.Net www.Trb Tnpsc.Com www.surabooks.com

www.Trb Tnpsc.Com www.surabooks.com

- 2 🖞 Sura's –XII Std - Mathematics – Public Examination 🛠 May - 2022 🛠 Question Paper with Answers
- **14.** The value of $\int_{0}^{\infty} e^{-3x} x^2 dx$ is : (a) $\frac{4}{27}$ (b) $\frac{7}{27}$ (c) $\frac{2}{27}$ (d) $\frac{5}{27}$
- **15.** The point of inflection of the curve $y = (x 1)^3$ is : (a) (1,0) (b) (0,0) (c) (1,1) (d) (0,1)
- **16.** The angle between the lines $\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{-2}$ and $\frac{x-1}{4} = \frac{y+1}{-4} = \frac{z-2}{2}$ is :
 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{3}$
- **17.** Which one of the following is a binary operation on N?
 - (a) Multiplication (b) Division
 - (c) Subtraction (d) All the above
- **18.** Which one of the following is **incorrect**?
 - (a) If A is a square matrix of order *n*, and λ is a scalar, then Adj $(\lambda A) = \lambda^n (Adj A)$.
 - (b) Adjoint of a symmetric matrix is also a symmetric matrix.
 - (c) A(Adj A) = (Adj A) A = |A|I.
 - diagonal matrix.
- 19. If sinx is the integrating factor of the linear differential equation $\frac{dy}{dx} + Py = Q$, then P is :
 - (a) $\tan x$ (b) $\log \sin x$
 - (d) $\cos x$ (c) $\cot x$
- **20.** The length of the latus rectum of the parabola $x^2 = 24y$ is :

(a) 8 (b) 24 (c) 6 (d) 12

PART - II

- Note: (i) Answer any seven questions.
 - Question number 30 is compulsory.
 - $7 \times 2 = 14$
- **21.** Prove the following properties :

(ii)

Re
$$(z) = \frac{z+\overline{z}}{2}$$
 and Im $(z) = \frac{z-\overline{z}}{2i}$

- **22.** Find a polynomial equation of minimum degree with rational coefficients, having $2 - \sqrt{3}$ as a root.
- **23.** Find the principal value of $\tan^{-1}(\sqrt{3})$
- **24.** Find the points on the curve $y = x^3 3x^2 + x 2$ at which the tangent is parallel to the line y = x.
- **25.** Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 2 and dx = 0.1.
- **26.** Show that the differential equation of the family of curves $y = Ae^{x} + Be^{-x}$, where A and B are arbitrary constants, is $\frac{d^2y}{dx^2} - y = 0.$

27. Solve :
$$\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$$

28. A random variable X has the following probability mass function.

x	1	2	3	4	5	6
f(x)	k	2 <i>k</i>	6 <i>k</i>	5 <i>k</i>	6 <i>k</i>	10 <i>k</i>

Find k.

- 29. X is the number of tails occurred when three fair coins are tossed simultaneously. Find the values of the random variable X and number of points in its reverse images.
- (d) Adjoint of a diagonal matrix is also a **30**. Show that the distance from the origin to the plane 3x + 6y + 2z + 7 = 0 is 1.

PART - III

- Note: (i) Answer any seven questions.
 - (ii) Question number 40 is compulsory. $7 \times 3 = 21$
- **31.** Show that the rank of the matrix $\begin{vmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \end{vmatrix}$ is 3.
- **32.** Solve the following system of linear equations, using matrix inversion method : 5x + 2y = 3, 3x + 2y = 5.
- **33.** Which one of the points 10 8i, 11 + 6i is closest to 1 + i.
- **34.** Solve the equation $2x^3 9x^2 + 10x = 3$, if 1 is a root, find the other roots.
- **35.** Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force, 2i + j - k whose line of action passes through the origin.

orders@surabooks.com Ph: 9600175757 / 8124201000

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

www.Padasalai.Net www.Trb Tnpsc.Com www.surabooks.com

Sura's - XII Std - Mathematics - Public Examination * May - 2022 * Question Paper with Answers 3

36. Evaluate : $\lim_{x \to \infty} \frac{2x^2 - 3}{x^2 - 5x + 3}$

37. Assume that the cross section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1. mm, how much is cross-sectional area increased approximately.

38. Show that
$$\int_{0}^{\frac{\pi}{3}} \frac{\sec x \tan x}{1 + \sec^2 x} dx = \tan^{-1}(2) - \frac{\pi}{4}.$$
 45.

- **39.** Let * be defined on R by (a * b) = a + b + ab 7. Is * binary on R? If so, find $3*\left(\frac{-7}{15}\right)$.
- **40.** Prove that the general equation of the circle whose diameter is the line segment joining the points (-4, -2) and (-1, -1), is $x^2 + y^2 + 5x + 3y + 6 = 0$.

PART - IV

Note : Answer all the following questions. $7 \times 5 = 35$

41. (a) Cramer's rule is not applicable to solve the system 3x + y + z = 2, x - 3y + 2z = 1, 7x - y + 4z = 5. Why?

OR

- (b) Prove that the local minimum values for the function $f(x) = 4x^6 6x^4$ attain at -1 and 1.
- **42.** (a) Show that the locus of z = x + iy if |z+i| = |z-1|, is x+y=0.

OR

(b) Show that
$$\int_{0}^{a} \frac{f(x)}{f(x) + f(a - x)} dx = \frac{a}{2}.$$

43. (a) Show that the equation of the parabola with focus $(-\sqrt{2}, 0)$ and directrix $x = \sqrt{2}$ is $y^2 = -4 \sqrt{2} x$.

(b) Find the value of $\cot^{-1}(1) + \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) - \sec^{-1}\left(-\sqrt{2}\right).$ 44. (a) The maximum and minimum distances of the Earth from the Sun respectively are 152×10^6 km and 94.5×10^6 km. The Sun is at one focus of the elliptical orbit. Show that the distance from the Sun to the other focus is 575×10^5 km.

OR

(b) Prove by vector method

 $\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$.

(a) Find the vector equation (any form) or Cartesian equation of a plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9.

OR

(b) Show that the angle between the curves

$$y = x^2$$
 and $x = y^2$ at (1, 1) is $\tan^{-1}\left(\frac{3}{4}\right)$.

46. (a) The distribution function of a continuous random variable X is :

$$F(x) = \begin{cases} 0 , & x < 1 \\ \frac{x-1}{4} , & 1 \le x \le 5 \\ 1 , & x > 5 \end{cases}$$

Find (i) P(X < 3) (ii) P (2 < X < 4)
(iii) P (3 \le X)

OR

- (b) Show that the area of the region bounded by 3x - 2y + 6 = 0, x = -3, x = 1 and x - axis, is $\frac{15}{2}$.
- **47.** (a) Show that the solution of the differential equation $(1 + x^2) \frac{dy}{dx} = 1 + y^2$ is $\tan^{-1}y = \tan^{-1}x + C$ (or) $\tan^{-1}x = \tan^{-1}y + C$.
 - (b) Prove $p \to (q \to r) \equiv (p \land q) \to r$ using truth table.

www.surabooks.com

🖞 Sura's -XII Std - Mathematics - Public Examination * May - 2022 * Question Paper with Answers 4

Answers

PART - I

- 1. (b) 1
- 2. (c) F(x) is real valued decreasing function
- (d) $\frac{1}{(x+1)^2} dx$ 3. (d) $\frac{1}{10100}$ 4. $\frac{\pi}{6}$ **5**.
- (d)
- (a) 19 6.
- (b) $-\frac{q}{r}$ 7.
- (a) $x^2 + y^2$ 8.
- 9. (c) 9
- **10.** (a) 0
- **11.** (d) -3
- **12.** (d) $x^2 + y^2 + 6x + 8y + 16 = 0$
- **13.** (d) $y = ce^{-\int pdx}$
- $\frac{2}{27}$ **14.** (c)
- **15.** (a) (1,0)
- $\frac{\pi}{2}$ **16**. (a)
- **17.** (a) Multiplication
- **18**. If A is a square matrix of order *n*, and λ is a scalar, then Adj (λ A) = λ^n (Adj A). (a)
- 19. (c) $\cot x$
- **20.** (b) 24

 \Rightarrow

PART - II

21. Let z = x + iy where x is the Re (z) and y is the Im (z).

Then
$$\overline{z} = x - iy$$

 $z + \overline{z} = x + iy + x - iy = 2x$
 $\therefore \frac{z + \overline{z}}{2} = x$
 $\frac{z + \overline{z}}{2} = \operatorname{Re}(z)$

www.Padasalai.Net www.Trb Tnpsc.Com www.surabooks.com

🖞 Sura's 🖦 XII Std - Mathematics 🛥 Public Examination 🛠 May - 2022 🛠 Question Paper with Answers 5

Also
$$z - \overline{z} = x + iy - (x - iy)$$

 $= x + iy - x + iy = 2iy$
 $\therefore \frac{z - \overline{z}}{2i} = y$
 $\frac{z - \overline{z}}{2i} = \operatorname{Im}(z)$

- **22.** Since $2 \sqrt{3}$ is a root and the coefficients are rational numbers, $2 + \sqrt{3}$ is also a root. A required polynomial equation is given by x^2 (Sum of the roots) x + Product of the roots = 0 and hence $x^2 4x + 1 = 0$ is a required equation.
- **23.** Let $\tan^{-1}(\sqrt{3}) = y$. Then,

 \Rightarrow

$$\tan y = \sqrt{3}$$
. Thus, $y = \frac{\pi}{3}$

Since $\frac{\pi}{3} \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

Thus the principal value of $\tan^{-1}(\sqrt{3})$ is $\frac{\pi}{3}$.

24. The slope of the line y = x is 1. The tangent to the given curve will be parallel to the line, if the slope of the tangent to the curve at a point is also 1. Hence,

$$\frac{dy}{dx} = 3x^2 - 6x + 1 = 1$$

which gives
$$3x^2 - 6x =$$

Hence, x = 0 and x = 2.

Therefore, at (0, -2) and (2, -4) the tangent is parallel to the line y = x.

25. Taking differentials,

$$df = (2x + 3) dx$$

When $x = 2, dx = 0.1$
$$df = [2(2) + 3] (0.1) = 7(0.1) = 0.7$$

26. Given $: y = Ae^{x} + Be^{-x}$

Differentiate (1) with respect to x, we get,

$$\frac{dy}{dx} = Ae^x - Be^{-x} \qquad \dots (2)$$

Differentiate (2) with respect to x, we get,

$$\frac{d^2 y}{dx^2} = Ae^x + Be^{-x}$$
$$\frac{d^2 y}{dx^2} = y$$

 $\Rightarrow \frac{d^2y}{dx^2} - y = 0$ is the required differential equation. Hence proved.

orders@surabooks.com Ph: 9600175757 / 8124201000 Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

... (1)

.Net www.Trb Tnpsc.Com www.surabooks.com

6 🖞 Sura's -XII Std - Mathematics - Public Examination * May - 2022 * Question Paper with Answers

27. Separating the variables we get,

$$\frac{dy}{\sqrt{1-y^2}} = \frac{dx}{\sqrt{1-x^2}}$$

 $\sin^{-1}y = \sin^{-1}x + C$ [on integrating both sides we get]

28. Since the given function is a probability mass function, the total probability is one. That is $\sum f(x) = 1$.

From the given data $k + 2k + 6k + 5k + 6k + 10k = 30k = 1 \implies k = \frac{1}{30}$

29. When 3 fair coins are tossed, sample space

 $s = \{HHH, HHT, THH, HTH, HTT, THT, TTH, TTT\}$

Let X denote the number of tails occured.

- $X (no tail) = {HHH} = 1$
- $X (1 \text{ tail}) = \{HHT, THH, HTH\} = 3$
- X (2 tails) = $\{HTT, THT, TTH\} = 3$
- $X (3 tails) = {TTT} = 1$
- \therefore X takes the values 0, 1, 2, 3.

Values of random variable X	0	1	2	3	Total
Number of elements in inverse images	1	3	3	1	8

30. Distance from the origin to the plane

$$\delta = \frac{|d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{|7|}{\sqrt{(3)^2 + (6)^2 + (2)^2}} = \frac{|7|}{\sqrt{9 + 36 + 4}}$$

$$= \frac{|7|}{\sqrt{49}} = \frac{7}{7} = 1$$
PART - III

31. Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -1 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -1 & 1 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 3R_1$$

$$R_3 \rightarrow R_3 - R_1$$

$$R_4 \rightarrow R_4 - R_1$$

$$R_3 \rightarrow R_3 - R_1$$

$$R_3 \rightarrow R_3 - R_1$$

$$R_3 \rightarrow R_3 - R_1$$

$$R_4 \rightarrow R_4 - 3R_3$$

www.Padasalai.Net www.Trb Tnpsc.Com www.surabooks.com

🖞 Sura's 🖛 XII Std - Mathematics 🖛 Public Examination 🛠 May - 2022 🛠 Question Paper with Answers 7

The last equivalent matrix is in row echelon form and it has three non-zero rows $\therefore \rho(A) = 3$

32. The matrix form of the system is AX = B, where A = $\begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \end{bmatrix}$, B = $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$

We find
$$|A| = \begin{vmatrix} 5 & 2 \\ 3 & 2 \end{vmatrix} = 10 - 6 = 4 \neq 0$$
. So A^{-1} exists and $A^{-1} = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -3 & 5 \end{bmatrix}$

Then, applying the formula $X = A^{-1} B$, we get

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6 & -10 \\ -9 & +25 \end{bmatrix}$$
$$= \frac{1}{4} \begin{bmatrix} -4 \\ 16 \end{bmatrix} = \begin{bmatrix} -4 \\ \frac{16}{4} \\ \frac{16}{4} \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

So the solution is x = -1, y = 4.

33. Let the points be A (10 - 8i), B (11 + 6i) and C (1 + i)

Distance between A and C is |(10-8i)-(1+i)|

$$|10 - 8i - 1 - i| = |9 - 9i|$$

$$\sqrt{9^2 + (-9)^2} = \sqrt{81 + 81} = \sqrt{2 \times 81} = \sqrt{162}$$

Distance between B and C is |(11+6i)-(1+i)|

$$= |11+6i-1-i| = |10+5i|$$
$$= \sqrt{10^2+5^2} = \sqrt{100+25} = \sqrt{125}$$

Since $\sqrt{125} < \sqrt{162}$, B is closest to C.

 \therefore 11 + 6*i* is closest to 1 + *i*

34. Since the sum of the co-efficients is

$$2 - 9 + 10 - 3 = 12 - 12 = 0$$

x = 1 is a root of f(x)

 \therefore (*x* – 1) is a factor of *f*(*x*)

To find the other factor, let us divide f(x) by x - 1

.Net www.Trb Tnpsc.Com www.surabooks.com

8 Sura's -XII Std - Mathematics - Public Examination & May - 2022 & Question Paper with Answers

Hence the roots are 1, 3, $\frac{1}{2}$.

35. Let A be the point (2, 0, -1). Then the position vector of A is $\overrightarrow{OA} = 2\hat{i} - \hat{k}$ and therefore $\vec{r} = \overrightarrow{AO} = -2\hat{i} + \hat{k}$.

Then the given force is $\vec{F} = 2\hat{i} + \hat{j} - \hat{k}$ So, the torque is

$$\vec{t} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & 1 \\ 2 & 1 & -1 \end{vmatrix} = -\hat{i} - 2\hat{k}$$

The magnitude of the torque = $|-\hat{i}-2\hat{k}| = \sqrt{5}$ and the direction cosines of the torque are $-\frac{1}{\sqrt{5}}, 0, -\frac{2}{\sqrt{5}}$.

36. $\lim_{x \to \infty} \frac{2x^2 - 3}{x^2 - 5x + 3} = \lim_{x \to 0} \frac{2 - \frac{2}{x^2}}{1 - \frac{5}{x} + \frac{3}{x^2}}$ [Dividing the initial initial

[Using synthetic division]

[Dividing the numerator and denominator by x^2]

.Net www.Trb Tnpsc.Com www.surabooks.com

[Here *a* = 3, *b* =

🖞 Sura's 🖛 XII Std - Mathematics 🖛 Public Examination 🛠 May - 2022 🛠 Question Paper with Answers 🦳 9

39. Given
$$a * b = a + b + ab - 7$$

Let $a, b \in \mathbb{R}$
 $a * b = a + b + ab - 7 \in \mathbb{R}$,
∴ * is binary operation on \mathbb{R} .
 $3 * \left(\frac{-7}{15}\right) = 3 - \frac{7}{15} + \beta^{11} \left(\frac{-7}{15}\right) - 7$
 $= 3 - \frac{7}{15} - \frac{7}{5} - 7$
 $= \frac{45 - 7 - 21 - 105}{15} = \frac{-88}{15}$
 $\therefore 3 * \left(\frac{-7}{15}\right) = \frac{-88}{15}$

40. Equation of the circle with end points of the diameter as (x_1, y_1) and (x_2, y_2) i

$$(x - x_1) (x - x_2) + (y - y_1) (y - y_2) = 0$$

$$(x + 4) (x + 1) + (y + 2) (y + 1) = 0$$

$$x^2 + x + 4x + 4 + y^2 + y + 2y + 2 = 0$$

$$x^2 + y^2 + 5x + 3y + 6 = 0$$

Hence proved.

PART - IV

41. (a) When the coefficient matrix is a square matrix and non-singular, then the matrix can solved by Cramer's rule.

Coefficient matrix

$$\begin{vmatrix} 3 & 1 & 1 \\ 1 & -3 & 2 \\ 7 & -1 & 4 \end{vmatrix} = 3(-12+2)-1(4-14) + 1(-1+21) \\ = 3(-10)-1(-10) + 1(20) \\ = -30 + 10 + 20 = 0$$

... Coefficient matrix is singular

: Cramer's rule is not applicable.

OR

)

(b) Differentiating with respect to x, we get

$$f'(x) = 24x^{5} - 24x^{3}$$

= 24x³ (x² - 1)
= 24x³ (x + 1) (x - 1)
$$f'(x) = 0 \Rightarrow x = -1, 0, 1.$$

Hence the critical numbers are x = -1, 0, 1. Now, $f''(x) = 120x^4 - 72 x^2 = 24x^2 (5x^2 - 3)$ $\Rightarrow f''(-1) = 48, f''(0) = 0, f''(1) = 48.$

As f''(-1) and f''(1) are positive by the second derivative test, the function f(x) has local minimum at -1 and 1.

.Net www.Trb Tnpsc.Com www.surabooks.com

10 Sura's -XII Std - Mathematics - Public Examination * May - 2022 * Question Paper with Answers

42. (a)
$$\Rightarrow |x + iy + i| = |x + iy - 1|$$

$$\Rightarrow |x + i(y + 1)| = |(x - 1) + iy|$$

$$\Rightarrow \sqrt{x^2 + (y + 1)^2} = \sqrt{(x - 1)^2 + y^2}$$

$$\Rightarrow x^2 + (y + 1)^2 = (x - 1)^2 + y^2$$
 [squaring both sides

$$\Rightarrow x^2' + y^2' + 2y + y' = x^2' - 2x + y' + y^{2'}$$

$$\Rightarrow 2y + 2x = 0$$

$$\Rightarrow x + y = 0$$

Hence, the required Cartesian equation is x + y = 0

(b)
$$\operatorname{Let} I = \int_0^a \frac{f(x)}{f(x) + f(a - x)} dx$$

... (1)

Applying the formula $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ in equation (1), we get

I =
$$\int_{a}^{0} \frac{f(a-x)}{f(a-x) + f(a-(a-x))} dx$$
$$= \int_{0}^{a} \frac{f(a-x)}{f(x) + f(a-x)} dx$$

Adding equation (1) and (2), we get

$$2I = \int_0^a \frac{f(x)}{f(x) + f(a - x)} dx + \int_0^a \frac{f(a - x)}{f(x) + f(a - x)} dx$$
$$= \int_0^a \frac{f(x) + f(a - x)}{f(x) + f(a - x)} dx = \int_0^a dx = a$$

Hence , we get I =

43. (a) Parabola is open left and axis of symmetry as x-axis and vertex (0,0).

Then the equation of the required parabola is

.Net www.Trb Tnpsc.Com www.surabooks.com

🖞 Sura's 🖛 XII Std - Mathematics 🖛 Public Examination 🛠 May - 2022 🛠 Question Paper with Answers 11

www.Padasalai.Net www.Trb Tnpsc.Com www.surabooks.com

12 Sura's -XII Std - Mathematics - Public Examination * May - 2022 * Question Paper with Answers

Let $\hat{a} = \overrightarrow{OA}$ and $\hat{b} = \overrightarrow{OB}$ be the unit vectors and which make angles α , β respectively with positive x-axis

Draw AL and BM \perp^r to x-axis.

 \Rightarrow

 \Rightarrow

Then
$$|\overrightarrow{OL}| = |\overrightarrow{OA}| \cos A$$

 $\overrightarrow{OL} = |\overrightarrow{OA}| \hat{i} = \cos A \hat{i}$
 $|\overrightarrow{LA}| = |\overrightarrow{OA}| \sin A$
 $\overrightarrow{LA} = |\overrightarrow{OA}| \hat{j} = \sin A(-\hat{j}) = -\sin A \hat{j}$
 $[\overrightarrow{LA}]$ is in the opp direction of v axis]

$$\hat{a} = \overline{OA} = \overline{OL} + \overline{LA} = \cos A\hat{i} - \sin A\hat{j}$$
 ...(1)

Similarly
$$\hat{b} = \overrightarrow{OB} = \overrightarrow{OM} + \overrightarrow{MB} = \cos B\hat{i} + \sin B\hat{j}$$
 ...(2)

Now
$$\hat{a} \times \hat{b} = |\hat{a}| |\hat{b}| \sin(A+B) \hat{k} = \sin(A+B)\hat{k}$$
 ...(3)

$$[|a|=|b|=1]$$

Also
$$\hat{a} \times \hat{b}$$
 = $\begin{vmatrix} i & j & k \\ \cos A & -\sin A & 0 \\ \cos B & \sin B & 0 \end{vmatrix}$
= $\hat{i}(0) - \hat{j}(0) + \hat{k} (\cos A \sin B + \sin A \cos B)$
= $(\sin A \cos B + \cos A \sin B) \hat{k}$ (4)

Using (3) and (4) we get,

sin(A + B) = sin A cos B + cos A sin BHence proved.

(a) Given plane is passing through the points **45**.

$$= 2\hat{i} + 2\hat{j} + \hat{k} \text{ and } \vec{b} = 9\hat{i} + 3\hat{j} + 6\hat{k}.$$

Equation of the given plane is 2x + 6y + 6z = 9. It can be written as $\vec{r} \cdot (2\hat{i} + 6\hat{j} + 6\hat{k}) = 9$. Since the given plane is perpendicular to $2\hat{i}+6\hat{j}+6\hat{k}$, the required plane is parallel to $\vec{c} = 2\hat{i} + 6\hat{j} + 6\hat{k}$. Hence, parametric form of vector equation of plane passing through two points and parallel to a vector is

$$\vec{r} = \vec{a} + s(\vec{b} - \vec{a}) + t\vec{c}, s, t \in \mathbb{R}$$

$$\vec{r} = 2\hat{i} + 2\hat{j} + \hat{k} + s(7\hat{i} + \hat{j} + 5\hat{k}) + t(2\hat{i} + 6\hat{j} + 6\hat{k}), s, t \in \mathbb{R}$$

Cartesian equation of the plane is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

.Net www.Trb Tnpsc.Com www.surabooks.com

🖞 Sura's 🖷 XII Std - Mathematics 🖛 Public Examination 🛠 May - 2022 🛠 Question Paper with Answers 13

$$\Rightarrow \qquad \begin{vmatrix} x-2 & y-2 & z-1 \\ 7 & 1 & 5 \\ 2 & 6 & 6 \end{vmatrix} = 0$$

$$\Rightarrow (x-2)(6-30) - (y-2)(42-10) + (z-1)(42-2) = 0$$

$$\Rightarrow (x-2)(-24) - (y-2)(32) + (z-1)(40) = 0$$

$$\Rightarrow -24x + 48 - 32y + 64 + 40z - 40 = 0$$

$$\Rightarrow -24x - 32y + 40z + 72 = 0$$

$$\div -8 \text{ we get, } 3x + 4y - 5z - 9 = 0 \text{ is the Cartesian form.}$$

$$\therefore \text{ The parametric form of vector equation is } \vec{r} \cdot (3\vec{i} + 4\vec{j} - 5\vec{k}) = 9.$$

OR

(b) Let us now find the slopes of the curves. Let m_1 be the slope of the curve $y = x^2$,

then
$$m_1 = \frac{dy}{dx} = 2x$$

Let m_2 be the slope of the curve $x = y^2$

then
$$m_2 = \frac{dy}{dx} = \frac{1}{2y}$$

Let θ_1 and θ_2 be the angles at (0,0) and (1,1) respectively.

At (0,0) we come across the indeterminate form of 0 $\times \infty$ in the denominator of

.Net www.Trb Tnpsc.Com www.surabooks.com

$$\tan \theta_{1} = \lim_{(x,y)\to(0,0)} \left| \frac{2x - \frac{1}{2y}}{1 + 2x(\frac{1}{2y})} \right| = \lim_{(x,y)\to(0,0)} \left| \frac{4xy - 1}{2(y + x)} \right| = \infty$$
Which gives $\theta_{1} = \tan^{-1}(\infty) = \frac{\pi}{2}$
At (1,1), $m_{1} = 2, m_{2} = \frac{1}{2}$,
$$\tan \theta_{1} = \left| \frac{2 - \frac{1}{2}}{1 + (2)(\frac{1}{2})} \right| = \frac{3}{4}$$
Which gives $\theta_{2} = \tan^{-1}\left(\frac{3}{4}\right)$ Hence proved.
46. (a) (i) $P(X < 3) = P(X \le 3) = F(3) = \frac{3 - 1}{4} = \frac{1}{2}$ (since F (x) is continuous).
(ii) $P(2 < X < 4) = P(2 \le X \le 4) = F(4) - F(2) = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$
(iii) $P(3 \le X) = P(X \ge 3) = 1 - P(X < 3) = 1 - \frac{1}{2} = \frac{1}{2}$
(b) Given equation of line is $3x - 2y + 6 = 0$

$$2y - 3x + 6 \Rightarrow y = \frac{3x + 6}{2}$$

www.Padasalai.Net www.Trb Tnpsc.Com www.surabooks.com

🖞 Sura's 🖷 XII Std - Mathematics 🖛 Public Examination 🛠 May - 2022 🛠 Question Paper with Answers 15

$$\therefore \text{ Area} = \int_{-3}^{-2} -y dx + \int_{-2}^{1} y dx \qquad [\because \text{ the Area is below the } x - \text{ axis }]$$

$$= \frac{-1}{2} \int_{-3}^{-2} (3x + 6) dx + \frac{1}{2} \int_{-2}^{1} (3x + 6) dx$$

$$= \frac{-1}{2} \left[\frac{3x^2}{2} + 6x \right]_{-3}^{-2} + \frac{1}{2} \left[\frac{3x^2}{2} + 6x \right]_{-2}^{1}$$

$$= -\frac{1}{2} \left[\left(\frac{12}{2} - 12 \right) - \left(\frac{27}{2} - 18 \right) \right] + \frac{1}{2} \left[\left(\frac{3}{2} + 6 \right) - \left(\frac{12}{2} - 12 \right) \right]$$

$$= -\frac{1}{2} \left[(-6) - \left(\frac{27 - 36}{2} \right) \right] + \frac{1}{2} \left[\left(\frac{3 + 12}{2} \right) - (-6) \right]$$

$$= -\frac{1}{2} \left[-6 + \frac{9}{2} \right] + \frac{1}{2} \left[\frac{15}{2} + 6 \right]$$

$$= -\frac{1}{2} \left[\frac{-3}{2} \right] + \frac{1}{2} \left[\frac{27}{2} \right] = \frac{3}{4} + \frac{27}{4} = \frac{30}{4} = \frac{15}{2}$$

$$\therefore \text{ A} = 7.5 \text{ sq. units}$$
a) Given that $(1 + x^2) \frac{dy}{dt} = 1 + y^2$.

47. (a) Given that
$$(1 + x^2) \frac{dy}{dx} = 1 + y$$

N

... (1)

The given equation is written in the variables separable form

$$\frac{dy}{1+y^2} = \frac{dx}{1+x^2} \dots (2)$$

Integrating both sides of (2), we get $\tan^{-1} y = \tan^{-1} x + C$ (3)

But
$$\tan^{-1} y - \tan^{-1} x = \tan^{-1} \left(\frac{y - x}{1 + xy} \right)$$
 ... (4)

Using (4) in (3) leads to
$$\tan^{-1}\left(\frac{y-x}{1+xy}\right) = C$$
, which implies $\frac{y-x}{1+xy} = \tan C = a$ (say)

Thus, y - x = a (1 + xy) gives the required solution.

OR

.Net www.Trb Tnpsc.Com www.surabooks.com

16 Sura's -XII Std - Mathematics - Public Examination * May - 2022 * Question Paper with Answers

(b)

р	q	r	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	$p \wedge q$	$(p \land q) \to r$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	F
Т	F	Т	Т	Т	F	Т
Т	F	F	Т	Т	F	Т
F	Т	Т	Т	Т	F	Т
F	Т	F	F	Т	F	Т
F	F	Т	Т	Т	F	Т
F	F	F	Т	Т	F	Т

 $\therefore p \to (q \to r) \equiv (p \land q) \to r$

Hence proved.

54

**