

(PG ASST IN MATHS)

CELL:9442133050

FIVE MARKS FOR

XII-STD

XII-MATHEMATICS	$(adjA) = \begin{bmatrix} 5 & 10 & 10 \\ 10 & 20 & 20 \\ 10 & 20 & 20 \end{bmatrix} \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$						
1. Applications of Matrices	$\begin{bmatrix} 10 & 20 & 20 \end{bmatrix} = \begin{bmatrix} 2 & -4 & 3 \end{bmatrix}$						
	$\begin{bmatrix} 40 - 60 + 20 \\ -30 + 70 - 40 \\ 10 - 40 + 30 \end{bmatrix}$						
And Determinants	$= \begin{bmatrix} 40 - 60 + 20 & -30 + 70 - 40 & 10 - 40 + 30 \\ 80 - 120 + 40 & -60 + 140 - 80 & 20 - 80 + 60 \end{bmatrix}$						
1. Example 1.1 If $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	80 - 120 + 40 - 60 + 140 - 80 20 - 80 + 60						
verify that A (adj A) = (adj A)A = $ A I_3$.							
Solu:	= 0(3)						
	Hence $A(adi A) = (adi A) A = A I$ is verified						
$ A = \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix}$	Hence $A (adj A) = (adj A) A = A I_3$ is verified.						
A = -6 7 -4	[6 -3 a]						
2 -4 3	2. Example 1.12 If $A = \frac{1}{7} \begin{bmatrix} 6 & -3 & a \\ b & -2 & 6 \\ a & a \end{bmatrix}$ is						
-9(21 - 16) + 6(-19 + 9) + 2(24 - 14)							
= 8 (21 - 16) + 6 (-18 + 8) + 2 (24 - 14)	orthogonal, find a, b and c, and hence A^{-1} .						
=40-60+20							
	Solu:						
= 0	If A is orthogonal then $AA^T = A^T A = I_3$						
$\therefore A I_3 = 0 \dots (1)$	Let $AA^{T} = I_{3}$						
adj $A = \begin{bmatrix} (21-16) & -(-18+8) & (24-14) \\ -(-18+8) & (24-4) & -(-32+12) \\ (24-14) & -(-32+12) & (56-36) \end{bmatrix}^{T}$							
adj $A = \begin{bmatrix} -(-18+8) & (24-4) & -(-32+12) \end{bmatrix}$							
(24 - 14) - (-32 + 12) $(56 - 36)$	$\overline{7}$ b -2 6 $\overline{7}$ -3 -2 c = 0 1 0						
	$\frac{1}{7} \begin{bmatrix} 6 & -3 & a \\ b & -2 & 6 \\ 2 & c & 3 \end{bmatrix} \frac{1}{7} \begin{bmatrix} 6 & b & 2 \\ -3 & -2 & c \\ a & 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$						
$\begin{bmatrix} 5 & 10 & 10 \end{bmatrix}^T$	$\begin{bmatrix} 36+9+a^2 & 6b+6+6a & 12-3c+3a \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$						
= 10 20 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	$\frac{1}{49} \begin{bmatrix} 6b+6+6a & b^2+4+36 & 2b-2c+18\\ 12-3c+3a & 2b-2c+18 & c^2+4+9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$						
	$12 - 3c + 3a + 2b - 2c + 18 = c^2 + 4 + 9 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$						
$ \begin{bmatrix} 10 & 20 & 20 \\ 10 & 20 & 20 \end{bmatrix} $							
	$45 + a^2 = 6b + 6 + 6a = 12 - 3c + 3a$ [1 0 0]						
	$6b+6+6a$ b^2+40 $2b-2c+18 = 49 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$						
$A (adjA) = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \end{bmatrix} \begin{bmatrix} 5 & 10 & 10 \\ 10 & 20 & 20 \end{bmatrix}$							
$A (adjA) = \begin{vmatrix} -6 & 7 & -4 \end{vmatrix} \begin{vmatrix} 10 & 20 & 20 \end{vmatrix}$	$\begin{bmatrix} 12 - 3c + 3a & 2b - 2c + 18 & c^2 + 13 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$						
$\begin{bmatrix} 2 & -4 & 3 \end{bmatrix}$ $\begin{bmatrix} 10 & 20 & 20 \end{bmatrix}$							
$\begin{bmatrix} 40 - 60 + 20 & 80 - 120 + 40 & 80 - 120 + 40 \end{bmatrix}$	$45 + a^2 = 49$ $b^2 + 40 = 49$ $c^2 + 13 = 49$						
= -30 + 70 - 40 - 60 + 140 - 80 - 60 + 140 - 80							
10 - 40 + 30 $20 - 80 + 60$ $20 - 80 + 60$	$a^2 = 49 - 45$ $b^2 = 49 - 40$ $c^2 = 49 - 13$						
	$a^2 = 4$ $b^2 = 9$ $c^2 = 36$						
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$							
	6b + 6 + 6a = 0 $12 - 3c + 3a = 0$ $2b - 2c + 18 = 0$						
	6a + 6b = -6 $3a - 3c = -12$ $2b - 2c = -18$						
=0(2)	$\div 6 \ a+b=-1$ $\div 3 \ a-c=-4$ $\div 2 \ b-c=-9$						

$$\begin{aligned} a^{2} = 4 & b^{2} = 9 & c^{2} = 36 & c = \pm 6 & a = \pm 2 & b = \pm 3 & c = \pm 6 & a = 2 & b = \pm 3 & c = \pm 6 & a = 2 & c = \pm 6 & a = 2 & c = \pm 6 & c = \pm 6 & a = 2 & c = \pm 6 & c = \pm 6 & a = 2 & c = \pm 6 & c = \pm$$

www.TrbTnpsc.Com

adj
$$A = \begin{bmatrix} (4+1) & -(-2-3) & (-1+6) \\ -(-6+3) & (-4-9) & -(-2-9) \\ (3+6) & -(2-3) & (-4-3) \end{bmatrix}^{T}$$

 $= \begin{bmatrix} 5 & 5 & 5 \\ 3 & -13 & 11 \\ 9 & 1 & -7 \end{bmatrix}^{T}$
 $= \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix}$
 $A^{-1} = \frac{1}{|A|} adj A$
 $= \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix}$
 $A^{-1} = \frac{1}{|A|} adj A$
 $= \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}$
 $= \frac{1}{40} \begin{bmatrix} 25 - 12 + 27 \\ 25 + 52 + 3 \\ 25 - 44 - 21 \end{bmatrix}$
 $= \frac{1}{40} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$
 $= \frac{1}{40} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$
 $= \frac{1}{40} \begin{bmatrix} 40 \\ 80 \\ -40 \end{bmatrix}$
 $= \frac{1}{40} \begin{bmatrix} 1 \\ 2 \\ -1 \\ 5 \end{bmatrix}$, find the products
AB and BA and hence solve the system of equations x-y+z = 4, x-2y-2z = 9, 2x+y+3z = 1.

 $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ -4+4+8 4-8+4 -4-8+12] -7+1+6 7-2+3 -7-2+95-3-2 -5+6-1 5+6-30 0 $8 \quad 0 = 8I_3$ 0 8 $\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \end{bmatrix} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \end{bmatrix}$ 2 1 3 5 -3 -4+7+5 4-1-3 4-3-1 -4+14-10 4-2+6 4-6+2-8-7+15 8+1-9 8+3-3 [8 0 0] $0 \ 8 \ 0 = 8I_3$. 0 0 8 get $AB = BA = 8I_3$.

$$\left(\frac{1}{8}A\right)B = B\left(\frac{1}{8}A\right) = I_3$$
. Hence, $B^{-1} = \frac{1}{8}A$.

Writing the given system of equations in matrix form, we get

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}.$$

That is, $B\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}.$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = B^{-1}\begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$$
$$= \left(\frac{1}{8}A\right)\begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$$

$= \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$ $= \frac{1}{8} \begin{bmatrix} -16 + 36 + 4 \\ -28 + 9 + 3 \\ 20 - 27 - 1 \end{bmatrix}$ $= \frac{1}{8} \begin{bmatrix} 24 \\ -16 \\ -8 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$	$= \begin{bmatrix} -18 & 13 & 32 \\ 0 & -3 & 3 \\ 9 & 1 & -10 \end{bmatrix}^{T}$ $= \begin{bmatrix} -18 & 0 & 9 \\ 13 & -3 & 1 \\ 32 & 3 & -10 \end{bmatrix}$ $A^{-1} = \frac{1}{ A } \operatorname{adj} A$ $= \frac{1}{27} \begin{bmatrix} -18 & 0 & 9 \\ 13 & -3 & 1 \\ 32 & 3 & -10 \end{bmatrix}$
$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$ the solution is $(x = 3, y = -2, z = -1)$.	
6. Er:1.3(1-iv) Solve the following system of linear equations by matrix inversion method: $x+y+z-2 = 0$, $6x-4y+5z-31 = 0$, 5x+2y+2z = 13. Solu: $\begin{bmatrix} 1 & 1 & 1 \\ 6 & -4 & 5 \\ 5 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 31 \\ 13 \end{bmatrix}$ $AX = B$ $X = A^{-1}B \dots (1)$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 6 & -4 & 5 \\ 5 & 2 & 2 \end{bmatrix}$	$(1) \Rightarrow X = \frac{1}{27} \begin{bmatrix} -18 & 0 & 9 \\ 13 & -3 & 1 \\ 32 & 3 & -10 \end{bmatrix} \begin{bmatrix} 2 \\ 31 \\ 13 \end{bmatrix}$ $= \frac{1}{27} \begin{bmatrix} -36+0+117 \\ 26-93+13 \\ 64+93-130 \end{bmatrix}$ $= \frac{1}{27} \begin{bmatrix} 81 \\ -54 \\ 27 \end{bmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ solution is $x = 3$; $y = -2$ and $z = 1$
A = 1 (-8 - 10) - 1 (12 - 25) + 1 (12 + 20) $= -18 + 13 + 32$	7. Er:1.3(2) If $A = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix}$ and
$= 27 \neq 0$ $\therefore A^{-1} \text{ exists}$ adj $A = \begin{bmatrix} (-8 - 10) & -(12 - 25) & (12 + 20) \\ -(2 - 2) & (2 - 5) & -(2 - 5) \\ (5 + 4) & -(5 - 6) & (-4 - 6) \end{bmatrix}^{T}$	$B = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$, find the products AB and BA and hence solve the system of equations x+y+2z = 1, 3x+2y+z = 7, 2x+y+3z = 2. Solu:

www.TrbTnpsc.Com

 $AB = \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ Solu: $=\begin{bmatrix} -5+3+6 & -5+2+3 & -10+1+9\\ 7+3-10 & 7+2-5 & 14+1-15\\ 1-3+2 & 1-2+1 & 2-1+3 \end{bmatrix}$ $=\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = 4I_3$ $BA = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix}$ $= \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = 4I_3$ $AB = BA = 4I_3 \implies B^{-1} = \frac{1}{4}A \rightarrow (1)$ $\begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \\ 2 \end{bmatrix}$ $\Rightarrow BX = C \Rightarrow X = B^{-1}C \rightarrow (2)$ From (1) $\Rightarrow B^{-1} = \frac{1}{4}A = \frac{1}{4}\begin{bmatrix} -5 & 1 & 3\\ 7 & 1 & -5\\ 1 & -1 & 1 \end{bmatrix}$ From (2) $\Rightarrow X = B^{-1}C \Rightarrow$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \\ 2 \end{bmatrix}$ $=\frac{1}{4}\begin{bmatrix} -5+7+6\\ 7+7-10\\ 1-7+2 \end{bmatrix}$ $=\frac{1}{4}\begin{vmatrix} 8\\4\\4\end{vmatrix} = \begin{vmatrix} 2\\1\\1\end{vmatrix}$ Solution : (x, y, z) = (2, 1, -1)**8.** Er:1.3(5) The prices of three commodities A,B and C are` x,y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q burchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, P, Qand R earn 15,000, 1,000 and 4,000 respectively. Find the prices

per unit of A,B and C. (Use matrix inversion method to solve the problem.) From the given data, $2x - 4y + 5z = 15000 \rightarrow (1)$ $3x + y - 2z = 1000 \rightarrow (2)$ $-x + 3y + z = 4000 \rightarrow (3)$ $\begin{bmatrix} 2 & -4 & 5 \\ 3 & 1 & -2 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 15000 \\ 1000 \\ 4000 \end{bmatrix}$ $\Rightarrow AX = B \Rightarrow X = A^{-1}B$ |A| = 2(1+6) - (-4)(3-2) + 5(9+1)= 14 + 4 + 50 = 68A⁻¹ exist $adjA = \begin{bmatrix} 1+6 & 15+4 & 8-5\\ 2-3 & 2+5 & 15+4\\ 0+1 & 4-6 & 2+12 \end{bmatrix}$ $= \begin{bmatrix} 7 & 19 & 3 \\ -1 & 7 & 19 \\ 10 & -2 & 14 \end{bmatrix}$ $A^{-1} = \frac{1}{|A|} a d j A$ $=\frac{1}{68}\begin{bmatrix} 7 & 19 & 3\\ -1 & 7 & 19\\ 10 & -2 & 14 \end{bmatrix}$ $X = A^{-1}B$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1000}{68} \begin{bmatrix} 7 & 19 & 3 \\ -1 & 7 & 19 \\ 10 & 2 & 14 \end{bmatrix} \begin{bmatrix} 15 \\ 1 \\ 1 \end{bmatrix}$ $=\frac{1}{68}\begin{bmatrix}7 & 19 & 3\\-1 & 7 & 19\\10 & -2 & 14\end{bmatrix}\begin{bmatrix}15000\\1000\\4000\end{bmatrix}$ $=\frac{1000}{68}\begin{bmatrix}105+19+12\\-15+7+76\\150-2+56\end{bmatrix}$ $=\frac{1000}{68}\begin{bmatrix} 136\\68\\204\end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2000 \\ 1000 \\ 2000 \end{bmatrix}$ The price of one unit of A, B and C are Rs.2000, 1000 and 3000 respectively.

www.TrbTnpsc.Com

= 2000[-10 + 84 - 64]9. Example 1.26 In a T20 match, a team needed just 6 runs to win with = 20000Solu: $a = \frac{\Delta_a}{\Lambda} = \frac{100}{-6000} = -\frac{1}{60}$; $v = ax^2 + bx + c$ $(10,8) \Longrightarrow 100a + 10b + c = 8 \rightarrow (1)$ $b = \frac{\Delta_b}{\Delta} = \frac{-7800}{-6000} = \frac{13}{10};$ $(20,16) \Longrightarrow 400a + 20b + c = 16 \rightarrow (2)$ $c = \frac{c}{h} = \frac{20000}{c000} = -\frac{10}{2}$ $(40,22) \Longrightarrow 1600a + 40b + c = 22 \rightarrow (3)$ $\Delta = \begin{vmatrix} 100 & 10 & 1 \\ 400 & 20 & 1 \\ 1600 & 40 & 1 \end{vmatrix}$: The equation of the path is $y = -\frac{1}{60}x^2 + \frac{13}{10}x - \frac{10}{3}$ Sub. x = 70, we get $= 100 \times 10 \begin{vmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 16 & 4 & 1 \end{vmatrix}$ $y = -\frac{1}{60}(70)^2 + \frac{13}{10}(70) - \frac{10}{3}$ $=-\frac{4900}{60}+\frac{910}{10}-\frac{10}{2}=6$ = 1000[1(2-4) - 1(4-16) + 1(16-32)]Hence the ball went for six and the = 1000[-2 + 12 - 16]Chennai Super Kings won the match. = -6000**10.Er:1.4(1-iii)** Solve the following system of $\Delta_a = \begin{vmatrix} 8 & 10 & 1 \\ 16 & 20 & 1 \\ 22 & 40 & 1 \end{vmatrix}$ linearequations by matrix inversion method: 3x+3y-z = 11, 2x-y+2z = 9, 4x+3y+2z = 25. Solu: $\Delta = \begin{bmatrix} 3 & 3 & -1 \\ 2 & -1 & 2 \\ 4 & 3 & 2 \end{bmatrix}$ $= 2 \times 10 \begin{vmatrix} 4 & 1 & 1 \\ 8 & 2 & 1 \\ 11 & 4 & 1 \end{vmatrix}$ = 3(-2-6) - 3(4-8) - 1(6+4)= 20[4(2-4) - 1(8-11) + 1(32-22)]= -24 + 12 - 10= -22= 20[-8+3+10] $\Delta_x = \begin{vmatrix} 11 & 3 & -1 \\ 9 & -1 & 2 \\ 25 & 3 & 2 \end{vmatrix}$ = 100 $\Delta_b = \begin{vmatrix} 100 & 8 & 1 \\ 400 & 16 & 1 \\ 1600 & 22 & 1 \end{vmatrix}$ = 11(-2-6) - 3(18-50) - 1(27+25)= -88 + 96 - 52 $= 100 \times 2 \begin{vmatrix} 1 & 4 & 1 \\ 4 & 8 & 1 \end{vmatrix}$ = -44 $\Delta_{y} = \begin{bmatrix} 3 & 11 & -1 \\ 2 & 9 & 2 \\ 4 & 25 & 2 \end{bmatrix}$ = 200[1(8-11) - 4(4-16) + 1(44-128)]= 200[-3 + 48 - 84]= 3(18 - 50) - 11(4 - 8) - 1(50 - 36)= -7800= -96 + 44 - 14= -66 $\Delta_c = \begin{vmatrix} 100 & 10 & 8 \\ 400 & 20 & 16 \\ 1600 & 40 & 22 \end{vmatrix}$ $\Delta_z = \begin{bmatrix} 3 & 3 & 11 \\ 2 & -1 & 9 \\ 4 & 3 & 25 \end{bmatrix}$ $= 100 \times 10 \times 2 \begin{vmatrix} 1 & 1 & 4 \\ 4 & 2 & 8 \\ 4 & 4 & 11 \end{vmatrix}$ = 3(-25 - 27) - 3(50 - 36) + 11(6 + 4)= -156 - 42 + 110= -88= 2000[1(22 - 32) - 1(44 - 128) + 4(16 - 32)]

$$x = \frac{\Delta_x}{\Delta} = \frac{-44}{-22} = 2$$
$$y = \frac{\Delta_y}{\Delta} = \frac{-66}{-22} = 3$$
$$z = \frac{\Delta_z}{\Delta} = \frac{-88}{-22} = 4$$

Solution : (x, y, z) = (2,3,4)

11. Er:1.4(1-iv) Solve the following systems of linear equations by Cramer's rule:

$$\begin{aligned} \frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 &= 0, \frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 &= 0, \\ \frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 &= 0. \end{aligned}$$
Solu:
Let $\frac{1}{x} = a, \frac{1}{y} = b, \frac{1}{z} = c$
 $3a - 4b - 2c = 1 \rightarrow (1)$
 $a + 2b + c = 2 \rightarrow (2)$
 $2a - 5b - 4c = -1 \rightarrow (3)$

$$\begin{aligned} \Delta &= \begin{vmatrix} 3 & -4 & -2 \\ 1 & 2 & 1 \\ 2 & -5 & -4 \end{vmatrix}$$

$$= 3(-8 + 5) - (-4)(-4 - 2) - 2(-5 - 4)$$

 $= -9 - 24 + 18$
 $= -15$

$$\begin{aligned} \Delta_{a} &= \begin{vmatrix} 1 & -4 & -2 \\ 2 & 2 & 1 \\ -1 & -5 & -4 \end{vmatrix}$$

$$= 1(-8 + 5) - (-4)(-8 + 1) - 2(-10 + 2) = 2(-5 - 4)$$

 $= -9 - 24 + 18$
 $= -15$

$$\begin{aligned} \Delta_{a} &= \begin{vmatrix} 1 & -4 & -2 \\ 2 & 2 & 1 \\ -1 & -5 & -4 \end{vmatrix}$$

$$= 1(-8 + 5) - (-4)(-8 + 1) - 2(-10 + 2) = 2(-5 - 4)$$

www.TrbTnpsc.Com

12. Er:1.4(5) Er:1.4(5)A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is Rs.150. The cost of the two dosai, two idlies and four vadais is 200. The cost of five dosai, four idlies and two vadais is Rs. 250. The family has Rs .350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had ?

Solu:

Let Rs.x, y and z be the cost of I dosai, 1 idly and I vadai respectively. From the given data, $2x + 3y + 2z = 150 \rightarrow (1)$ 2x + 2y + 4z = 200, ÷2 $x + y + 2z = 100 \rightarrow (2)$ $5x + 4y + 2z = 250 \rightarrow (3)$ 2 3 2 1 2 = 2(2-8) - 3(2-10) + 2(4-5)= -12 + 24 - 2= 10150 3 2 100 1 2 250 4 2 $\Delta_x =$ = 150(2-8) - 3(200 - 500) + 2(400 - 250)= -900 + 900 + 300= 300

www.TrbTnpsc.Com

 $v(t) = at^2 + bt + c$

$$\begin{split} \Delta_y &= \begin{vmatrix} 2 & 150 & 2 \\ 1 & 100 & 2 \\ 5 & 250 & 2 \end{vmatrix} \\ &= 2(200 - 500) - 150(2 - 10) + 2(250 - 500) \\ &= -600 + 1200 - 500 \\ &= 100 \\ \Delta_z &= \begin{vmatrix} 2 & 3 & 150 \\ 1 & 1 & 100 \\ 5 & 4 & 250 \end{vmatrix} \\ &= 2(250 - 400) - 3(250 - 500) + 150(4 - 5) \\ &- 300 + 750 - 150 \\ &= 300 \\ x &= \frac{\Delta_x}{\Delta} = \frac{300}{10} = 30 \\ y &= \frac{\Delta_y}{\Delta} = \frac{100}{10} = 10 \\ z &= \frac{\Delta_x}{\Delta} = \frac{300}{10} = 30 \\ \text{The cost of 3 dosai , 6 idlies and 6 vadais} \end{split}$$

Т

$$= 3x + 6y + 6z$$

= 3(30) + 6(10) + 6(30)
= 90 + 60 + 180
= 330 < 350

Hence they can manage to pay the bill.

13. Example 1.28 The upward speed v(t)of a rocket at time t is approximated by $v(t) = at^2 + bt + c$, $0 \le t \le 100$ where a,b and c are constants. It has been found that the speed at times t=3, t=6, and t=9 seconds are respectively, 64, 133, and 208 miles per second respectively. Find the speed at time t = 15 seconds. (Use Gaussian) elimination method.) Solu:

$$v(3) = 64 \implies 9a + 3b + c = 64 \rightarrow (1)$$

$$v(6) = 133 \implies 36a + 6b + c = 133 \rightarrow (2)$$

$$v(9) = 208 \implies 81a + 9b + c = 208 \rightarrow (3)$$

$$[A|B] = \begin{pmatrix} 9 & 3 \\ 36 & 6 & 1 \\ 133 \\ 81 & 9 & 1 \\ 208 \end{pmatrix}$$

$$\sim \begin{pmatrix} 9 & 3 \\ 0 & -6 & -3 \\ -123 \\ 0 & -18 & -8 \\ -368 \end{pmatrix} \begin{pmatrix} R_2 \rightarrow R_2 - 4R_1 \\ R_3 \rightarrow R_3 - 9R_1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 9 & 3 \\ 0 & 2 & 1 \\ 0 & 18 & 8 \\ 368 \end{pmatrix} \begin{pmatrix} R_2 \rightarrow (-3) \\ R_2 \\ R_3 \rightarrow (-)R_3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 9 & 3 \\ 0 & 2 \\ 0 & 0 & -1 \\ -1 \\ -1 \\ \end{pmatrix} \begin{pmatrix} 64 \\ 41 \\ R_3 \rightarrow R_3 - 9R_2 \end{pmatrix}$$

$$9a + 3b + c = 64 \rightarrow (1)$$

$$2b + c = 41 \rightarrow (2)$$

$$-c = -1 \quad c = 1$$

$$(2) \implies 2b + 1 = 41$$

$$2b = 40:$$

$$b = 20$$

When $b = 20, c = 1$

$$(1) \implies 9a + 60 + 1 = 64:$$

$$9a = 3:$$

$$a = \frac{1}{a}$$

$$\therefore v(t) = \frac{1}{a}t^2 + 20t + 1$$

$$v(15) = \frac{1}{a}(15)^2 + 20(15) + 1$$

$$= 75 + 300 + 1 = 376 \text{ miles/sec}$$

14. Er:1.5(1) Solve the following systems of linear equations by Gaussian elimination method: 2x+4y+6z = 22, 3x+8y+5z = 27, -x+y+2z = 2.Solu:

$$2x + 4y + 6z = 22,$$

$$z = 2 \Rightarrow x + 2y + 3z = 11$$

$$-x + y + 2z = 2$$

$$[A|B] = \begin{pmatrix} 1 & 2 & 3 & | 11 \\ 3 & 8 & 5 & | 27 \\ -1 & 1 & 2 & | 2 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & | 11 \\ 0 & 2 & -4 & | -6 \\ 0 & 3 & 5 & | 13 \end{pmatrix} R_2 \rightarrow R_2 - 3R_1$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & | 11 \\ 0 & 2 & -4 & | -6 \\ 0 & 0 & 22 & | 44 \end{pmatrix} R_3 \rightarrow 2R_3 - 3R_2$$

$$x + 2y + 3z = 11 \rightarrow (1)$$

$$2y - 4z = -6 \rightarrow (2)$$

$$22z = 44$$

$$z = 2$$

Put $z = 2 in (2)$

$$2y - 4(2) = -6$$

$$2y = -6 + 8$$

$$2y = 2$$

$$y = 1$$

Put $y = 1$ $z = 2 in (1)$

$$x + 2(1) + 3(2) = 11$$

$$x + 8 = 11$$

$$x = 3$$

Solution: $(x, y, z) = (3, 1, 2)$

15. Er:1.5(2) If ax²+bx+c is divided by x+3, x-5, and x-1, the remainders are 21, 61 and 9 respectively. Find a, b andc. (Use Gaussian elimination method.) **PTA-3** Solu:

Let $p(x) = ax^2 + bx + c$ p(-3) = 21 $a(-3)^2 + b(-3) + c = 21$ $9a - 3b + c = 21 \rightarrow (1)$ p(5) = 61 $a(5)^2 + b(5) + c = 61$ $25a + 5b + c = 61 \rightarrow (2)$ p(1) = 9 $a(1)^2 + b(1) + c = 9$ $a + b + c = 9 \rightarrow (3)$ $[A|B] = \begin{pmatrix} 9 & -3 & 1 & | & 21 \\ 25 & 5 & 1 & | & 61 \\ 1 & 1 & 1 & 9 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 25 & 5 & 1 & 61 \\ 9 & -3 & 21 \end{pmatrix} R_1 \leftrightarrow R_2$ $\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & -20 & -24 & -164 \\ 0 & -12 & -8 & -60 \end{pmatrix} \begin{pmatrix} R_2 \to R_2 - 25R_1 \\ R_3 \to R_3 - 9R_1 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & 5 & 6 & 41 \\ 0 & 3 & 2 & -15 \end{pmatrix} \begin{pmatrix} R_2 \to \left(-\frac{1}{4}\right) R_2 \\ R_3 \to \left(-\frac{1}{4}\right) R_3 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 1 & 1 & 9 \\ 0 & 5 & 6 & 41 \\ 0 & 0 & -8 & -48 \end{pmatrix} R_3 \to 5R_3 - 3R_2$ $a + b + c = 9 \rightarrow (1)$ $5b + 6c = 41 \rightarrow (2)$ -8c = -48c = 6Put c = 6 in (2) 5b + 6(6) = 415b = 41 - 365b = 5b=1Put b = 1, c = 6 in (1) a + 1 + 6 = 9a = 2Solution: (a, b, c) = (2, 1, 6)

16. Er:1.5(3) An amount of `65,000 is invested in three bonds at the rates of 6%, 8% and 9% per annum respectively. The total annual income is `4,800. The income from the third bond is 600 more than that from the second bond. Determine the price of each bond. (Use Gaussian elimination method.) **Solu:**

Let the price of three bond be x, y and z respectively. From the given data,

> $x + y + z = 65000 \rightarrow (1)$ Total annual income = Rs.5,000 ⇒ $6\% \ of \ x + 8\% \ of \ y + 10\% \ of \ z = 5000$ $\Rightarrow \frac{6}{100} x + \frac{8}{100} y + \frac{10}{100} z = 5000$

www.TrbTnpsc.Com

 \Rightarrow 6x + 8y + 10z = 500000 \Rightarrow ÷ 2, 3x + 4y + 5z = 250000 \rightarrow (2) Income from third bond = income from second bond + Rs.800 \Rightarrow 10% of z = 8% of y + 800 $\Rightarrow \frac{10}{100}z = \frac{8}{100}y + 800$ $\Longrightarrow \frac{10}{100} Z = \frac{8y + 80000}{100}$ $\Rightarrow 10z = 8y + 80000$ $\Rightarrow -8y + 10z = 80000$ \Rightarrow ÷ 2, -4y + 5z = 40000 \rightarrow (3) $[A|B] = \begin{pmatrix} 1 & 1 & 1 & | & 65000 \\ 3 & 4 & 5 & 250000 \\ 0 & -4 & 5 & 40000 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 1 & 1 & | & 65000 \\ 0 & 1 & 2 & | & 55000 \\ 0 & -4 & 5 & | & 40000 \end{pmatrix} R_2 \rightarrow R_2 - 3R_1$ $\sim \begin{pmatrix} 1 & 1 & 1 & | & 65000 \\ 0 & 1 & 2 & 55000 \\ 0 & 0 & 13 & 260000 \end{pmatrix} R_3 \rightarrow R_3 + 4R_2$ $\Rightarrow x + y + z = 65000 \rightarrow (1)$ $y + 2z = 55000 \rightarrow (2);$ 13z = 260000: z = 20000Put z = 20000 in(2)y + 2(20000) = 55000y = 55000 - 40000y = 15000Put y = 15000, z = 20000 in (1)x + 5000 + 20000 = 65000x + 35000 = 65000x = 30000Solution: The price of 6%, 8% and 10% are Rs.30000, Rs.15000 and Rs.20000 respectively.

17. Er:1.5(4)A boy is walking along the path $y = ax^2+bx+c$ through the points (-6,8), (-2,-12) and (3,8). He wants to meet his friend at P(7,60). Will he meet his friend? (Use Gaussian elimination method.) **Solu:** $y = ax^2 + bx + c$

(-6,8) 8 = $a(-6)^2 + b(-6) + c$ 36a - 6b + c = 8 → (1)(-2,-12) -12 = $a(-2)^2 + b(-2) + c$ 4a - 2b + c = -12 → (2) (3,8) $8 = a(3)^2 + b(3) + c$ $9a + 3b + c = 8 \rightarrow (3)$ $[A|B] = \begin{pmatrix} 36 & -6 & 1 & 8 \\ 4 & -2 & 1 & -12 \\ 9 & 3 & 1 & 8 \end{pmatrix}$ $\sim \begin{pmatrix} 36 & -6 & 1 & 8 \\ 0 & -12 & 8 & -116 \\ 0 & 18 & 3 & -24 \end{pmatrix} \begin{pmatrix} R_2 \to 9R_2 - R_1 \\ R_3 \to 4R_3 - R_1 \end{pmatrix}$ $\sim \begin{pmatrix} 36 & -6 & 1 & 8 \\ 0 & -6 & 4 & -58 \\ 0 & 6 & 1 & 8 \end{pmatrix} \begin{pmatrix} R_2 \to \left(\frac{1}{2}\right) R_2 \\ R_3 \to \left(\frac{1}{2}\right) R_3 \end{pmatrix}$ $\sim \begin{pmatrix} 36 & -6 & 1 & 8 \\ 0 & -6 & 4 & -58 \\ 0 & 0 & 5 & -50 \end{pmatrix} R_3 \rightarrow R_3 + R_2$ $36a - 6b + c = 8 \rightarrow (1)$ $-6b + 4c = -58 \rightarrow (2)$ 5c = -50*c* = -10 Put c = -10 in (2): -6b + 4(-10) = -58-6b - 40 = -58-6b = -58 + 40-6b = -18b = 3Put b = 3, c = -10 in (1) 36a - 6(3) - 10 = 836a - 18 - 10 = 836a = 8 + 2836a = 36a = 1Solution: $(a, b, c) = (1, 3, -10) \implies y = x^2 + 3x - 10$ Put $x = 7 \implies y = (7)^2 + 3(7) - 10$ = 49 + 21 - 10= 60y = 60

The point P(7,60) satisfies the equation $y = x^2 + 3x - 10$, hence the boy will meet friend at P(7,60).

2. Complex Numbers

1. Example 2.8 Show that (i) $(2 + i\sqrt{3})^{10} + (2 - i\sqrt{3})^{10}$ is real and (ii) $\left(\frac{19+9i}{5-2i}\right)^{15} - \left(\frac{8+i}{1+2i}\right)^{15}$ is purely imaginary.

Sol

Solu:

$$\frac{19-7i}{9+i} = \frac{19-7i}{9+i} \times \frac{9-i}{9-i}$$

$$= \frac{164-82i}{82}$$

$$= 2-i$$

$$\frac{20-5i}{7-6i} = \frac{20-5i}{7-6i} \times \frac{7+6i}{7+6i}$$

$$= \frac{170+85i}{85}$$

$$= 2+i$$

$$z = \left(\frac{19-7i}{9+i}\right)^{12} + \left(\frac{20-5i}{7-6i}\right)^{12}$$

$$z = (2-i)^{12} + (2+i)^{12}$$

$$\overline{z} = (2+i)^{12} + (2-i)^{12}$$

$$\overline{z} = z \Rightarrow z \text{ is real.}$$
(ii)

$$\frac{19+9i}{5-3i} = \frac{19+9i}{5-3i} \times \frac{5+3i}{5+3i}$$

$$= \frac{68+102i}{34}$$

$$= 2+3i$$

$$\frac{8+i}{1+2i} = \frac{8+i}{1+2i} \times \frac{1-2i}{1-2i}$$

$$= \frac{10-15i}{5}$$

$$= 2-3i$$

$$z = \left(\frac{19+9i}{5-3i}\right)^{15} - \left(\frac{8+i}{1+2i}\right)^{15}$$

$$\overline{z} = -(2+3i)^{15} + (2-3i)^{15}$$

$$\overline{z} = -z \Rightarrow z \text{ purely imaginary.}$$

www.TrbTnpsc.Com

2. Example 2.14 Show that the points $1, \frac{-1}{2} + i\frac{\sqrt{3}}{2}$ and $\frac{-1}{2} - i\frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle. Solu: Let $z_1 = 1, z_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ and $z_3 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$ The length of the sides of the triangle are $|z_1 - z_2| = \left|1 - \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)\right|$ $= \left| \frac{3}{2} - i \frac{\sqrt{3}}{2} \right|$ $=\sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$ $=\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{\frac{12}{4}}=\sqrt{3}$ $|z_2 - z_3| = \left| \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) - \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2} \right) \right|$ $= \left| -\frac{1}{2} + i \frac{\sqrt{3}}{2} + \frac{1}{2} + i \frac{\sqrt{3}}{2} \right|$ $=\sqrt{\left(\frac{2\sqrt{3}}{2}\right)^2}$: $|z_3 - z_1| = \left| \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} \right) - 1 \right|$ $= \left| -\frac{3}{2} - i \frac{\sqrt{3}}{2} \right|$ $=\sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$ $=\sqrt{\frac{9}{4}+\frac{3}{4}}$ $=\sqrt{3}$

Since all the three sides are equal,

the given points form an equilateral triangle.

3. Example 2.15 Let z_1 , z_2 and z_3 be complex numbers such that

 $\begin{aligned} |z_1| &= |z_2| = |z_3| = r > 0 \text{ and } z_1 + z_2 + z_3 \neq 0. \\ \text{Prove that} \left| \frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3} \right| = r. \end{aligned}$

Solu:

$$|Z_1| = r$$
$$|Z_1|^2 = r^2;$$
$$\therefore Z_1 \ \overline{Z_1} = r^2;$$
$$Z_1 = \frac{r^2}{\overline{Z_1}}$$

Similarly,
$$z_2 = \frac{r^2}{\overline{z_2}}$$
; $z_3 = \frac{r^2}{\overline{z_3}}$
 $z_1 + z_2 + z_3 = \frac{r^2}{\overline{z_1}} + \frac{r^2}{\overline{z_2}} + \frac{r^2}{\overline{z_3}} = r^2 \left(\frac{\overline{z_2 z_3} + \overline{z_1 z_3} + \overline{z_1 z_2}}{\overline{z_1 z_2 z_3}} \right)$
 $\Rightarrow |z_1 + z_2 + z_3| = |r^2| \left| \frac{\overline{z_2 z_3} + \overline{z_1 z_3} + \overline{z_1 z_2}}{\overline{z_1 z_2 z_3}} \right|$
 $\Rightarrow |z_1 + z_2 + z_3| = r^2 \frac{|\overline{z_2 z_3} + \overline{z_1 z_3} + \overline{z_1 z_2}|}{|\overline{z_1 z_2 z_3}|}$
 $\Rightarrow |z_1 + z_2 + z_3| = r^2 \frac{|z_1 z_2 + z_2 z_3 + \overline{z_3 z_1}|}{|z_1||z_2||z_3|}$
 $\Rightarrow |z_1 + z_2 + z_3| = r^2 \frac{|z_1 z_2 + z_2 z_3 + \overline{z_3 z_1}|}{r.r.r}$
 $\Rightarrow |z_1 + z_2 + z_3| = r^2 \frac{|z_1 z_2 + z_2 z_3 + \overline{z_3 z_1}|}{r}$
 $\Rightarrow |z_1 + z_2 + z_3| = r^2 \frac{|z_1 z_2 + z_2 z_3 + \overline{z_3 z_1}|}{r}$

4. Er:2.5(7)If z_1 , z_2 and z_3 are three complex numbers such that $|z_1|1$, $|z_2| = 2$, $|z_3| = 3$ and $|z_1 + z_2 + z_3| = 1$, show that $|9z_1z_2+4z_1z_3 + z_2z_3| = 6$. Solu:

$$|z_{1}| = 1 \Rightarrow$$

$$|z_{1}|^{2} = 1;$$

$$z_{1} \overline{z_{1}} = 1;$$

$$z_{1} = \frac{1}{\overline{z_{1}}}$$

$$|z_{2}| = 2 \Rightarrow z_{2} = \frac{4}{\overline{z_{2}}}$$

$$|z_{3}| = 3 \Rightarrow z_{3} = \frac{9}{\overline{z_{3}}}$$

$$|z_{1} + z_{2} + z_{3}| = \left|\frac{1}{\overline{z_{1}}} + \frac{4}{\overline{z_{2}}} + \frac{9}{\overline{z_{3}}}\right|$$

$$= \left|\frac{\overline{z_{2}z_{3}} + 4\overline{z_{1}z_{3}} + 9\overline{z_{1}z_{2}}}{\overline{z_{1}z_{2}z_{3}}}\right|$$

$$= \frac{|\overline{z_{2}z_{3}} + 4\overline{z_{1}z_{2}} + 9\overline{z_{1}z_{2}}|}{\overline{z_{1}z_{2}z_{3}}}|$$

$$= \frac{|9z_{1}z_{2} + 4z_{1}z_{2} + z_{2}z_{3}|}{|z_{1}||z_{2}||z_{3}|}|$$

$$= \frac{|9z_{1}z_{2} + 4z_{1}z_{2} + z_{2}z_{3}|}{1 \times 2 \times 3}$$

$$\therefore |9z_{1}z_{2} + 4z_{1}z_{2} + z_{2}z_{3}| = 6$$

www.TrbTnpsc.Com

5. Er:2.6(2) If z = x + iy is a complex number such that $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = 0$, show that the locus of z is $2x^2+2y^2+x-2y = 0$. Solu: Given: z = x + iy $\frac{2z+1}{iz+1} = \frac{2(x+iy)+1}{i(x+iy)+1}$ $= \frac{(2x+1)+i2y}{(1-y)+ix}$ Here a = 2x+1, b = 2y, c = (1-y), d = x $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = 0$ $\Rightarrow \frac{2y(1-y)-x(2x+1)}{(1-y)^2+x^2} = 0$

$$\Rightarrow y - y^2 - x^2 - x = 0$$

$$\Rightarrow x^2 + y^2 + x - y = 0$$

6. Example 2.18 Given the complex number z =3+i2, represent the complex numbers z, iz and z +iz in one Argand diagram. Show that these complex numbers form the vertices of an isosceles right triangle.

Solu:

www.TrbTnpsc.Com

Given the product of two roots is 1

Given : z = 3 + 2i = A(3,2) iz = i(3 + 2i) = -2 + 3i = B(-2,3) z + iz = 3 + 2i - 2 + 3i = -5i = C(1,5)The length of the sides of the triangle are

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

= $\sqrt{(3+2)^2 + (2-3)^2}$
= $\sqrt{25+1}$
= $\sqrt{26}$
$$BC = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

= $\sqrt{(-2-1)^2 + (3-5)^2}$
= $\sqrt{9+4}$
= $\sqrt{13}$
$$CA = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

= $\sqrt{(1-3)^2 + (5-2)^2}$
= $\sqrt{4+9}$
= $\sqrt{13}$
$$AB^2 = 26, BC^2 = 13, CA^2 = 13$$

Since (i)
$$BC = CA = \sqrt{13}$$

$$(ii)BC^2 + CA^2 = 13 + 13 = 26 = AB^2,$$

So the given vertices form an isosceles right triangle.

3. Theory of Equations

1. Er:3.1(4) Solve the equation $3x^{3}-16x^{2}+23x-6 = 0$ if the product of two roots is 1. **Solu:**

So let, $\alpha\beta = 1$ $\Sigma_3 = \alpha \beta \gamma = \frac{-(-6)}{3} = 2$ $\alpha\beta\gamma = 2$ $\therefore 1 \times \gamma = 2$ $\gamma = 2$ - 16 23 - 6 3 -200 6 0 3 -103 $3x^2 - 10x + 3 = 0$ is another factor. $(x - \frac{1}{3})(x - 3) = 0$ $x = \frac{1}{3}$ or x = 3The roots are $\frac{1}{3}$, 3, 2

2. Er:3.1(6)Solve the equation $x^3-9x^2+14x+24 = 0$ if it is given that two of

 $x^3 - 9x^2 + 14x + 24 = 0$ if it is given that two of its roots are in the ratio 3:2.

Solu:

$$\begin{array}{c|c} \operatorname{iven} x^3 - 9x^2 + 14x + 24 = 0 \\ \hline -1 & 1 & -9 & 14 & 24 \\ \hline 0 & -1 & -10 & -24 \\ \hline 1 & 10 & 24 & 0 \end{array}$$

 $x^{2} + 10x - 24 = 0$ is another factor. (x - 4)(x - 6) = 0

$$x = 4$$
 or $x = 6$

Two of its roots are in the ratio 3:2 is 6, 4 Hence the roots are 6, 4 and -1

3. Er:3.1(10) If the equations $x^2+px+q = 0$ and $x^2+p'x+q' = 0$ have a common root, show that it must be equal to $\frac{pq'-p'q}{q-q'}$ or $\frac{q-q'}{p'-p}$.

Solu:

Let α be the common root of the given equations. Then, $\alpha^2 + p\alpha + q = 0 \quad \dots \quad (1)$ $\alpha^2 + p'\alpha + q' = 0 \dots (2)$ $\alpha^2 \alpha 1$ p q 1p p' q' 1 p' $\frac{\alpha^2}{na/-n/a} = \frac{\alpha}{a-a/} = \frac{1}{n/-n}$ $\frac{\alpha^2}{pq'-p'q} = \frac{\alpha}{q-q'}$ and $\frac{\alpha}{q-q'} = \frac{1}{p'-p}$ $\frac{\alpha^2}{\alpha} = \frac{pq'-p'q}{q-q'}$ $\alpha = \frac{pq'-p'q}{q-q'} \qquad \qquad \alpha = \frac{q-q'}{p'-p}$ Hence, $\alpha = \frac{pq'-p'q}{q-q'}$ or $\alpha = \frac{q-q'}{p'-p}$ is proved. 4. Example 3.15 If 2 + i and $3 - \sqrt{2}$ are roots of the equation $x^{6}-13x^{5}+62x^{4}-126x^{3}+65x^{2}+127x-140=0$. find all roots. Solu: Given roots are 2 + i, $3 - \sqrt{2}$ Other roots will be 2 - i, $3 + \sqrt{2}$, α , β $\sum_{1} = \frac{-\text{co-effi of } x^5}{\text{co-effi of } x^6}$ $4+6+\alpha+\beta=13$ $\alpha + \beta = 3....$ $\sum_{6} = \frac{\text{constant}}{\text{co-effi of } x^6}$ $(2+i)(2-i)(3-\sqrt{5})(3+\sqrt{2})\alpha\beta = 140$ $(4+1)(9-2)\alpha\beta = -140$

 $(5)(7)\alpha\beta = -140$

 $\alpha\beta = -4$

www.TrbTnpsc.Com

The roots are

 $2 + i, 2 - i, 3 - \sqrt{2}, 3 + \sqrt{2}, -1, 4.$

5. Er:3.3(4)Determine k and solve the equation $2x^3-6x^2+3x+k=0$ if one of its roots is twice the sum of the other two roots. Solu:

Given $2x^3 - 6x^2 + 3x + k = 0$

Let α , β , γ be the roots.

one of its roots is twice the sum of the other two roots.

$$\alpha = 2(\beta + \gamma) \implies \beta + \gamma = \frac{\alpha}{2}$$

$$\therefore \sum_{1} = (\alpha + \beta + \gamma) = -\frac{b}{a}$$

$$\alpha + \beta + \gamma = -\frac{(-6)}{2} = \frac{6}{2} = 3$$

$$\alpha + \frac{\alpha}{2} = 3 \implies \frac{2\alpha + \alpha}{2} = 3$$

$$3\alpha = 6$$

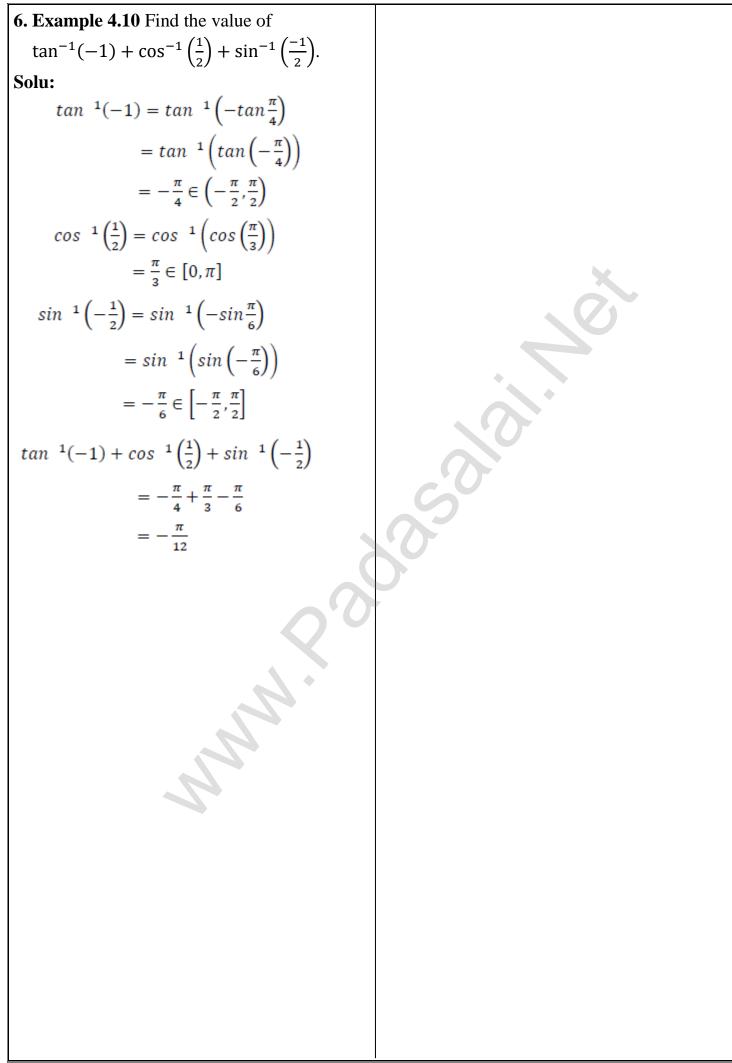
$$\alpha = 2$$

$$2 \begin{vmatrix} 2 & -6 & 3 & k \\ 0 & 4 & -4 & -2 \\ \hline 2 & -2 & -1 & 0 \end{vmatrix}$$

$$k - 2 = 0 \implies k = 2$$
$$2x^2 - 2x - 1 = 0 \text{ is another factor}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{2 \pm \sqrt{4 - 4(2)(-1)}}{2(2)} = \frac{2 \pm \sqrt{12}}{4}$
= $\frac{2 \pm \sqrt{4 \times 3}}{4} = \frac{2 \pm 2\sqrt{3}}{4} = \frac{2(1 \pm \sqrt{3})}{4} = \frac{(1 \pm \sqrt{3})}{2}$
 $x = 2$, and the roots are $2, \frac{(1 \pm \sqrt{3})}{2}$.


www.TrbTnpsc.Com

6. Er:3.3(5) Find all zeros of the polynomial		6	-35	62	-35	6			
$x^{6}-3x^{5}-5x^{4}+22x^{3}-39x^{2}-39x+135$, if it is	2	0	12	-46	32	-6			
known that 1+2i and $\sqrt{3}$ are two of its		6	-23	16	-3	0			
zeros.						0			
Solu:	3	0	18	-15	3	_			
Given roots are $1 + 2i$ and $\sqrt{3}$		6	-5	1	0				
Other roots will be $1 + 2i, 1 - 2i, \sqrt{3}, -\sqrt{3}, \alpha, \beta$						_			
	$6x^2 - 5x + 1 = 0$								
$\sum_{1} = \frac{-\text{co-effi of } x^5}{\text{co-effi of } x^6}$	(2x-1)(3x-1)=0								
$1 + 2i + 1 - 2i + \sqrt{3} - \sqrt{3} + \alpha + \beta = 3$		(21							
$2 + \alpha + \beta = 3$			r =	11					
$\alpha + \beta = 1$			~	2 '3					
			x =	$\frac{1}{2}, \frac{1}{3}, \frac{1}{2}, \frac{1}{2}, 3, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}$				
$\sum_{6} = \frac{\text{constant}}{\text{co-effi of } x^{6}}$	2 3								
	8. Er:3.5(7) Solve the equation								
$(1+2i)(1-2i)(\sqrt{3})(-\sqrt{3}) \alpha\beta = 135$ (1+4)(-3)\alpha\beta = 135	$6x^4-5x^3-38x^2-5x+6=0$ if it is known that $\frac{1}{2}$								
$-15\alpha\beta = 135$	is a solution.								
$\alpha\beta = -\frac{135}{15}$	Solu:	.0							
$\alpha\beta = -\frac{15}{15}$		Giver	$\frac{1}{2}$ is a s	olution					
$\alpha\beta = -9$	0		3						
$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$			3 is anot						
$= 1 - 4(-9) \\= 1 + 36$	- 3	6	-5 -	38 - 5	56				
$\alpha - \beta = \sqrt{37}$		0	2 –	1 -13	3 1				
$0 + 2 \Rightarrow 2\alpha = 1 + \sqrt{37}$	3	-	2	20 10	0				
	5	0	-3 -						
$\alpha = \frac{1 + \sqrt{37}}{2}$		0		45 18					
$0 + 2 \Rightarrow 2\boldsymbol{\beta} = 1 - \sqrt{37}$		6	15	6)				
		$6x^2 + 15$	x+6=0) is anoth	er factor.				
$\boldsymbol{\beta} = \frac{1 - \sqrt{37}}{2}$		$2x^2$	+5x +	2 = 0					
The roots are		1265	$(x + \frac{1}{2})(x +$						
$1+2i,-2i,\sqrt{3},-\sqrt{3},rac{1+\sqrt{37}}{2},rac{1-\sqrt{37}}{2}$			-						
			$-\frac{1}{2}$ and λ						
7. Er:3.5(5) Solve the equations		Hence	$x, x = \frac{1}{3}, 3$	$(1, -\frac{1}{2}, -\frac{1}{2})$	2				
$6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$									
Solu:									
$6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$									

www.TrbTnpsc.Com

www.Padasalai.Net 4.Inverse Trigonometric **Functions** 1.Er:4.1(6)Find the domain of the following $f(x) = \sin^{-1}\left[\frac{x^2+1}{2x}\right]$ Solu: Domain of sin^{-1} is [-1,1]So, $-1 \le \frac{x^2 + 1}{2x} \le 1$ $\Rightarrow -2x \le x^2 + 1 \le x$ $\Rightarrow -2x \leq x^2 + 1$ $\Rightarrow x^2 + 1 \leq x$ $\Rightarrow 0 \le x^2 + 1 + x$ $\Rightarrow x^2 + 1 - x \le 0$ $\Rightarrow 0 \leq (x+1)^2$ $\Rightarrow (x-1)^2 \leq 0$ $\Rightarrow (x+1)^2 \ge 0$ $\Rightarrow x - 1 \leq 0$ $\Rightarrow x + 1 \ge 0$ $\Rightarrow x \leq 1 \rightarrow (2)$ Solu: $\Rightarrow x \ge -1 \rightarrow (1)$ From (1) & (2) $\Rightarrow -1 \le x \le 1$: Domain of $f(x) = \sin^{-1}\left(\frac{x^2+1}{2x}\right)$ is [-1,1]. 2. Example 4.7 Find the domain of $\cos^{-1}\left(\frac{2+\sin x}{3}\right).$ Solu: The domain of $\cos^{-1}x$ is [-1,1]. So $-1 \leq \frac{2+\sin x}{2} \leq 1$ $\Rightarrow -3 \le 2 + \sin x \le 3$ $\Rightarrow -5 \leq sinx \leq 1$ $\Rightarrow -1 \leq sinx \leq 1$ $\Rightarrow -\sin^{-1}(1) \le x \le \sin^{-1}(1)$ $\Rightarrow -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ Solu: \therefore The domain of $\cos \left(\frac{2+\sin x}{2}\right)$ is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. **3. Example 4.4** Find the domain of $\sin^{-1}(2 - 3x^2)$ Solu: Domain of sin^{-1} is [-1,1]. $-1 \le 2 - 3x^2 \le 1$

 $-1 \le -3x^2$ $-3x^2 \le 1$ $\Rightarrow -3 \leq -3x^2$ $\Rightarrow -3\chi^2 \leq -1$ $\Rightarrow 3x^2 \leq 3$ $\Rightarrow 3x^2 > 1$ $\Rightarrow x^2 \le 1 \rightarrow (1)$ $\Rightarrow x^2 \ge \frac{1}{2} \rightarrow (2)$ From(1) & (2), $\frac{1}{2} \le x^2 \le 1$ $\frac{1}{\sqrt{2}} \le |x| \le 1$ $x \in \left[-1, -\frac{1}{\sqrt{2}}\right] \cup \left[\frac{1}{\sqrt{2}}, 1\right]$ 4. Er:4.2(5)Find the domain of $f(x) = \sin^{-1} \left[\frac{|\mathbf{x}| - 2}{3} \right] + \cos^{-1} \left[\frac{1 - |\mathbf{x}|}{4} \right]$ The domain of $sin^{-1}x$ is [-1,1]the domain of $cos^{-1}x$ is [-1,1]. So, $-1 \le \frac{|x|-2}{2} \le 1$; $-1 \le \frac{1-|x|}{4} \le 1$ $-1 \le \frac{|x|-2}{3} \le 1$ $\left| -1 \le \frac{1-|x|}{4} \le 1 \right|$ $\Rightarrow -3 \le |x| - 2 \le 3 \quad \Rightarrow -4 \le 1 - |x| \le 4$ $\Rightarrow -1 \le |x| \le 5 \qquad \Rightarrow -5 \le -|x| \le 3$ $\Rightarrow -3 \le |x| \le 5$ $\Rightarrow |x| \leq 5$ $\Rightarrow |x| \leq 5$ $x \in [-5,5]$ 5. Er:4.4(2)Find the value of $\cot^{-1}(1) + \sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) - \sec^{-1}(-\sqrt{2})$ $\cot^{1}(1) + \sin^{1}\left(-\frac{\sqrt{3}}{2}\right) - \sec^{1}\left(-\sqrt{2}\right)$ $= \tan(1) + \sin^{-1}\left(-\sin\left(\frac{\sqrt{3}}{2}\right)\right) - \cos\left(-\frac{1}{\sqrt{2}}\right)$ $= \tan\left(\frac{\pi}{4}\right) + \sin^{-1}\left(\sin\left(-\frac{\pi}{2}\right)\right) - \cos\left(\pi - \frac{\pi}{4}\right)$ $=\frac{\pi}{4}-\frac{\pi}{3}-\frac{3\pi}{4}$ $= -\frac{2\pi}{4} - \frac{\pi}{3}$ $= -\frac{\pi}{2} - \frac{\pi}{3}$

