

## ANANTH.S

(PG ASST IN MATHS)

## CELL:9442133050

## FIVE MARKS FOR

## I-REVISION TEST <br> (CHAP-I-IV)

## XII-STD

## XII-MATHEMATICS

## 1. Applications of Matrices And Determinants

1. Example 1.1 If $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$ verify that $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|A| \mathrm{I}_{3}$.

## Solu:

$$
\begin{aligned}
|A| & =\left|\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right| \\
& =8(21-16)+6(-18+8)+2(24-14) \\
& =40-60+20 \\
& =0
\end{aligned}
$$

$$
\begin{equation*}
\therefore|A| I_{3}=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{rrr}
(21-16) & -(-18+8) & (24-14) \\
-(-18+8) & (24-4) & -(-32+12) \\
(24-14) & -(-32+12) & (56-36)
\end{array}\right]^{T} \\
& =\left[\begin{array}{rrr}
5 & 10 & 10 \\
10 & 20 & 20 \\
10 & 20 & 20
\end{array}\right] \\
& =\left[\begin{array}{rrr}
5 & 10 & 10 \\
10 & 20 & 20 \\
10 & 20 & 20
\end{array}\right]
\end{aligned}
$$

$$
A(\operatorname{adj} A)=\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]\left[\begin{array}{rrr}
5 & 10 & 10 \\
10 & 20 & 20 \\
10 & 20 & 20
\end{array}\right]
$$

$$
=\left[\begin{array}{rrr}
40-60+20 & 80-120+40 & 80-120+40 \\
-30+70-40 & -60+140-80 & -60+140-80 \\
10-40+30 & 20-80+60 & 20-80+60
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{equation*}
=0 \tag{2}
\end{equation*}
$$

$$
\begin{align*}
(\operatorname{adj} A) & =\left[\begin{array}{rrr}
5 & 10 & 10 \\
10 & 20 & 20 \\
10 & 20 & 20
\end{array}\right]\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right] \\
& =\left[\begin{array}{rrr}
40-60+20 & -30+70-40 & 10-40+30 \\
80-120+40 & -60+140-80 & 20-80+60 \\
80-120+40 & -60+140-80 & 20-80+60
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =0 \tag{3}
\end{align*}
$$

Hence $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I_{3}$ is verified.
2. Example 1.12 If $A=\frac{1}{7}\left[\begin{array}{ccc}6 & -3 & a \\ b & -2 & 6 \\ 2 & c & 3\end{array}\right]$ is
orthogonal, find $\mathrm{a}, \mathrm{b}$ and c , and hence $\mathrm{A}^{-1}$.

## Solu:

If $A$ is orthogonal then $A A^{I}=A^{T} A=I_{3}$ Let $A A^{T}=I_{3}$ $\frac{1}{7}\left[\begin{array}{rrr}6 & -3 & a \\ b & -2 & 6 \\ 2 & c & 3\end{array}\right] \frac{1}{7}\left[\begin{array}{rrr}6 & b & 2 \\ -3 & -2 & c \\ a & 6 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\frac{1}{49}\left[\begin{array}{rrr}36+9+a^{2} & 6 b+6+6 a & 12-3 c+3 a \\ 6 b+6+6 a & b^{2}+4+36 & 2 b-2 c+18 \\ 12-3 c+3 a & 2 b-2 c+18 & c^{2}+4+9\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{rrr}
45+a^{2} & 6 b+6+6 a & 12-3 c+3 a \\
6 b+6+6 a & b^{2}+40 & 2 b-2 c+18 \\
12-3 c+3 a & 2 b-2 c+18 & c^{2}+13
\end{array}\right]=49\left[\left.\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array} \right\rvert\,\right.
$$

| $45+a^{2}=49$ | $b^{2}+40=49$ | $c^{2}+13=49$ |
| :---: | :---: | :---: |
| $a^{2}=49-45$ | $b^{2}=49-40$ | $c^{2}=49-13$ |
| $a^{2}=4$ | $b^{2}=9$ | $c^{2}=36$ |
| $6 b+6+6 a=0$ | $12-3 c+3 a=0$ | $2 b-2 c+18=0$ |
| $6 a+6 b=-6$ | $3 a-3 c=-12$ | $2 b-2 c=-18$ |
| $\div 6 a+b=-1$ | $\div 3 a-c=-4$ | $\div 2 b-c=-9$ |

$$
\begin{aligned}
& \begin{array}{c|c|c}
a^{2}=4 & b^{2}=9 & C^{2}=36 \\
a= \pm 2 & b= \pm 3 & C= \pm 6 \\
\boldsymbol{a = 2} & b=-\mathbf{3} & : \quad C=\mathbf{6}
\end{array} \\
& \therefore A=\frac{1}{7}\left[\begin{array}{rrr}
6 & -3 & 2 \\
-3 & -2 & 6 \\
2 & 6 & 3
\end{array}\right] \\
& A A^{T}=I \\
& \therefore A^{-1}=A^{T} \\
& =\frac{1}{7}\left[\begin{array}{rrr}
6 & -3 & 2 \\
-3 & -2 & 6 \\
2 & 6 & 3
\end{array}\right] \\
& \text { 3.Er:1.1(3) If } F(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right] \text {, } \\
& \operatorname{adj} F(\alpha)=\left[\begin{array}{rrr}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
& {[F(\alpha)]^{-1}=\frac{1}{|F(\alpha)|} \operatorname{adj} F(\alpha)} \\
& =\left[\begin{array}{rrr}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
& F(\alpha)=\left[\begin{array}{rrr}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
& F(-\alpha)=\left[\begin{array}{rrr}
\cos (-\alpha) & 0 & \sin (-\alpha) \\
0 & 1 & 0 \\
-\sin (-\alpha) & 0 & \cos (-\alpha)
\end{array}\right] \\
& =\left[\begin{array}{rrr}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\end{aligned}
$$ show that $[F(\alpha)]^{-1}=F(-\alpha)$.

## Solu:

$$
\begin{aligned}
& F(\alpha)=\left[\begin{array}{rrr}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right] \\
&|F(\alpha)|=\cos \alpha(\cos \alpha-0)+\sin \alpha(0+\sin \alpha) \\
&=\cos ^{2} \alpha+\sin ^{2} \alpha \\
&=1 \neq 0 \\
& \therefore[F(\alpha)]^{-1} \text { exists. } \\
& \operatorname{adj} F(\alpha)=\left[\begin{array}{rrr}
(\cos \alpha-0) & -(0-0) & (0+\sin \alpha) \\
-(0-0) & \left(\cos ^{2} \alpha+\sin ^{2} \alpha\right) & (0+0) \\
(0-\sin \alpha) & -(0-0) & (\cos \alpha-0)
\end{array}\right]^{T} \\
& \operatorname{adj} F(\alpha)=\left[\begin{array}{rrr}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\end{aligned}
$$

From (1) and (2) $[F(\alpha)]^{-1}=F(-\alpha)$ is verified.
4. Example 1.23 Solve the following system of equations, using matrix inversion method: $2 x_{1}+3 x_{2}+3 x_{3}=5, x_{1}-2 x_{2}+x_{3}=-4,3 x_{1}-x_{2}-2 x_{3}=3$.

## Solu:

$$
\begin{gather*}
{\left[\begin{array}{rrr}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
5 \\
-4 \\
3
\end{array}\right]} \\
A X=B \\
X=A^{-1} B \quad \ldots(1) \tag{1}
\end{gather*}
$$

$$
A=\left[\begin{array}{rrr}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2
\end{array}\right]
$$

$$
|A|=2(4+1)-3(-2-3)+3(-1+6)
$$

$$
=10+15+15
$$

$$
=40 \neq 0
$$

$A^{-1}$ exists
$\operatorname{adj} A=\left[\begin{array}{rrr}(4+1) & -(-2-3) & (-1+6) \\ -(-6+3) & (-4-9) & -(-2-9) \\ (3+6) & -(2-3) & (-4-3)\end{array}\right]^{T}$

$$
\begin{aligned}
& =\left[\begin{array}{rrr}
5 & 5 & 5 \\
3 & -13 & 11 \\
9 & 1 & -7
\end{array}\right]^{T} \\
& =\left[\begin{array}{rrr}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]
\end{aligned}
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

$$
=\frac{1}{40}\left[\begin{array}{rrr}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]
$$

$(1) \Rightarrow \quad X=A^{-1} B$

$$
=\frac{1}{40}\left[\begin{array}{rrr}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7
\end{array}\right]\left[\begin{array}{r}
5 \\
-4 \\
3
\end{array}\right]
$$

$$
=\frac{1}{40}\left[\begin{array}{r}
25-12+27 \\
25+52+3 \\
25-44-21
\end{array}\right]
$$

$$
=\frac{1}{40}\left[\begin{array}{r}
40 \\
80 \\
-40
\end{array}\right]
$$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right)
$$

solution is $x_{1}=1, x_{2}=2, x_{3}=-1$
5. Example 1.24 If $\mathrm{A}=\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$, find the products $A B$ and $B A$ and hence solve the system of equations $x-y+z=4, x-2 y-2 z=9$, $2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}=1$.

Solu:

$$
\begin{aligned}
A B & =\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-4+4+8 & 4-8+4 & -4-8+12 \\
-7+1+6 & 7-2+3 & -7-2+9 \\
5-3-2 & -5+6-1 & 5+6-3
\end{array}\right] \\
& =\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]=8 I_{3}
\end{aligned}
$$

$$
B A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
-4+7+5 & 4-1-3 & 4-3-1 \\
-4+14-10 & 4-2+6 & 4-6+2 \\
-8-7+15 & 8+1-9 & 8+3-3
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right]=8 I_{3} .
$$

we get $A B=B A=8 I_{3}$.
$\left(\frac{1}{8} A\right) B=B\left(\frac{1}{8} A\right)=I_{3}$. Hence, $B^{-1}=\frac{1}{8} A$.

Writing the given system of equations in matrix form, we get

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -2 & -2 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
9 \\
1
\end{array}\right]
$$

That is, $B\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}4 \\ 9 \\ 1\end{array}\right]$.

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =B^{-1}\left[\begin{array}{l}
4 \\
9 \\
1
\end{array}\right] \\
& =\left(\frac{1}{8} A\right)\left[\begin{array}{l}
4 \\
9 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{8}\left[\begin{array}{ccc}
-4 & 4 & 4 \\
-7 & 1 & 3 \\
5 & -3 & -1
\end{array}\right]\left[\begin{array}{l}
4 \\
9 \\
1
\end{array}\right] \\
& =\frac{1}{8}\left[\begin{array}{c}
-16+36+4 \\
-28+9+3 \\
20-27-1
\end{array}\right] \\
& =\frac{1}{8}\left[\begin{array}{c}
24 \\
-16 \\
-8
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right]
\end{aligned}
$$

the solution is $(x=3, y=-2, z=-1)$.
6. Er:1.3(1-iv) Solve the following system of linear equations by matrix inversion method: $x+y+z-2=0,6 x-4 y+5 z-31=0$, $5 x+2 y+2 z=13$.

## Solu:

$$
\begin{align*}
& {\left[\begin{array}{rrr}
1 & 1 & 1 \\
6 & -4 & 5 \\
5 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
31 \\
13
\end{array}\right]} \\
& A X=B  \tag{1}\\
& X=A^{-1} B \\
& A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
6 & -4 & 5 \\
5 & 2 & 2
\end{array}\right] \\
& |A|=1(-8-10)-1(12-25)+1(12+20) \\
& \quad=-18+13+32 \\
& =27 \neq 0 \\
& \therefore A^{-1} \text { exists }
\end{align*}
$$

$$
\operatorname{adj} A=\left[\begin{array}{rrr}
(-8-10) & -(12-25) & (12+20) \\
-(2-2) & (2-5) & -(2-5) \\
(5+4) & -(5-6) & (-4-6)
\end{array}\right]^{T}
$$

$$
\begin{aligned}
& =\left[\begin{array}{rrr}
-18 & 13 & 32 \\
0 & -3 & 3 \\
9 & 1 & -10
\end{array}\right]^{T} \\
& =\left[\begin{array}{rrr}
-18 & 0 & 9 \\
13 & -3 & 1 \\
32 & 3 & -10
\end{array}\right]^{T}
\end{aligned}
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

$$
=\frac{1}{27}\left[\begin{array}{rrr}
-18 & 0 & 9 \\
13 & -3 & 1 \\
32 & 3 & -10
\end{array}\right]
$$

$$
(1) \Rightarrow X=\frac{1}{27}\left[\begin{array}{rrr}
-18 & 0 & 9 \\
13 & -3 & 1 \\
32 & 3 & -10
\end{array}\right]\left[\begin{array}{r}
2 \\
31 \\
13
\end{array}\right]
$$

$$
=\frac{1}{27}\left[\begin{array}{r}
-36+0+117 \\
26-93+13 \\
64+93-130
\end{array}\right]
$$

$$
=\frac{1}{27}\left[\begin{array}{r}
81 \\
-54 \\
27
\end{array}\right]
$$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right)
$$

solution is $x=3 ; y=-2$ and $z=1$
7. $\mathbf{E r}: \mathbf{1 . 3}(\mathbf{2})$ If $\mathrm{A}=\left[\begin{array}{ccc}-5 & 1 & 3 \\ 7 & 1 & -5 \\ 1 & -1 & 1\end{array}\right]$ and
$B=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right]$, find the products $A B$ and $B A$
and hence solve the system of equations $x+y+2 z=1,3 x+2 y+z=7,2 x+y+3 z=2$.
Solu:

$$
\begin{aligned}
& A B=\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-5+3+6 & -5+2+3 & -10+1+9 \\
7+3-10 & 7+2-5 & 14+1-15 \\
1-3+2 & 1-2+1 & 2-1+3
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]=4 I_{3} \\
& B A=\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]=4 I_{3} \\
& A B=B A=4 I_{3} \quad \Rightarrow \quad B^{-1}=\frac{1}{4} A \rightarrow \text { (1) } \\
& {\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
7 \\
2
\end{array}\right]} \\
& \Rightarrow B X=C \Rightarrow X=B^{-1} C \rightarrow \text { (2) } \\
& \text { From (1) } \Rightarrow B^{-1}=\frac{1}{4} A=\frac{1}{4}\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

From (2) $\Rightarrow X=B^{-1} C \Rightarrow$

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\frac{1}{4}\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
7 \\
2
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{c}
-5+7+6 \\
7+7-10 \\
1-7+2
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{c}
8 \\
4 \\
-4
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Solution : $(x, y, z)=(2,1,-1)$
8. Er:1.3(5) The prices of three commodities $A, B$ and $C$ are $\mathrm{x}, \mathrm{y}$ and z per units respectively. A person $P$ purchases 4 units ofB and sells two units of A and 5 units of C . Person Q purchases 2 units of $C$ and sells 3 units of $A$ and one unit of B . Person R purchases one unit of $A$ and sells 3 unit of $B$ and one unit of C. In the process, P, Qand R earn 15,000 , 1,000 and 4,000 respectively. Find the prices
per unit of $A, B$ and $C$. (Use matrix inversion method to solve the problem.)

## Solu:

From the given data,

$$
\begin{aligned}
& 2 x-4 y+5 z=15000 \rightarrow(1) \\
& 3 x+y-2 z=1000 \rightarrow(2) \\
& -x+3 y+z=4000 \rightarrow(3)
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
2 & -4 & 5 \\
3 & 1 & -2 \\
-1 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
15000 \\
1000 \\
4000
\end{array}\right]
$$

$$
\Rightarrow A X=B \Longrightarrow X=A^{-1} B
$$

$$
|A|=2(1+6)-(-4)(3-2)+5(9+1)
$$

$$
=14+4+50=68
$$

$$
A^{-1} \text { exist }
$$

$\operatorname{adj} A=\left[\begin{array}{ccc}1+6 & 15+4 & 8-5 \\ 2-3 & 2+5 & 15+4 \\ 9+1 & 4-6 & 2+12\end{array}\right]$

$$
=\left[\begin{array}{ccc}
7 & 19 & 3 \\
-1 & 7 & 19 \\
10 & -2 & 14
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

$$
=\frac{1}{68}\left[\begin{array}{ccc}
7 & 19 & 3 \\
-1 & 7 & 19 \\
10 & -2 & 14
\end{array}\right]
$$

$X=A^{-1} B$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1000}{68}\left[\begin{array}{ccc}7 & 19 & 3 \\ -1 & 7 & 19 \\ 10 & -2 & 14\end{array}\right]\left[\begin{array}{c}15 \\ 1 \\ 4\end{array}\right]$

$$
=\frac{1}{68}\left[\begin{array}{ccc}
7 & 19 & 3 \\
-1 & 7 & 19 \\
10 & -2 & 14
\end{array}\right]\left[\begin{array}{c}
15000 \\
1000 \\
4000
\end{array}\right]
$$

$$
=\frac{1000}{68}\left[\begin{array}{c}
105+19+12 \\
-15+7+76 \\
150-2+56
\end{array}\right]
$$

$$
=\frac{1000}{68}\left[\begin{array}{c}
136 \\
68 \\
204
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2000 \\
1000 \\
3000
\end{array}\right]
$$

The price of one unit of $\mathrm{A}, \mathrm{B}$ and C are
Rs.2000, 1000 and 3000 respectively.
9. Example 1.26 In a T20 match, a team needed just 6 runs to win with

## Solu:

$$
\Delta_{c}=\left|\begin{array}{ccc}
100 & 10 & 8 \\
400 & 20 & 16 \\
1600 & 40 & 22
\end{array}\right|
$$

$$
=100 \times 10 \times 2\left|\begin{array}{ccc}
1 & 1 & 4 \\
4 & 2 & 8 \\
16 & 4 & 11
\end{array}\right|
$$

$$
=2000[1(22-32)-1(44-128)+4(16-32)]
$$

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& (10,8) \Rightarrow 100 a+10 b+c=8 \rightarrow(1) \\
& (20,16) \Rightarrow 400 a+20 b+c=16 \rightarrow(2) \\
& (40,22) \Rightarrow 1600 a+40 b+c=22 \rightarrow \text { (3) } \\
& \Delta=\left|\begin{array}{ccc}
100 & 10 & 1 \\
400 & 20 & 1 \\
1600 & 40 & 1
\end{array}\right| \\
& =100 \times 10\left|\begin{array}{ccc}
1 & 1 & 1 \\
4 & 2 & 1 \\
16 & 4 & 1
\end{array}\right| \\
& =1000[1(2-4)-1(4-16)+1(16-32)] \\
& =1000[-2+12-16] \\
& =-6000 \\
& \Delta_{a}=\left|\begin{array}{ccc}
8 & 10 & 1 \\
16 & 20 & 1 \\
22 & 40 & 1
\end{array}\right| \\
& =2 \times 10\left|\begin{array}{ccc}
4 & 1 & 1 \\
8 & 2 & 1 \\
11 & 4 & 1
\end{array}\right| \\
& =20[4(2-4)-1(8-11)+1(32-22)] \\
& =20[-8+3+10] \\
& =100 \\
& \Delta_{b}=\left|\begin{array}{ccc}
100 & 8 & 1 \\
400 & 16 & 1 \\
1600 & 22 & 1
\end{array}\right| \\
& =100 \times 2\left|\begin{array}{ccc}
1 & 4 & 1 \\
4 & 8 & 1 \\
16 & 11 & 1
\end{array}\right| \\
& =200[1(8-11)-4(4-16)+1(44-128)] \\
& =200[-3+48-84] \\
& =-7800
\end{aligned}
$$

$$
\begin{aligned}
& =2000[-10+84-64] \\
& =20000 \\
a= & \frac{\Delta_{a}}{\Delta}=\frac{100}{-6000}=-\frac{1}{60} ; \\
b= & \frac{\Delta_{b}}{\Delta}=\frac{-7800}{-6000}=\frac{13}{10} ; \\
c & =\frac{c}{A}=\frac{20000}{c n n n}=-\frac{10}{n}
\end{aligned}
$$

$\therefore$ The equation of the path is $y=-\frac{1}{60} x^{2}+\frac{13}{10} x-\frac{10}{3}$
Sub. $x=70$, we get

$$
\begin{aligned}
y & =-\frac{1}{60}(70)^{2}+\frac{13}{10}(70)-\frac{10}{3}= \\
& =-\frac{4900}{60}+\frac{910}{10}-\frac{10}{3}=6
\end{aligned}
$$

Hence the ball went for six and the
Chennai Super Kings won the match.
10.Er:1.4(1-iii) Solve the following system of linearequations by matrix inversion method: $3 x+3 y-z=11,2 x-y+2 z=9,4 x+3 y+2 z=25$.

## Solu:

$$
\left.\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
3 & 3 & -1 \\
2 & -1 & 2 \\
4 & 3 & 2
\end{array}\right| \\
& =3(-2-6)-3(4-8)-1(6+4) \\
& =-24+12-10 \\
& =-22 \\
\Delta_{x} & =\left|\begin{array}{ccc}
11 & 3 & -1 \\
9 & -1 & 2 \\
25 & 3 & 2
\end{array}\right| \\
& =11(-2-6)-3(18-50)-1(27+25) \\
& =-88+96-52 \\
& =-44 \\
\Delta_{y} & =\left|\begin{array}{cc}
3 & 11 \\
2 & -1 \\
4 & 25
\end{array}\right| \\
= & 3(18-50)-11(4-8)-1(50-36) \\
= & -96+44-14 \\
= & -66 \\
\Delta_{z} & =\left|\begin{array}{ll}
3 & 3 \\
2 & -1 \\
4 & 3
\end{array}\right| \\
& 25
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
& x=\frac{\Delta_{x}}{\Delta}=\frac{-44}{-22}=2 \\
& y=\frac{\Delta_{y}}{\Delta}=\frac{-66}{-22}=3 \\
& z=\frac{\Delta_{z}}{\Delta}=\frac{-88}{-22}=4
\end{aligned}
$$

Solution : $(x, y, z)=(2,3,4)$
11. Er:1.4(1-iv) Solve the following systems of linear equations by Cramer's rule:

$$
\begin{aligned}
& \frac{3}{x}-\frac{4}{y}-\frac{2}{z}-1=0, \frac{1}{x}+\frac{2}{y}+\frac{1}{z}-2=0 \\
& \frac{2}{x}-\frac{5}{y}-\frac{4}{z}+1=0
\end{aligned}
$$

## Solu:

$$
\begin{aligned}
& \text { Let } \frac{1}{x}=a, \frac{1}{y}=b, \frac{1}{z}=c \\
& 3 a-4 b-2 c=1 \rightarrow \text { (1) } \\
& a+2 b+c=2 \rightarrow \text { (2) } \\
& 2 a-5 b-4 c=-1 \rightarrow \text { (3) } \\
& \Delta=\left|\begin{array}{ccc}
3 & -4 & -2 \\
1 & 2 & 1 \\
2 & -5 & -4
\end{array}\right| \\
& =3(-8+5)-(-4)(-4-2)-2(-5-4) \\
& =-9-24+18 \\
& =-15 \\
& \Delta_{a}=\left|\begin{array}{ccc}
1 & -4 & -2 \\
2 & 2 & 1 \\
-1 & -5 & -4
\end{array}\right| \\
& =1(-8+5)-(-4)(-8+1)-2(-10+2) \\
& =-3-28+16 \\
& =-15 \\
& \Delta_{b}=\left|\begin{array}{ccc}
3 & 1 & -2 \\
1 & 2 & 1 \\
2 & -1 & -4
\end{array}\right| \\
& =3(-8+1)-1(-4-2)-2(-1-4) \\
& =-21+6+10 \\
& =-5 \\
& \Delta_{c}=\left|\begin{array}{ccc}
3 & -4 & 1 \\
1 & 2 & 2 \\
2 & -5 & -1
\end{array}\right| \\
& =3(-2+10)-(-4)(-1-4)+1(-5-4) \\
& =24-20-9 \\
& =-5 \\
& a=\frac{\Delta_{a}}{\Delta}=\frac{-15}{-15}=1 \Rightarrow x=\frac{1}{a}=1 \\
& b=\frac{\Delta_{b}}{\Delta}=\frac{-5}{-15}=\frac{1}{3} \Rightarrow y=\frac{1}{b}=3 \\
& c=\frac{\Delta_{c}}{\Delta}=\frac{-5}{-15}=\frac{1}{3} \Rightarrow z=\frac{1}{c}=3 \\
& \text { Solution: }(x, y, z)=(1,3,3)
\end{aligned}
$$

12. Er:1.4(5) Er:1.4(5)A family of 3 people went out for dinner in a restaurant. The cost of two dosai,three idlies and two vadais is Rs.150. The cost of the two dosai, two idlies and four vadais is 200 . The cost of five dosai, four idlies and two vadais is Rs. 250. The family has Rs .350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had?

## Solu:

Let Rs. $x, y$ and $z$ be the cost of I dosai, 1 idly and I vadai respectively.
From the given data,

$$
\begin{aligned}
& 2 x+3 y+2 z=150 \rightarrow(1) \\
& 2 x+2 y+4 z=200 \\
& x+y+2 z=100 \rightarrow(2) \\
& 5 x+4 y+2 z=250 \rightarrow(3) \\
\Delta= & \left|\begin{array}{lll}
2 & 3 & 2 \\
1 & 1 & 2 \\
5 & 4 & 2
\end{array}\right| \\
= & 2(2-8)-3(2-10)+2(4-5) \\
= & -12+24-2 \\
= & 10 \\
\Delta_{x}= & \left|\begin{array}{lll}
150 & 3 & 2 \\
100 & 1 & 2 \\
250 & 4 & 2
\end{array}\right| \\
= & 150(2-8)-3(200-500)+2(400-250) \\
= & -900+900+300 \\
= & 300
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{y} & =\left|\begin{array}{lll}
2 & 150 & 2 \\
1 & 100 & 2 \\
5 & 250 & 2
\end{array}\right| \\
& =2(200-500)-150(2-10)+2(250-500) \\
& =-600+1200-500 \\
& =100 \\
\Delta_{z} & =\left|\begin{array}{lll}
2 & 3 & 150 \\
1 & 1 & 100 \\
5 & 4 & 250
\end{array}\right| \\
& =2(250-400)-3(250-500)+150(4-5) \\
& =300
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{\Delta x}{\Delta}=\frac{300}{10}=30 \\
& y=\frac{\Delta y}{\Delta}=\frac{100}{10}=10 \\
& z=\frac{\Delta z}{\Delta}=\frac{300}{10}=30
\end{aligned}
$$

The cost of 3 dosai, 6 idlies and 6 vadais

$$
\begin{aligned}
& =3 x+6 y+6 z \\
& =3(30)+6(10)+6(30) \\
& =90+60+180 \\
& =330<350
\end{aligned}
$$

Hence they can manage to pay the bill.
13. Example 1.28 The upward speed $v(t)$ of a rocket at time $t$ is approximated by $\mathrm{v}(\mathrm{t})=\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}, 0 \leq \mathrm{t} \leq 100$ where $\mathrm{a}, \mathrm{b}$ and c are constants. It has been found that the speed at times $t=3, t=6$, and $t=9$ seconds are respectively, 64, 133, and 208 miles per second respectively. Find the speed at time $\mathrm{t}=15$ seconds. (Use Gaussian elimination method.)

## Solu:

$$
\begin{aligned}
& v(t)=a t^{2}+b t+c \\
& v(3)=64 \Rightarrow 9 a+3 b+c=64 \rightarrow \text { (1) } \\
& v(6)=133 \Rightarrow 36 a+6 b+c=133 \rightarrow \text { (2) } \\
& v(9)=208 \Rightarrow 81 a+9 b+c=208 \rightarrow \text { (3) } \\
& {[A \mid B]=\left(\begin{array}{ccc|c}
9 & 3 & & 64 \\
36 & 6 & 1 & 133 \\
81 & 9 & & 208
\end{array}\right)} \\
& \sim\left(\begin{array}{ccc|c}
9 & 3 & & 64 \\
0 & -6 & -3 & -123 \\
0 & -18 & -8 & -368
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow R_{2}-4 R_{1} \\
R_{3} \rightarrow R_{3}-9 R_{1}
\end{array} \\
& \sim\left(\begin{array}{ccc|c}
9 & 3 & & 64 \\
0 & 2 & 1 & 41 \\
0 & 18 & 8 & 368
\end{array}\right) \begin{array}{c}
R_{2} \rightarrow(-\overline{3}) R_{2} \\
R_{3} \rightarrow(-) R_{3}
\end{array} \\
& \sim\left(\begin{array}{rrr|r}
9 & 3 & & 64 \\
0 & 2 & & 41 \\
0 & 0 & -1 & -1
\end{array}\right) R_{3} \rightarrow R_{3}-9 R_{2} \\
& 9 a+3 b+c=64 \rightarrow \text { (1) } \\
& 2 b+c=41 \rightarrow(2) \\
& -c=-1 \quad c=1 \\
& \text { (2) } \Rightarrow 2 b+1=41 \\
& 2 b=40 \\
& b=20 \\
& \text { When } b=20, \mathrm{c}=1 \\
& \text { (1) } \Rightarrow 9 a+60+1=64 \text { : } \\
& 9 a=3 \\
& a=\frac{1}{3} \\
& \therefore v(t)=\frac{1}{3} t^{2}+20 t+1 \\
& v(15)=\frac{1}{3}(15)^{2}+20(15)+1 \\
& =75+300+1=376 \text { miles } / \mathrm{sec}
\end{aligned}
$$

14. Er:1.5(1) Solve the following systems of linear equations by Gaussian elimination method: $2 x+4 y+6 z=22,3 x+8 y+5 z=27$, $-x+y+2 z=2$.
Solu:

$$
\text { Put } z=2 \text { in (2) }
$$

$$
\begin{gathered}
2 y-4(2)=-6 \\
2 y=-6+8 \\
2 y=2 \\
y=1
\end{gathered}
$$

Put $y=1 \quad z=2 \operatorname{in}(1)$

$$
\begin{aligned}
& x+2(1)+3(2)=11 \\
& x+8=11 \\
& \quad x=3
\end{aligned}
$$

$$
\text { Solution: }(x, y, z)=(3,1,2)
$$

15. Er:1.5(2) If $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ is divided by $\mathrm{x}+3$, $x-5$, and $x-1$, the remainders are 21, 61 and 9 respectively. Find a, b andc. (Use
Gaussian elimination method.) PTA-3

## Solu:

$$
\begin{aligned}
& \text { Let } p(x)=a x^{2}+b x+c \\
& p(-3)=21 \\
& \qquad \begin{array}{l}
a(-3)^{2}+b(-3)+c=21 \\
\\
9(5)=61 \\
\\
a(5)^{2}+b(5)+c=61 \\
\\
25 a+5 b+c=61 \rightarrow(2) \\
p(1)=9
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& a(1)^{2}+b(1)+c=9 \\
& a+b+c=9 \rightarrow(3)
\end{aligned}
$$

$$
\begin{aligned}
& 2 x+4 y+6 z=22, \\
& \div 2 \Rightarrow x+2 y+3 z=11 \\
& -x+y+2 z=2 \\
& {[A \mid B]=\left(\begin{array}{ccc|c}
1 & 2 & 3 & 11 \\
3 & 8 & 5 & 27 \\
-1 & 1 & 2 & 2
\end{array}\right)} \\
& \sim\left(\begin{array}{ccc|c}
1 & 2 & 3 & 11 \\
0 & 2 & -4 & -6 \\
0 & 3 & 5 & 13
\end{array}\right) \begin{array}{c}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}
\end{array} \\
& \sim\left(\begin{array}{ccc|c}
1 & 2 & 3 & 11 \\
0 & 2 & -4 & -6 \\
0 & 0 & 22 & 44
\end{array}\right) R_{3} \rightarrow 2 R_{3}-3 R_{2} \\
& x+2 y+3 z=11 \rightarrow(1) \\
& 2 y-4 z=-6 \rightarrow(2) \\
& 22 z=44 \\
& z=2
\end{aligned}
$$

$$
\begin{aligned}
& {[A \mid B]=\left(\begin{array}{ccc|c}
9 & -3 & 1 & 21 \\
25 & 5 & 1 & 61 \\
1 & 1 & 1 & 9
\end{array}\right)} \\
& \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
25 & 5 & 1 & 61 \\
9 & -3 & & 21
\end{array}\right) R_{1} \leftrightarrow R_{3} \\
& \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
0 & -20 & -24 & -164 \\
0 & -12 & -8 & -60
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow R_{2}-25 R_{1} \\
R_{3} \rightarrow R_{3}-9 R_{1}
\end{array} \\
& \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
0 & 5 & 6 & 41 \\
0 & 3 & 2 & -15
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow\left(-\frac{1}{4}\right) R_{2} \\
R_{3} \rightarrow\left(-\frac{1}{4}\right) R_{3}
\end{array} \\
& \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 9 \\
0 & 5 & 6 & 41 \\
0 & 0 & -8 & -48
\end{array}\right) R_{3} \rightarrow 5 R_{3}-3 R_{2} \\
& a+b+c=9 \rightarrow(1) \\
& 5 b+6 c=41 \rightarrow(2) \\
& -8 c=-48 \\
& c=6 \\
& \text { Put } c=6 \text { in (2) } \\
& 5 b+6(6)=41 \\
& 5 b=41-36 \\
& 5 b=5 \\
& \mathrm{~b}=1 \\
& \text { Put } b=1, c=6 \text { in (1) } \\
& a+1+6=9 \\
& a=2 \\
& \text { Solution: }(a, b, c)=(2,1,6)
\end{aligned}
$$

16. Er:1.5(3) An amount of `65,000 is invested in three bonds at the rates of \(6 \%\), \(8 \%\) and \(9 \%\) per annum respectively. The total annual income is` 4,800 . The income from the third bond is 600 more than that from the second bond. Determine the price of each bond. (Use Gaussian elimination method.)

## Solu:

Let the price of three bond be $\mathrm{x}, \mathrm{y}$ and z respectively.
From the given data,

$$
\begin{aligned}
& x+y+z=65000 \rightarrow(1) \\
& \text { Total annual income }=\text { Rs. } 5,000 \Rightarrow \\
& \quad 6 \% \text { of } x+8 \% \text { of } y+10 \% \text { of } z=5000 \\
& \quad \Rightarrow \frac{6}{100} x+\frac{8}{100} y+\frac{10}{100} z=5000
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 6 x+8 y+10 z=500000 \\
& \Rightarrow \div 2,3 x+4 y+5 z=250000 \rightarrow(2)
\end{aligned}
$$

Income from third bond $=$ income from second bond + Rs. 800
$\Rightarrow 10 \%$ of $z=8 \%$ of $y+800$

$$
\begin{aligned}
& \Rightarrow \frac{10}{100} z=\frac{8}{100} y+800 \\
& \Rightarrow \frac{10}{100} z=\frac{8 y+80000}{100} \\
& \Rightarrow 10 z=8 y+80000 \\
& \Rightarrow-8 y+10 z=80000 \\
& \Rightarrow \div 2,-4 y+5 z=40000 \rightarrow(3)
\end{aligned}
$$

$$
\begin{aligned}
{[A \mid B] } & =\left(\begin{array}{ccc|c}
1 & 1 & 1 & 65000 \\
3 & 4 & 5 & 250000 \\
0 & -4 & 5 & 40000
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c|c}
1 & 1 & 1 & 65000 \\
0 & 1 & 2 & 55000 \\
0 & -4 & 5 & 40000
\end{array}\right) R_{2} \rightarrow R_{2}-3 R_{1} \\
& \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 65000 \\
0 & 1 & 2 & 55000 \\
0 & 0 & 13 & 260000
\end{array}\right) R_{3} \rightarrow R_{3}+4 R_{2}
\end{aligned}
$$

$$
\Rightarrow x+y+z=65000 \rightarrow(1)
$$

$$
y+2 z=55000 \rightarrow(2) ;
$$

$$
13 z=260000
$$

$$
z=20000
$$

Put $z=20000$ in (2)

$$
y+2(20000)=55000
$$

$$
y=55000-40000
$$

$$
y=15000
$$

Put $y=15000, z=20000$ in (1)

$$
\begin{array}{r}
x+5000+20000=65000 \\
x+35000=65000 \\
x=30000
\end{array}
$$

Solution: The price of $6 \%, 8 \%$ and $10 \%$ are Rs. 30000 , Rs. 15000 and Rs. 20000 respectively.
17. Er:1.5(4)A boy is walking along the path $y=a x^{2}+b x+c$ through the points $(-6,8)$, $(-2,-12)$ and $(3,8)$. He wants to meet his friend at $\mathrm{P}(7,60)$. Will he meet his friend? (Use Gaussian elimination method.)
Solu:

$$
y=a x^{2}+b x+c
$$

$(-6,8)$

$$
8=a(-6)^{2}+b(-6)+c
$$

$$
36 a-6 b+c=8 \rightarrow(1)
$$

$(-2,-12)$

$$
\begin{aligned}
-12 & =a(-2)^{2}+b(-2)+c \\
4 a & -2 b+c=-12 \rightarrow(2)
\end{aligned}
$$

$$
\begin{align*}
& 8=a(3)^{2}+b(3)+c  \tag{3,8}\\
& 9 a+3 b+c=8 \rightarrow(3)
\end{align*}
$$

$$
\begin{aligned}
{[A \mid B] } & =\left(\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
4 & -2 & 1 & -12 \\
9 & 3 & 1 & 8
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
0 & -12 & 8 & -116 \\
0 & 18 & 3 & 24
\end{array}\right) \begin{array}{l}
R_{2} \rightarrow 9 R_{2}-R_{1} \\
R_{3} \rightarrow 4 R_{3}-R_{1}
\end{array} \\
& \sim\left(\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
0 & -6 & 4 & -58 \\
0 & 6 & 1 & 8
\end{array}\right) R_{2} \rightarrow\left(\frac{1}{2}\right) R_{2} \\
& \sim\left(\frac{1}{3}\right) R_{3} \\
& \sim\left(\begin{array}{ccc|c}
36 & -6 & 1 & 8 \\
0 & -6 & 4 & -58 \\
0 & 0 & 5 & -50
\end{array}\right) R_{3} \rightarrow R_{3}+R_{2}
\end{aligned}
$$

$$
\begin{gathered}
36 a-6 b+c=8 \rightarrow(1) \\
-6 b+4 c=-58 \rightarrow(2) \\
5 c=-50 \\
c=-10
\end{gathered}
$$

$$
\text { Put } c=-10 \text { in (2) }
$$

$$
\begin{gathered}
-6 b+4(-10)=-58 \\
-6 b-40=-58 \\
-6 b=-58+40 \\
-6 b=-18 \\
b=3
\end{gathered}
$$

$$
\text { Put } b=3, c=-10 \mathrm{in}(1)
$$

$$
\begin{gathered}
36 a-6(3)-10=8 \\
36 a-18-10=8 \\
36 a=8+28 \\
36 a=36 \\
a=1
\end{gathered}
$$

Solution: $(a, b, c)=(1,3,-10) \Rightarrow y=x^{2}+3 x-10$

$$
\begin{aligned}
\text { Put } x=7 \Rightarrow y & =(7)^{2}+3(7)-10 \\
& =49+21-10 \\
& =60 \\
y & =60
\end{aligned}
$$

The point $P(7,60)$ satisfies the equation $y=x^{2}+3 x-10$, hence the boy will meet friend at $P(7,60)$.

## 2. Complex Numbers

1. Example 2.8 Show that
(i) $(2+\mathrm{i} \sqrt{3})^{10}+(2-\mathrm{i} \sqrt{3})^{10}$ is real and
(ii) $\left(\frac{19+9 i}{5-3 i}\right)^{15}-\left(\frac{8+i}{1+2 i}\right)^{15}$ is purely imaginary.
Solu:

$$
\begin{aligned}
\frac{19-7 i}{9+i} & =\frac{19-7 i}{9+i} \times \frac{9-i}{9-i} \\
& =\frac{164-82 i}{82} \\
& =2-i \\
\frac{20-5 i}{7-6 i} & =\frac{20-5 i}{7-6 i} \times \frac{7+6 i}{7+6 i} \\
& =\frac{170+85 i}{85} \\
& =2+i
\end{aligned}
$$

$$
z=\left(\frac{19-7 i}{9+i}\right)^{12}+\left(\frac{20-5 i}{7-6 i}\right)^{12}
$$

$$
z=(2-i)^{12}+(2+i)^{12}
$$

$$
\bar{z}=(2+i)^{12}+(2-i)^{12}
$$

$$
\bar{z}=z \Rightarrow z \text { is real. }
$$

(ii)

$$
\begin{aligned}
\frac{19+9 i}{5-3 i} & =\frac{19+9 i}{5-3 i} \times \frac{5+3 i}{5+3 i} \\
& =\frac{68+102 i}{34} \\
& =2+3 i \\
\frac{8+i}{1+2 i} & =\frac{8+i}{1+2 i} \times \frac{1-2 i}{1-2 i}: \\
& =\frac{10-15 i}{5} \\
& =2-3 i \\
z & =\left(\frac{19+9 i}{5-3 i}\right)^{15}-\left(\frac{8+i}{1+2 i}\right)^{15} \\
z & =(2+3 i)^{15}-(2-3 i)^{15} \\
\bar{z} & =-(2+3 i)^{15}+(2-3 i)^{15} \\
\bar{z} & =-z \Rightarrow z \text { purely imaginary. }
\end{aligned}
$$

2. Example 2.14 Show that the points $1, \frac{-1}{2}+i \frac{\sqrt{3}}{2}$ and, $\frac{-1}{2}-i \frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle.
Solu:
Let $z_{1}=1, z_{2}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$ and $z_{3}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}$
The length of the sides of the triangle are

$$
\begin{aligned}
\left|z_{1}-z_{2}\right| & =\left|1-\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)\right| \\
& =\left|\frac{3}{2}-i \frac{\sqrt{3}}{2}\right|: \\
& =\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& =\sqrt{\frac{9}{4}+\frac{3}{4}}=\sqrt{\frac{12}{4}}=\sqrt{3} \\
\left|z_{2}-z_{3}\right| & =\left|\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)-\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)\right| \\
& =\left|-\frac{1}{2}+i \frac{\sqrt{3}}{2}+\frac{1}{2}+i \frac{\sqrt{3}}{2}\right|: \\
& =\sqrt{\left(\frac{2 \sqrt{3}}{2}\right)^{2}}: \\
& =\sqrt{3}
\end{aligned}
$$

$$
\left|z_{3}-z_{1}\right|=\left|\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)-1\right|:
$$

$$
=\left|-\frac{3}{2}-i \frac{\sqrt{3}}{2}\right|
$$

$$
=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
$$

$$
=\sqrt{\frac{9}{4}+\frac{3}{4}}
$$

$$
=\sqrt{3}
$$

Since all the three sides are equal,
the given points form an equilateral triangle.
3. Example 2.15 Let $\mathrm{z}_{1}, \mathrm{z}_{2}$ and $\mathrm{z}_{3}$ be complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=r>0$ and $z_{1}+z_{2}+z_{3} \neq 0$.
Prove that $\left|\frac{z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}}{z_{1}+z_{2}+z_{3}}\right|=r$.
Solu:

$$
\begin{aligned}
\left|z_{1}\right| & =r \\
\left|z_{1}\right|^{2} & =r^{2} \\
\therefore z_{1} \overline{z_{1}} & =r^{2} \\
z_{1} & =\frac{r^{2}}{\overline{z_{1}}}
\end{aligned}
$$

Similarly, $z_{2}=\frac{r^{2}}{\overline{z_{2}}} ; z_{3}=\frac{r^{2}}{\overline{z_{3}}}$
$z_{1}+z_{2}+z_{3}=\frac{r^{2}}{\overline{z_{1}}}+\frac{r^{2}}{\overline{z_{2}}}+\frac{r^{2}}{\overline{z_{3}}}=r^{2}\left(\frac{\overline{z_{2} z_{3}}+\overline{\overline{1} z_{3}}+\overline{z_{1} z_{2}}}{\overline{z_{1} z_{2} z_{3}}}\right)$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|=\left|r^{2}\right|\left|\frac{\overline{z_{2} z_{3}}+\overline{z_{1} z_{3}}+\overline{z_{1} z_{2}}}{\overline{z_{1} z_{2} z_{3}}}\right|$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|=r^{2} \frac{\left|\overline{z_{2} z_{3}}+\overline{z_{1} z_{3}}+\overline{z_{1} z_{2}}\right|}{\left|\overline{z_{1} z_{2} z_{3}}\right|}$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|=r^{2} \frac{\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right|}{\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right|}$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|=r^{2} \frac{\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right|}{r, r, r}$
$\Rightarrow\left|z_{1}+z_{2}+z_{3}\right|=\frac{\left|z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right|}{r}$
$\Rightarrow\left|\frac{z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}}{z_{1}+z_{2}+z_{3}}\right|=r$
4. Er:2.5(7)If $z_{1}, z_{2}$ and $z_{3}$ are three complex numbers such that $\left|z_{1}\right| 1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$ and $\left|z_{1}+z_{2}+z_{3}\right|=1$, show that $\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=6$.

## Solu:

$$
\begin{gathered}
\left|z_{1}\right|=1 \Rightarrow \\
\left|z_{1}\right|^{2}=1 ; \\
z_{1} \overline{z_{1}}=1 ; \\
z_{1}=\frac{1}{\overline{z_{1}}} \\
\left|z_{2}\right|=2 \Rightarrow z_{2}=\frac{4}{\overline{z_{2}}} \\
\left|z_{3}\right|=3 \Rightarrow z_{3}=\frac{9}{\overline{z_{3}}}
\end{gathered}
$$

$\left|z_{1}+z_{2}+z_{3}\right|=\left|\frac{1}{\overline{z_{1}}}+\frac{4}{\overline{z_{2}}}+\frac{9}{\overline{z_{3}}}\right|$
$=\left|\frac{\overline{Z_{2} Z_{3}}+4 \overline{Z_{1} Z_{3}}+9 \overline{Z_{1} Z_{2}}}{\overline{Z_{1} Z_{2} Z_{3}}}\right|$
$=\left|\frac{\overline{z_{2} z_{3}+4 z_{1} z_{2}+9 z_{1} z_{2}}}{\overline{z_{1} z_{2} z_{3}}}\right|$
$=\frac{\left|9 z_{1} z_{2}+4 z_{1} z_{2}+z_{2} z_{3}\right|}{\left|z_{1}\right|\left|z_{2}\right|\left|z_{3}\right|}$
$=\frac{\left|9 z_{1} z_{2}+4 z_{1} z_{2}+z_{2} z_{3}\right|}{1 \times 2 \times 3}$
$\therefore\left|9 z_{1} z_{2}+4 z_{1} z_{2}+z_{2} z_{3}\right|=6$
5. Er:2.6(2)If $z=x+$ iy is a complex number such that $\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=0$, show that the locus of $z$ is $2 x^{2}+2 y^{2}+x-2 y=0$.

## Solu:

$$
\text { Given: } z=x+i y
$$

$$
\begin{aligned}
\frac{2 z+1}{i z+1} & =\frac{2(x+i y)+1}{i(x+i y)+1} \\
& =\frac{(2 x+1)+i 2 y}{(1-y)+i x}
\end{aligned}
$$

$$
\operatorname{Im}(\mathrm{Z})=\frac{b c-a d}{c^{2}+a^{2}}
$$

Here $a=2 x+1 \quad, b=2 y, c=(1-y), d=x$

$$
\begin{aligned}
& \operatorname{Im}\left(\frac{(2 z+1}{i z+1}\right)=0 \\
& \quad \Rightarrow \frac{2 y(1-y)-x(2 x+1)}{(1-y)^{2}+x^{2}}=0 \\
& \Rightarrow y-y^{2}-x^{2}-x=0 \\
& \Rightarrow x^{2}+y^{2}+x-y=0
\end{aligned}
$$

6. Example 2.18 Given the complex number $z$ $=3+\mathrm{i} 2$, represent the complex numbers z , iz and z +iz in one Argand diagram. Show that these complex numbers form the vertices of an isosceles right triangle.

## Solu: <br> \section*{:}

Given : $z=3+2 i=A(3,2)$
$i z=i(3+2 i)=-2+3 i=B(-2,3)$
$z+i z=3+2 i-2+3 i=+5 i=C(1,5)$
The length of the sides of the triangle are

$$
\begin{aligned}
A B & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(3+2)^{2}+(2-3)^{2}} \\
& =\sqrt{25+1} \\
& =\sqrt{26} \\
B C & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(-2-1)^{2}+(3-5)^{2}} \\
& =\sqrt{9+4} \\
& =\sqrt{13} \\
C A & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(1-3)^{2}+(5-2)^{2}} \\
& =\sqrt{4+9} \\
& =\sqrt{13}
\end{aligned}
$$

$$
A B^{2}=26, B C^{2}=13, C A^{2}=13
$$

Since $(i) B C=C A=\sqrt{13}$
(ii) $B C^{2}+C A^{2}=13+13=26=A B^{2}$,

## So the given vertices

 form an isosceles right triangle.
## 3. Theory of Equations

1. Er:3.1(4) Solve the equation
$3 x^{3}-16 x^{2}+23 x-6=0$ if the product of two roots is 1 .
Solu:

Given the product of two roots is 1
So let, $\alpha \beta=1$

$$
\begin{gathered}
\sum_{3}=\alpha \beta \gamma=\frac{-(-6)}{3}=2 \\
\alpha \beta \gamma=2 \\
\therefore 1 \times \gamma=2 \\
\gamma=2 \\
2 \left\lvert\, \begin{array}{rrrr}
3 & -16 & 23 & -6 \\
0 & 6 & -20 & 6 \\
3 & -10 & 3 & 0
\end{array}\right.
\end{gathered}
$$

$3 x^{2}-10 x+3=0$ is another factor.
$\left(x-\frac{1}{3}\right)(x-3)=0$
$x=\frac{1}{3}$ or $x=3$
The roots are $\frac{1}{3}, 3,2$
2. Er:3.1(6)Solve the equation $x^{3}-9 x^{2}+14 x+24=0$ if it is given that two of its roots are in the ratio 3:2.

## Solu:

$$
\text { Given } x^{3}-9 x^{2}+14 x+24=0
$$

$$
\begin{array}{r}
-1\left|\begin{array}{rrrr}
1 & -9 & 14 & 24 \\
0 & -1 & -10 & -24 \\
\hline 1 & 10 & 24 & 0 \\
\hline
\end{array} . \begin{array}{r} 
\\
1
\end{array}\right|
\end{array}
$$

$$
\begin{aligned}
& x^{2}+10 x-24=0 \text { is another factor. } \\
& (x-4)(x-6)=0 \\
& x=4 \text { or } x=6
\end{aligned}
$$

Two of its roots are in the ratio $3: 2$ is 6,4 Hence the roots are 6, 4 and -1
3. Er:3.1(10)If the equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root, show that it must be equal to $\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}$ or $\frac{q-q^{\prime}}{p^{\prime}-p}$

Solu:
Let $\alpha$ be the common root of the given equations. Then,

$$
\begin{align*}
& \alpha^{2}+p \alpha+q=0  \tag{1}\\
& \alpha^{2}+p^{\prime} \alpha+q^{\prime}=0 \tag{2}
\end{align*}
$$

|  | $\alpha^{2}$ |  | $\alpha$ |  | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $p$ | $q$ | 1 |  | $p$ |  |
| $p^{\prime}$ | $q^{\prime}$ | 1 | $p^{\prime}$ |  |  |
|  | $\frac{\alpha^{2}}{p q^{\prime}-p / q}$ | $=$ | $\frac{\alpha}{q-q \prime}$ | $=$ | $\frac{1}{p /-p}$ |

$\frac{\alpha^{2}}{p q^{\prime}-p / q}=\frac{\alpha}{q-q \prime} \quad$ and $\quad \frac{\alpha}{q-q \prime}=\frac{1}{p /-p}$

$$
\frac{\alpha^{2}}{\alpha}=\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}
$$

$$
\alpha=\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}
$$

$$
\alpha=\frac{q-q^{\prime}}{p^{\prime}-p}
$$

Hence, $\alpha=\frac{p q^{\prime}-p^{\prime} q}{n-a /}$ or $\alpha=\frac{q-q^{\prime}}{n /-n}$ is proved.
4. Example 3.15 If $2+i$ and $3-\sqrt{2}$ are roots of the equation
$x^{6}-13 x^{5}+62 x^{4}-126 x^{3}+65 x^{2}+127 x-140=0$, find all roots.

## Solu:

## Given roots are $2+i, 3-\sqrt{2}$

Other roots will be $2-i, 3+\sqrt{2}, \alpha, \beta$

$$
\begin{gathered}
\sum_{1}=\frac{\text { co-effi of } x^{5}}{\text { co-effi of } x^{6}} \\
4+6+\alpha+\beta=13
\end{gathered}
$$

$$
\alpha+\beta=3 .
$$

$$
\sum_{6}=\frac{\text { constant }}{\text { co-effi of } x^{6}}
$$

$$
(2+i)(2-i)(3-\sqrt{5})(3+\sqrt{2}) \alpha \beta=140
$$

$$
\begin{aligned}
(4+1)(9-2) \alpha \beta & =-140 \\
(5)(7) \alpha \beta & =-140 \\
\alpha \beta & =-4
\end{aligned}
$$

$\alpha-\beta=\sqrt{(\alpha+\beta)^{2}}-4 \alpha \beta$
$=\sqrt{9}+16$
$\alpha-\beta=5$.
(1) + (2) $\Rightarrow 2 \alpha=8$

$$
\alpha=4
$$

(1) $-2 \Rightarrow 2 \beta=-2$

$$
\boldsymbol{\beta}=-\mathbf{1}
$$

## The roots are

$$
2+i, 2-i, 3-\sqrt{2}, 3+\sqrt{2},-1,4 .
$$

5. Er:3.3(4)Determine $k$ and solve the equation $2 x^{3}-6 x^{2}+3 x+k=0$ if one of its roots is twice the sum of the other two roots.
Solu:

$$
\text { Given } 2 x^{3}-6 x^{2}+3 x+k=0
$$

Let $\alpha, \beta, \gamma$ be the roots.
one of its roots is twice the sum of the other two roots.

$$
\begin{aligned}
& \alpha=2(\beta+\gamma) \Rightarrow \beta+\gamma=\frac{\alpha}{2} \\
& \therefore \Sigma_{1}=(\alpha+\beta+\gamma)=-\frac{b}{a} \\
& \alpha+\beta+\gamma=-\frac{(-6)}{2}=\frac{6}{2}=3 \\
& \alpha+\frac{\alpha}{2}=3 \Rightarrow \frac{2 \alpha+\alpha}{2}
\end{aligned}=3\left\{\begin{aligned}
3 \alpha & =6 \\
\alpha & =2
\end{aligned}\right.
$$


$\therefore k-2=0 \Rightarrow k=2$
$2 x^{2}-2 x-1=0$ is another factor.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
= & \frac{2 \pm \sqrt{4-4(2)(-1)}}{2(2)}=\frac{2 \pm \sqrt{12}}{4} \\
= & \frac{2 \pm \sqrt{4 \times 3}}{4}=\frac{2 \pm 2 \sqrt{3}}{4}=\frac{2(1 \pm \sqrt{3})}{4}=\frac{(1 \pm \sqrt{3})}{2}
\end{aligned}
$$

$k=2$, and the roots are $2, \frac{(1 \pm \sqrt{3})}{2}$.
6. Er:3.3(5)Find all zeros of the polynomial $x^{6}-3 x^{5}-5 x^{4}+22 x^{3}-39 x^{2}-39 x+135$, if it is known that $1+2 i$ and $\sqrt{3}$ are two of its zeros.

Solu:

## Given roots are $1+2 i$ and $\sqrt{3}$

Other roots will be

$$
\sum_{1}^{1}=\frac{-2 i, 1-2 i, \sqrt{3},-\sqrt{3}, \alpha, \beta}{\text { co-effi of } x^{6}}
$$

$$
1+2 i+1-2 i+\sqrt{3}-\sqrt{3}+\alpha+\beta=3
$$

$$
\begin{gathered}
2+\alpha+\beta=3 \\
\alpha+\beta=1 \cdots
\end{gathered}
$$

$$
\sum_{6}=\frac{\text { constant }}{\text { co-effi of } x^{6}}
$$

$(1+2 i)(1-2 i)(\sqrt{3})(-\sqrt{3}) \alpha \beta=135$
$(1+4)(-3) \alpha \beta=135$
$-15 \alpha \beta=135$
$\alpha \beta=-\frac{135}{15}$
$\alpha \beta=-9$
$(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta$
$=1-4(-9)$
$=1+36$
$\alpha-\beta=\sqrt{37}$
(1) + 2 $\Rightarrow 2 \alpha=1+\sqrt{37}$

$$
\alpha=\frac{1+\sqrt{37}}{2}
$$

(1) + 2 $\Rightarrow 2 \beta=1-\sqrt{37}$

$$
\beta=\frac{1-\sqrt{37}}{2}
$$

The roots are

$$
1+2 i,-2 i, \sqrt{3},-\sqrt{3}, \frac{1+\sqrt{37}}{2}, \frac{1-\sqrt{37}}{2}
$$

7. Er:3.5(5) Solve the equations
$6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$
Solu:

$$
6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0
$$

3 | $*$ | 6 | -35 | 62 | -35 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0 | 12 | -46 | 32 | -6 |  |
| 3 | 6 | -23 | 16 | -3 | 0 |
|  | 0 | 18 | -15 | 3 |  |
|  | 6 | -5 | 1 | 0 |  |

$$
\begin{gathered}
6 x^{2}-5 x+1=0 \\
(2 x-1)(3 x-1)=0 \\
x=\frac{1}{2}, \frac{1}{3} \\
x=2, \frac{1}{2}, 3, \frac{1}{3}
\end{gathered}
$$

8. Er:3.5(7) Solve the equation
$6 x^{4}-5 x^{3}-38 x^{2}-5 x+6=0$ if it is known that $\frac{1}{3}$ is a solution.
Solu:
Given $\frac{1}{3}$ is a solution
$\therefore 3$ is another root.

$6 x^{2}+15 x+6=0$ is another factor.

$$
\begin{gathered}
2 x^{2}+5 x+2=0 \\
\left(x+\frac{1}{2}\right)(x+2)=0 \\
x=-\frac{1}{2} \text { and } x=-2
\end{gathered}
$$

Hence, $x=\frac{1}{3}, 3,-\frac{1}{2},-2$

## 4.Inverse Trigonometric <br> Functions

1.Er:4.1(6)Find the domain of the following $f(x)=\sin ^{-1}\left[\frac{\mathrm{x}^{2}+1}{2 \mathrm{x}}\right]$

## Solu:

Domain of $\sin ^{-1}$ is $[-1,1]$
So, $-1 \leq \frac{x^{2}+1}{2 x} \leq 1$
$\Rightarrow-2 x \leq x^{2}+1 \leq x$

| $\Rightarrow-2 x \leq x^{2}+1$ | $\Rightarrow x^{2}+1 \leq x$ |
| :--- | :--- |
| $\Rightarrow 0 \leq x^{2}+1+x$ | $\Rightarrow x^{2}+1-x \leq 0$ |
| $\Rightarrow 0 \leq(x+1)^{2}$ | $\Rightarrow(x-1)^{2} \leq 0$ |
| $\Rightarrow(x+1)^{2} \geq 0$ | $\Rightarrow x-1 \leq 0$ |
| $\Rightarrow x+1 \geq 0$ | $\Rightarrow x \leq 1 \rightarrow(2)$ |
| $\Rightarrow x \geq-1 \rightarrow(1)$ |  |

From (1) \& (2) $\Rightarrow-1 \leq x \leq 1$
$\therefore$ Domain of $f(x)=\sin ^{-1}\left(\frac{x^{2}+1}{2 x}\right)$ is $[-1,1]$.
2. Example 4.7 Find the domain of $\cos ^{-1}\left(\frac{2+\sin \mathrm{x}}{3}\right)$.

## Solu:

The domain of $\cos ^{1} x$ is $[-1,1]$. So

$$
\begin{aligned}
& -1 \leq \frac{2+\sin x}{3} \leq 1 \\
\Rightarrow & -3 \leq 2+\sin x \leq 3 \\
\Rightarrow & -5 \leq \sin x \leq 1 \\
\Rightarrow & -1 \leq \sin x \leq 1 \\
\Rightarrow & -\sin ^{1}(1) \leq x \leq \sin ^{1}(1) \\
\Rightarrow & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
\end{aligned}
$$

$\therefore$ The domain of $\cos ^{-1}\left(\frac{2+\sin x}{3}\right)$

$$
\text { is }\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text {. }
$$

3. Example 4.4 Find the domain of $\sin ^{-1}\left(2-3 x^{2}\right)$

## Solu:

Domain of $\sin ^{-1}$ is $[-1,1]$.

$$
-1 \leq 2-3 x^{2} \leq 1
$$

| $-1 \leq-3 x^{2}$ | $-3 x^{2} \leq 1$ |
| :--- | :--- |
| $\Rightarrow-3 \leq-3 x^{2}$ | $\Rightarrow-3 x^{2} \leq-1$ |
| $\Rightarrow 3 x^{2} \leq 3$ | $\Rightarrow 3 x^{2} \geq 1$ |
| $\Rightarrow x^{2} \leq 1 \rightarrow(1)$ | $\Rightarrow x^{2} \geq \frac{1}{3} \rightarrow(2)$ |

From(1) \& (2),

$$
\begin{gathered}
\frac{1}{3} \leq x^{2} \leq 1 \\
\frac{1}{\sqrt{3}} \leq|x| \leq 1 \\
x \in\left[-1,-\frac{1}{\sqrt{3}}\right] \cup\left[\frac{1}{\sqrt{3}}, 1\right] .
\end{gathered}
$$

4. Er:4.2(5)Find the domain of $f(x)=\sin ^{-1}\left[\frac{|\mathrm{x}|-2}{3}\right]+\cos ^{-1}\left[\frac{1-|\mathrm{x}|}{4}\right]$

## Solu:

The domain of $\sin ^{-1} x$ is $[-1,1]$
the domain of $\cos ^{-1} x$ is $[-1,1]$.
So, $-1 \leq \frac{|x|-2}{3} \leq 1 ;-1 \leq \frac{1-|x|}{4} \leq 1$
$\left.-1 \leq \frac{|x|-2}{3} \leq 1 \quad \right\rvert\,-1 \leq \frac{1-|x|}{4} \leq 1$
$\Rightarrow-3 \leq|x|-2 \leq 3 \Rightarrow-4 \leq 1-|x| \leq 4$
$\Rightarrow-1 \leq|x| \leq 5 \quad \Rightarrow-5 \leq-|x| \leq 3$
$\Rightarrow|x| \leq 5$

$$
\Rightarrow-3 \leq|x| \leq 5
$$

$$
\Rightarrow|x| \leq 5
$$

$$
x \in[-5,5]
$$

5. Er:4.4(2)Find the value of

$$
\cot ^{-1}(1)+\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)-\sec ^{-1}(-\sqrt{2})
$$

Solu:

$$
\begin{aligned}
& \cot ^{1}(1)+\sin ^{1}\left(-\frac{\sqrt{3}}{2}\right)-\sec ^{1}(-\sqrt{2}) \\
& =\tan (1)+\sin ^{1}\left(-\sin \left(\frac{\sqrt{3}}{2}\right)\right)-\cos \left(-\frac{1}{\sqrt{2}}\right) \\
& =\tan \left(\frac{\pi}{4}\right)+\sin ^{1}\left(\sin \left(-\frac{\pi}{3}\right)\right)-\cos \left(\pi-\frac{\pi}{4}\right) \\
& =\frac{\pi}{4}-\frac{\pi}{3}-\frac{3 \pi}{4} \\
& =-\frac{2 \pi}{4}-\frac{\pi}{3} \\
& =-\frac{\pi}{2}-\frac{\pi}{3} \\
& =-\frac{5 \pi}{6}
\end{aligned}
$$

6. Example 4.10 Find the value of

$$
\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right) .
$$

Solu:

$$
\begin{aligned}
\tan ^{1}(-1) & =\tan ^{1}\left(-\tan \frac{\pi}{4}\right) \\
& =\tan ^{1}\left(\tan \left(-\frac{\pi}{4}\right)\right) \\
& =-\frac{\pi}{4} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
\cos ^{1}\left(\frac{1}{2}\right) & =\cos ^{1}\left(\cos \left(\frac{\pi}{3}\right)\right) \\
& =\frac{\pi}{3} \in[0, \pi]
\end{aligned}
$$

$$
\sin ^{1}\left(-\frac{1}{2}\right)=\sin ^{1}\left(-\sin \frac{\pi}{6}\right)
$$

$$
\begin{aligned}
& =\sin ^{1}\left(\sin \left(-\frac{\pi}{6}\right)\right) \\
& =-\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{aligned}
$$

$$
\tan ^{1}(-1)+\cos ^{1}\left(\frac{1}{2}\right)+\sin ^{1}\left(-\frac{1}{2}\right)
$$

$$
\begin{aligned}
& =-\frac{\pi}{4}+\frac{\pi}{3}-\frac{\pi}{6} \\
& =-\frac{\pi}{12}
\end{aligned}
$$

