+} is 1.0×10^{-9}. Hence, pH of 0.001 M solution of ZnCl_{2} is
a) $\quad 9.0$
b) $\quad 3.0$
c) $\quad 6.0$
d) $\quad 7.0$
97. Conjugate base of Zn^{2+}
a) $\quad \mathrm{Zn}(\mathrm{OH})^{+}$
b) $\quad \mathrm{Zn}(\mathrm{OH})_{2}$
c) $\quad \mathrm{ZnO}$
d) $\quad \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)^{2+}$
98. Basic dissociation constant of $\mathrm{Zn}(\mathrm{OH})^{+}$is.. if acid ionisation constant of Zn^{2+} is 1.0×10^{-9}.
a) 1×10^{-9}
b) 1×10^{9}
c) 1×10^{5}
d) $\quad 1 \times 10^{-5}$
99. At what pH will a $1.0 \times 10^{-3} \mathrm{M}$ solution of an indicator with $K_{b}=1.0 \times 10^{-10}$ change colour
a) $\quad 3.0$
b) $\quad 4.0$
c) $\quad 10.0$
d) $\quad 7.0$
100. An acid Indicator is ... $\%$ in its basic form at a pH of $5\left[K_{a}=1 \times 10^{-5}\right.$.
a) 20%
b) 40%
c) 50%
d) 100%
101. Which one of the following is most soluble?
a) $\quad \operatorname{Cus}\left(K_{e q}=B \times 10^{17}\right)$
b) $\quad \mathrm{MnS}\left(K_{s p}=7 \times \mathbf{1 0}^{-16}\right)$
c) $\quad \mathrm{Bi}_{2} \mathrm{~S}_{3}\left(K_{e q}=7 \times 10^{20}\right)$
d) $\quad \mathrm{Ag}_{2} \mathrm{~S}\left(K_{s p}=7 \times 10^{-51}\right)$
102. At $80^{\circ} \mathrm{C}$. distilled water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration equal to $1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$ The value of K_{W} at this temperature will be
a) 1×10^{-6}
b) $\quad 1 \times 10^{-9}$
c) $\quad 1 \times 10^{-13}$
d) $\quad 1 \times 10^{-15}$
103. The solubility of AgCl will be minimum in
a) $\quad 0.001 \mathrm{M} \mathrm{Ag} \mathrm{NO}_{3}$
b) $\quad 0.01 \mathrm{M} \mathrm{Na} \mathrm{Cl}$
c) $\quad 0.01 \mathrm{M} \mathrm{CaCl}_{2}$
d) pure water
104. The pH value of a 10 M solution of HCl is
a) less than 0
b) equal to 0
c) equal to 1
d) equal to 2
105. A physician wishes to prepare a buffer solution of $\mathrm{pH}=3.85$ that efficiently resists changes in pH yet contains only small concentration of the buffering agents. Which one of the following weak acids together with its sodium salt would be best to use?
a) m-chlorobenzoic acid $\left(\mathrm{p} K_{a}=3.98\right)$
b) $\quad \mathrm{p}$-chlorocinnamic $\operatorname{acid}\left(\mathrm{p} K_{a}=4.41\right)$
c) $\quad 2,5$-dthydroxy benzoic $\operatorname{acid}\left(\mathrm{p} K_{a}=2.97\right)$
d) acetoacetic acid $\left(\mathrm{p} K_{a}=3.58\right)$
106. The solubility product of $\mathrm{CuS}, \mathrm{CdS}$ and HgS are $10^{-31}, 10^{-44}, 10^{-64}$, respectively. The solubility of these sulphides are in the order
a) $\quad \mathrm{CdS}>\mathrm{HgS}>\mathrm{CuS}$
b) $\quad \mathrm{HgS}>\mathrm{CdS}>\mathrm{CuS}$
c) $\mathrm{CdS}>\mathrm{CuS}>\mathrm{HgS}$
d) $\quad \mathrm{CuS}>\mathrm{CdS}>\mathrm{HgS}$
107. The concentration of $\left[\mathrm{H}^{+}\right]$and concentration of $\left[\mathrm{OH}^{-}\right]$of a 0.1 M aqueous solution of 2% ionised weak monobasic acid is [lonic product of water $=1 \times 10^{-14}$]
a) $\quad 0.02 \times 10^{-3} \mathrm{M}$ and $5 \times 10^{-11} \mathrm{M}$
b) $\quad 1 \times 10^{-3} \mathrm{M}$ and $3 \times 10^{-11} \mathrm{M}$
c) $\quad 2 \times 10^{-3} \mathrm{M}$ and $5 \times 10^{-12} \mathrm{M}$
d) $\quad 3 \times 10^{-2} \mathrm{M}$ and $5 \times 10^{-13} \mathrm{M}$
108. The solubility of a saturated solution of calcium fluoride is $2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. Its solubility product is
a) 12×10^{-2}
b) $\quad 14 \times 10^{-4}$
c) 22×10^{-11}
d) 32×10^{-12}
109. The ionisation constant of phenol is higher than that of ethanol because
a) phenoxide ion is bulkier than ethoxide
b) phenoxide ion is stronger base than ethoxide
c) phenoxide ion is stabilized through delocalisation
d) phenoxide ion is less stable than ethoxide
110. A solution having $\mathrm{pH}=13$ contained H^{+}ions in 1 ml of solution which is
a) $\quad 6.02 \times 10^{7}$
b) $\quad 4.45 \times 10^{5}$
c) $\quad 8.42 \times 10^{8}$
d) $\quad 6.15 \times 10^{7}$
111. How many times a solution of $\mathrm{pH}=2$ has higher acidity than the solution of $\mathrm{pH}=6$?
a) 400
b) 800
c) 1200
d) 10000
112. The K_{a} for formic acid is $2.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$, then K_{h} for HCOO^{-}is
a) $\quad 2 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
b) $\quad 4 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
c) $\quad 5 \times 10^{-11} \mathrm{~mol} \mathrm{~L}^{-1}$
d) $\quad 5 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
113. A solution having hydronium ion concentration is $6.2 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$, it pH is
a) 6.42
b) $\quad 7.34$
c) 8.21
d) 8.94
114. Which chemical decreases the H^{+}ion concentration of an acetic acid solution?
a) $\quad \mathrm{AgNO}_{3}$
b) $\quad \mathrm{CH}_{3} \mathrm{COONa}$
c) $\quad \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
d) $\quad \mathrm{NH}_{4} \mathrm{Cl}$
115. The pH of a 10^{-10} molar solution of Hcl in water is about
a) 6.0
b) $\quad 7.0$
c) 10
d) 14
116. An acid solution of 0.005 M has a pH of 5 . The degree of ionisation of acid is
a) 0.1×10^{-2}
b) $\quad 0.2 \times 10^{-2}$
c) $\quad 0.5 \times 10^{-4}$
d)
0.6×10^{-6}
117. The solubility product of BaCl_{2} is 4×10^{-9}. Its solubility in $\mathrm{mol} \mathrm{L}^{-1}$ is
a) 4×10^{-3}
b) 4×10^{-9}
c) 1×10^{-3}
d) $\quad 1 \times 10^{-9}$
118. On dissolving CO_{2} in water the following equilibrium is established

For which the value of equilibrium constant is 3.8×10^{-7} and $\mathrm{pH}=6.0$. The $\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{Co}_{2}\right]}$ ratio is
a) 3.8
b) 0.38
c) $\quad 13.8$
d) $\quad 1.38$
119. The dissociation constant of a weak acid is 4.9×10^{-8}, its percentage ionisation at 0.1 M is
a) 0.07%
b) 0.007%
c) 0.7%
d) 0.0007%
120. Ionisation constant of acetic acid is 1.8×10^{-5}. The concentration of H^{+}ions in 0.1 M solution is
a) $\quad 1.8 \times 10^{-3} \mathrm{M}$
b) $\quad 1.8 \times \times 10^{-5} \mathrm{M}$
c) $\quad 1.3 \times 10^{-3} \mathrm{M}$
d) $\quad 1.34 \times 10^{-3} \mathrm{M}$
121. The solubility product of PbBr_{2} is 10.8×10^{-5}. It is 70% dissociated in saturated solution. The solubility of salt is
a) $\quad 4.285 \times 10^{-2}$
b) $\quad 6.756 \times 10^{-3}$
c) $\quad 3.399 \times 10^{-4}$
d) $\quad 5.435 \times 10^{-2}$
122. A solution which is $10^{-3} \mathrm{M}$ each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and H^{2+} is treated with $10^{-16} \mathrm{M}$ sulphide ion. If $\mathrm{K}_{\text {sp }}$ of $\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and HgS are $10^{-15}, 10^{-23}, 10^{-20}$ and 10^{-54} respectively, which one will precipitate first?
a) FeS
b) $\quad \mathrm{MgS}$
c) $\quad \mathrm{HgS}$
d) $\quad \mathrm{ZnS}$
123. HX is a weak acid $\left(K_{a}=10^{-5}\right)$. It forms asalt NaX on reacting with caustic soda. The degree of hydrolysis of 0.1 M NaX is
a) 0.01%
b) 0.0001%
c) 0.1%
d) 0.5%
124. 0.1 mol of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{a}=10^{-4}\right)$ is mixed with 0.08 mol of HCl and diluted to 1 L . What will be the H^{+}Concentration in the solution?
a) $8 \times 10^{-2} \mathrm{M}$
b) $8 \times 10^{-11} \mathrm{M}$
c) $\quad 1.6 \times 10^{-11} \mathrm{M}$
d) $8 \times 10^{-5} \mathrm{M}$
125. $\mathrm{Ag}^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}$.

$$
\mathrm{k}_{1}=3.5 \times 10^{-3}
$$

$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$.
$\mathrm{K}_{2}=1.7 \times 10^{-3}$
then the formation constant of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$is
a) 6.00×10^{-6}
b) 6.00×10^{6}
c) 6.00×10^{9}
d) None of these
126. The silver ion in a solution is precipitated by addition of chloride ion. The final volume of solution is 500 ml . What 0.10 mg of Ag^{+}ion ion remains unprecipitated?
$\left(\mathrm{K}_{\mathrm{sp}}(\mathrm{AgCl})=1.0 \times 10^{-10}\right)$
a) $5.4 \times 10^{-6} \mathrm{M}$
b) $1.9 \times 10^{-6} \mathrm{M}$
c) $5.4 \times 10^{-4} \mathrm{M}$
d) $1.9 \times 10^{-7} \mathrm{M}$
127. For the reaction.

$$
\mathrm{Hg}^{2+}+2 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{HgCl}_{2} \quad \mathrm{~K}=1.65 \times 10^{13}
$$

concentration of Hg^{2+} at the equivalence point in the titration of 2.0 mmol of Hg^{2+} with Cl^{-}when final volume is 100 mL ., is
a) $8.25 \times 10^{14} \mathrm{M}$
b) $1.65 \times 10^{13} \mathrm{M}$
c) $2.87 \times 10^{6} \mathrm{M}$
d) $6.72 \times 10^{-6} \mathrm{M}$
128. It is desired to prepare 100 mL of a buffer of pH 5.00 . Acetic $\left(\mathrm{pK}_{\mathrm{a}}=4.74\right)$. benzoic (p $\left.K_{a}=4.18\right)$ and formic acids $\left(p K_{a}=3.68\right)$ and their salts are available for use. Which acid should be used for maximum effectiveness against increase or decrease in pH ?
a) Acetic acid
b) Benzoic acid
c) Formic acid
d) Any one of these
129. $\mathrm{K}_{\text {sp }}$ of $\mathrm{AgCl}=1.0 \times 10^{-10}$. Select the incorrect statement(s)
a) $P_{A g}+P_{C l}=10$
b) $\mathrm{P}_{\mathrm{Cl}}=8$ in $0.01 \mathrm{M} \mathrm{Ag}^{+}$
c) $\mathrm{P}_{\mathrm{Ag}}+\mathrm{P}_{\mathrm{Cl}}<10$ in presence of Ag^{+}
d) $P_{A g}=P_{C l}=5$ in saturated AgCl solution
130. At the equilibrium point in the titration of CrO_{4}^{2-} with Ag^{+}

$$
2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}^{2-} \rightleftharpoons \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
$$

a) $p_{\mathrm{Ag}}+2 p_{\text {cro4 }}=\mathrm{pK}_{\mathrm{sp}}$
b) $\mathbf{3} \mathbf{p}_{\text {cro4 }}=\mathrm{pK}_{\mathrm{sp}}+2 \log \mathbf{2}$
c) $3 p_{\mathrm{Ag}}+2 \log 2=\mathrm{pK}_{\mathrm{sp}}$
d) All of these
131. Internal proton transfer can take plae in one or more of the following acids
I: Glycine
II: Anthranilic acids
III : Sulphanilic acid
IV : Salicylic acids

Select such acids
a) I, II, III
b) I, III, IV
c) II, III, IV
d) All of these
132. Select the correct statement(s)
a) When we add $\mathrm{NH}_{4} \mathrm{Cl}$ to water, solution becomes acidic due to weak acid NH_{4}^{+}
b) When we add $\mathrm{CH}_{3} \mathrm{COONa}$, solution becomes basic due to Na^{+}
c) At $100^{\circ} \mathrm{C}, \mathrm{pH}=6$ in water thus, it is basic solution
d) pH of $1 \times 10^{-7} \mathrm{M} \mathrm{HCl}$ is 7
133. $\mathrm{pK}_{\mathrm{tn}}$ of bromocresol green is $4: 7$. Thus, ratio of its yellow and blue forms at $\mathrm{pH} 3: 7$ is
a) $1: 10$
b) $10: 1$
c) $1: 1$
d) $1: 3$
134. $\mathrm{pK}_{\mathrm{tn}}$ of bromocresol green is $4: 7$. Thus, ratio of its yellow and blue forms at $\mathrm{pH} 4: 7$ is
a) $1: 10$
b) $10: 1$
c) $1: 1$
d) $1: 3$
135. Fraction of the acid deprotonated is given by
a) $f=\frac{[\text { conjugate base }]_{\text {equilibrium }}}{[\text { acid }]_{\text {actual }}}$

c) $f=\frac{[\text { conjugate acid }]_{\text {equilibrium }}}{[\text { conjugte base }]_{\text {actual }}}$
d) $f=\frac{[\text { conjugate base }]_{\text {equilibrium }}}{[\text { conjugate acid }]_{\text {equilibrium }}}$
136. Select the correct statement(s)
a) When pH of blood rises above about 7.45, alkalosis occurs.
b) When pH of blood falls below about 7.35, acidosis occurs
c) Respiratory alkalosis is caused by hyperventilation, or excessive respiration
d) All of the above
137. Following is the titration curve of $\mathrm{CH}_{3} \mathrm{COOH}$ against NaOH added with phenolphthalein as the indicator

$\mathrm{K}_{\text {in }}$ value of phenolphthalein is 4.0×10^{-10}. Thus, incorrect statement is
a) it begins to change colour from the $\mathbf{p H} 9.4$
b) it begins to change colour from acid colourless at pH 8.4 to the base form (reddish pink) at pH 10.4
c) phenolphthalein is suitable indicator for $\mathrm{CH}_{3} \mathrm{COOH}-\mathrm{NaOH}$ titration
d) phenolphthalein is a weak acid
138. Select the correct statement(s).
a) Red colour of methyl red is due to the structure

(1)
b) Yellow colour of methyl red is due to the structure

c) $\mathrm{pH}=\mathrm{pK}_{\text {in }}$ when I and II have equal concentrations
d) All the above are correct statements
139. For an indicator HIn

$$
\underset{A}{\mathrm{HIn}} \rightleftharpoons \mathrm{H}^{\oplus}+\underset{B}{\mathrm{In}^{\ominus}}
$$

as the pH changes from $\mathrm{pK}_{\text {in }}-1$ to $\mathrm{pK}_{\text {in }}+1,[\mathrm{~B}] /[\mathrm{A}]$
a) will vary from 0.1 to 10
b) will vary from 10 to 0.1
c) will vary from 1 to 10
d) will vary from 10 to 1
140. Adding 0.25 ml of a strong monoprotic acid solution to 500 mL of water produced a pH of 2.00 . Thus, concentration of the strong acid is
a) 10 M
b) $\mathbf{2 0 ~ M}$
c) 5 N
d) 2 M

