<u>4. Transition and Inner transition elements.</u>

1. What are transition metals? Give four examples.

The metallic elements that have incompletely filled d sub shell in the neutral or cationic state are called transition metals.

Examples: Cr, Fe, Zr, Mo.

2. Write the electronic configuration of Cu and Chromium?

- Expect electronic configuration of Cr [Ar] 4s²3d⁴
- Actual electronic configuration is **[Ar]** 4s¹3d⁵
- Expect electronic configuration of Cu -[Ar] 4s²3d⁹
- Actual electronic configuration is [Ar] 4s¹3d¹⁰

3. Write the electronic configuration of Ce4⁺ and; Co²⁺?

- Electronic configuration of Ce⁴⁺- [Xe] 4f⁰ 5d⁰ 6s⁰
- Electronic configuration of Co²⁺- [Ar] 3d⁷ 4s⁰

4. Which is more stable ion Mn4⁺ or Mn²⁺?

- Electronic configuration of Mn⁴⁺ [Ar] 3d³.
- Electronic configuration of Mn²⁺ [Ar] 3d⁵.
- **Mn**²⁺ -have more stable half-filled orbitals. So more stable.

5. Why transition elements have high melting point?

- Strong interaction between atoms.
- Strong metallic bond.

- 6. Which is more stable ion Fe²⁺; or Fe³⁺?
 - Electronic configuration of Fe²⁺ [Ar] 3d⁶
 - Electronic configuration of Fe 3⁺ [Ar] 3d⁵
 Fe³⁺ -have half-filled orbitals. So more stable.

7. Why first ionization enthalpy of chromium is lower than that of zinc?

- Electronic configuration of **Zn [Ar]** 4s²3d¹⁰
- Electronic configuration of Cr [Ar] $4s^13d^5$ chromium has removed one electron become more stable $4s^03d^5$

8. Compare the ionization enthalpies of first series of the transition elements?

- > In series ionization enthalpy is increased.
- Electron filled in d orbitals increase in nuclear charge.
- Along a particular series is not regular.
- The added electron enters (n-1)d orbital and the inner electron act as a shield and decrease the effect.
- > To determine the thermodynamic stability.

9. Write a short note on variable oxidation of 3d series?

- The energy difference between ns and (n-1) d orbitals is very small.
- The number of oxidation state is increases with the increase number of electron.
- ✤ It decrease as the number of paired electron increases.

www.Padasalai.Net	www.TrbTnpsc.Com
The first and last elements show less oxidation state,	3. Presence of vacant (n-1)d orbitals. Which accept the
middle elements with more oxidation state.	electron from ligand.
10. Transition elements act as a good catalyst. Why?	Ex:- K4[Fe(CN)6].
 Metals have energetically available d-orbitals to accept the electrons. Metals to form a bond with reactant molecules. They have variable oxidation states. 	16. Cr ³⁺ -as a strong reducing agent but ; Mn ³⁺ -Strong oxidising agent – Expalin?
 11. Which metal in the 3d series exhibits +1 oxidation state? Cu is the only metal show +1 oxidation state. After losing one electron it acquire a stable 	 Cr³⁺- E₀ = -0.41 V but Mn³⁺ - E₀ = + 1.57 V Negative standard electrode potential value – strong reducing agent. Cr³⁺ - strong reducing agent.
3d ¹⁰ configuration. 12. Explain how form alloys?	17. Cr^{2+} and Fe^{2+} Which is strong reducing agent? Cr^{2+} - E0 = - 0.91 V :; Fe ²⁺ - E0 = - 0.44 V
 The crystal structure and valence solvent and solute almost same. 	 More negative standard electrode potential value of the metal – strong reducing agent.
 By blending a metal with one or more other elements. 	Cr ²⁺ strong reducing agent.
Ex: Au – Cu alloy.	
	18.Why Cu have a positive E ₀ value.?
14. Hume – Rothery rule to form alloys?	• The elementary Cu is more stable than Cu ²⁺
1. The difference between the atomic radii of solvent and	\circ Cu ²⁺ is easily reduced to elementary Cu.
solute is less than 15%.	
2. Same crystal structure and valence.	19.How Magnetic moments are calculated?
3. The electro negativity difference must be zero	Magnetic moment = $\sqrt{n(n+2)} \mu_{\rm B}$
	Diamagnetic – no unpaired electrons.
15. Why d-block elements form complexes? 1. Small size.	Paramagntic – Presence of unpaired electrons.
2. High positive charge density.	

20. What are interstitial compounds?

- when small atoms like hydrogen, boron, carbon or nitrogen are trapped in the interstitial holes in a metal lattice.
- They are usually non-stoichiometric compounds. TiC, ZrH1.92, Mn4 N etc .

21. Characteristics of interstitial compounds?

- 1. Hard
- 2. Thermal and electrical conduct.
- 3. High melting point.
- 4. Hydrides are strong reducing agents.
- 5. Chemically inert..

22. Cu^{2+} ion are coloured: but Zn^{2+} ion is colourless. Why?

- Electronic configuration of **Cu**²⁺-is **[Ar] 3d**⁹ Presence of one unpaired electron, so colour.
- Electronic configuration of Zn²⁺ -is [Ar] 3d¹⁰
 No unpaired electron, so colourless.

23. Calculate the number of unpaired electrons in Ti^{3+} , Mn^{2+} and calculate the spin only magnetic moment.

• The number of unpaired electrons in Ti3+ (3d¹) is one. The spin only magnetic moment $(\mu s) = \sqrt{n(n+2)}$

$=\sqrt{1(1+2)}$ =1.732BM.

• The number of unpaired electrons in Mn2+ (3d⁵) is five. The spin only magnetic moment (μ s) = $\sqrt{n(n + 2)}$

$=\sqrt{5(5+2)}$ =5.92BM.

23. What are inner transition elements? And give examples?

The metallic elements that have incompletely filled f sub shell.

- 4f series Lanthanoids.
- 5f series Actinoids.

24. Zr and Hf have similar properties. Why?

3d and 4d elements have similar atomic radii due to lanthanides contraction.

25. Why europium (II) is more stable than Cerium (II)?

- $\circ~$ Electronic configuration of Eu^{2+} is [Xe]4f^7 .
- A half-filled 4f sub shell is present.so more stable
- \circ Electronic configuration of Ce²⁺ is [Xe]4f¹5d¹.
- Partially-filled 4f and 5d sub shells are present.
 So less stable .

26. Gd³⁺ colourless. Why?

- ✤ Gd³⁺ have half-filled 4f⁷ orbitals
- No f f transition

27. Why actinoid contraction much larger than lanthanoids contraction?

- The screening effect of 4f electrons is high.
- The screening effect of **5f** electrons is low.

www.TrbTnpsc.Com

28. Lu(OH)3 and; La(OH)3 - which is more basic. why?

1. La (OH) **3-** is more basic due to lanthanoid contraction.

- 2. The ionic radii of **La³⁺** are large.
- 3. Ionic radii increases and basic nature also increase.

29. What are actinides? Give three examples ?

- The fourteen elements following actinium, i.e., from (Th) to (Lr) are called actinoids.
- All the actinoids are radioactive and most of them have short half lives. Examples: Th, U,Pu,Np,Am .

30. What is lanthanide contraction and what are the effects of lanthanide contraction?

- The atomic and ionic radii of lanthanoids decrease with increase in atomic number. This decrease in ionic size is called lanthanoid contraction.
- Reason: Screening effect of 4f- electrons.

Consequences of lanthanoid contraction:

1. La ³⁺ to Lu³⁺, the basic character of Ln3+ ions decrease. Due to the decrease in the size of Ln3+ ions.

- 2. Atomic and ionic radii decrease.
- 3. Decrease in reducing nature.
- 4. Increasing in covalent nature.

5. The elements of the second and third transition series resemble each other.

31. Compare lanthanides and actinides.

Lanthanides	 Actinides
1 Electrone enterrin 46	Electrone enters in Ef
1. Electrons enters in 41	Electrons enters in 51
orbitals.	orbitals.
2. Binding energy is high.	Binding energy is low.
3. Less tendency to form	Great tendency to form
complex.	complex.
4. Colourless	Colour.
5. Do not form oxo cations.	Form Oxo cations.
6. Show +3 oxidation state.	Show +3 oxidation state.
Few cases +2 and +4.	And also have +4, +5, +6
	oxidation states.