$12^{\text {th }}$

PUBLIC EXAMINATION - 2022

Part - III

Time Allowed: 3.00 Hours]
Mathematics (with answers)

Instructions :

(1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams

PART - I

Note: (i) All questions are compulsory.
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.
$20 \times 1=20$

1. If $f(x)=\left\{\begin{array}{rc}2 x & 0 \leq x \leq a \\ 0 & \text { otherwise }\end{array}\right.$ is a probability density function of a random variable, then the value of a is :
(a) 3
(b) 1
(c) 4
(d) 2
2. Which one of the following is not true in the case of discrete random variable X ?
(a) $\lim _{x \rightarrow \infty} \mathrm{~F}(x)=\mathrm{F}(\infty)=1$
(b) $0 \leq \mathrm{F}(x) \leq 1$ for all $x \in \mathbb{R}$
(c) $\mathrm{F}(x)$ is real valued decreasing function.
(d) $\lim _{x \rightarrow-\infty} \mathrm{F}(x)=\mathrm{F}(-\infty)=0$
3. If $f(x)=\frac{x}{x+1}$ then its differential is :
(a) $\frac{1}{x+1} d x$
(b) $\frac{-1}{(x+1)^{2}} d x$
(c) $\frac{-1}{x+1} d x$
(d) $\frac{1}{(x+1)^{2}} d x$
4. The value of $\int_{0}^{1} x(1-x)^{99} d x$ is :
(a) $\frac{1}{10010}$
(b) $\frac{1}{11000}$
(c) $\frac{1}{10001}$
(d) $\frac{1}{10100}$
5. The principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is :
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{5 \pi}{6}$
(d) $\frac{\pi}{6}$
6. If $\mathrm{A}=\left[\begin{array}{rr}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\lambda \mathrm{A}^{-1}=\mathrm{A}$, then λ is :
(a) 19
(b) 17
(c) 21
(d) 14
7. If α, β and γ are the zeros of $x^{3}+p x^{2}+q x+r$, then $\sum \frac{1}{\alpha}$ is :
(a) $\frac{q}{r}$
(b) $-\frac{q}{r}$
(c) $-\frac{q}{\mathrm{P}}$
(d) $-\frac{p}{r}$
8. If $(1+i)(1+2 i)(1+3 i) \ldots(1+n i)=x+i y$ then the value 2.5.10 $\ldots\left(1+n^{2}\right)$ is :
(a) $x^{2}+y^{2}$
(b) 1
(c) $1+n^{2}$
(d) i
9. The minimum value of the function $|3-x|+9$ is :
(a) 6
(b) 0
(c) 9
(d) 3
10. The value of $\sum_{n=1}^{12} i^{n}$ is :
(a) 0
(b) 1
(c) -1
(d) i
11. If the vectors $2 \hat{i}-\hat{j}+3 \hat{k}, 3 \hat{i}+2 \hat{j}+\hat{k}, \hat{i}+m \hat{j}+4 \hat{k}$ are coplanar, then the value of m is :
(a) 2
(b) 3
(c) -2
(d) -3
12. The general equation of a circle with centre $(-3,-4)$ and radius 3 units is :
(a) $x^{2}+y^{2}-6 x+8 y-16=0$
(b) $x^{2}+y^{2}-6 x-8 y+16=0$
(c) $x^{2}+y^{2}+6 x-8 y+16=0$
(d) $x^{2}+y^{2}+6 x+8 y+16=0$
13. The solution of $\frac{d y}{d x}+p(x) y=0$ is :
(a) $x=c e^{-\int p d y}$
(b) $y=c e^{\int p d x}$
(c) $x=c e^{\int p d y}$
(d) $y=c e^{-\int p d x}$
14. The value of $\int_{0}^{\infty} e^{-3 x} x^{2} d x$ is :
(a) $\frac{4}{27}$
(b) $\frac{7}{27}$
(c) $\frac{2}{27}$
(d) $\frac{5}{27}$
15. The point of inflection of the curve $y=(x-1)^{3}$, is :
(a) $(1,0)$
(b) $(0,0)$
(c) $(1,1)$
(d) $(0,1)$
16. The angle between the lines $\frac{x-4}{2}=\frac{y}{1}=\frac{z+1}{-2}$ and $\frac{x-1}{4}=\frac{y+1}{-4}=\frac{z-2}{2}$ is :
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) $\frac{2 \pi}{3}$
(d) $\frac{\pi}{3}$
17. Which one of the following is a binary operation on N ?
(a) Multiplication
(b) Division
(c) Subtraction
(d) All the above
18. Which one of the following is incorrect?
(a) If A is a square matrix of order n, and λ is a scalar, then $\operatorname{Adj}(\lambda A)=\lambda^{n}(\operatorname{Adj} A)$.
(b) Adjoint of a symmetric matrix is also a symmetric matrix.
(c) $\mathrm{A}(\operatorname{Adj} \mathrm{A})=(\operatorname{Adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}$.
(d) Adjoint of a diagonal matrix is also a diagonal matrix.
19. If $\sin x$ is the integrating factor of the linear differential equation $\frac{d y}{d x}+\mathrm{P} y=\mathrm{Q}$, then P is :
(a) $\tan x$
(b) $\log \sin x$
(c) $\cot x$
(d) $\cos x$
20. The length of the latus rectum of the parabola $x^{2}=24 y$ is :
(a) 8
(b) 24
(c) 6
(d) 12

PART - II

Note: (i) Answer any seven questions.
(ii) Question number $\mathbf{3 0}$ is compulsory.
21. Prove the following properties :
$\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
22. Find a polynomial equation of minimum degree with rational coefficients, having $2-\sqrt{3}$ as a root.
23. Find the principal value of $\tan ^{-1}(\sqrt{3})$
24. Find the points on the curve $y=x^{3}-3 x^{2}+x-2$ at which the tangent is parallel to the line $y=x$.
25. Find $d f$ for $f(x)=x^{2}+3 x$ and evaluate it for $x=2$ and $d x=0.1$.
26. Show that the differential equation of the family of curves $y=\mathrm{A} e^{x}+\mathrm{B} e^{-x}$, where A and B are arbitrary constants, is $\frac{d^{2} y}{d x^{2}}-y=0$.
27. Solve : $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}$.
28. A random variable X has the following probability mass function.

x	1	2	3	4	5	6
$f(x)$	k	$2 k$	$6 k$	$5 k$	$6 k$	$10 k$

Find k.
29. X is the number of tails occurred when three fair coins are tossed simultaneously. Find the values of the random variable X and number of points in its reverse images.
30. Show that the distance from the origin to the plane $3 x+6 y+2 z+7=0$ is 1 .

PART - III

Note : (i) Answer any seven questions.
(ii) Question number 40 is compulsory.
$7 \times 3=21$
31. Show that the rank of the matrix $\left[\begin{array}{rrr}1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -1 & 1\end{array}\right]$ is 3 .
32. Solve the following system of linear equations, using matrix inversion method : $5 x+2 y=3$, $3 x+2 y=5$.
33. Which one of the points $10-8 i, 11+6 i$ is closest to $1+i$.
34. Solve the equation $2 x^{3}-9 x^{2}+10 x=3$, if 1 is a root, find the other roots.
35. Find the magnitude and the direction cosines of the torque about the point $(2,0,-1)$ of a force, $2 \hat{i}+\hat{j}-\hat{k}$ whose line of action passes through the origin.

36．Evaluate ： $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{x^{2}-5 x+3}$
37．Assume that the cross section of the artery of human is circular．A drug is given to a patient to dilate his arteries．If the radius of an artery is increased from 2 mm to 2.1 mm ，how much is cross－sectional area increased approximately．
38．Show that $\int_{0}^{\frac{\pi}{3}} \frac{\sec x \tan x}{1+\sec ^{2} x} d x=\tan ^{-1}(2)-\frac{\pi}{4}$ ．
39．Let＊be defined on R by $\left(a^{*} b\right)=a+b+a b-7$ ． Is＊binary on R？If so，find $3 *\left(\frac{-7}{15}\right)$ ．
40．Prove that the general equation of the circle whose diameter is the line segment joining the points $(-4,-2)$ and $(-1,-1)$ ，is $x^{2}+y^{2}+5 x+3 y+6=0$ ．

PART－IV

Note ：Answer all the following questions． $\mathbf{7 \times 5}=\mathbf{3 5}$
41．（a）Cramer＇s rule is not applicable to solve the system $3 x+y+z=2, x-3 y+2 z=1$ ， $7 x-y+4 z=5$ ．Why？

OR
（b）Prove that the local minimum values for the function $f(x)=4 x^{6}-6 x^{4}$ attain at -1 and 1 ．
42．（a）Show that the locus of $z=x+i y$ if $|z+i|=|z-1|$ ，is $x+y=0$ ．

> OR
（b）Show that $\int_{0}^{a} \frac{f(x)}{f(x)+f(a-x)} d x=\frac{a}{2}$ ．
43．（a）Show that the equation of the parabola with focus $(-\sqrt{2}, 0)$ and directrix $x=\sqrt{2}$ is $y^{2}=-4 \sqrt{2} x$ ．
OR
（b）Find the value of $\cot ^{-1}(1)+\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)-\sec ^{-1}(-\sqrt{2})$ ．

44．（a）The maximum and minimum distances of the Earth from the Sun respectively are $152 \times 10^{6} \mathrm{~km}$ and $94.5 \times 10^{6} \mathrm{~km}$ ．The Sun is at one focus of the elliptical orbit．Show that the distance from the Sun to the other focus is $575 \times 10^{5} \mathrm{~km}$ ．

OR

（b）Prove by vector method $\sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cdot \cos \mathrm{B}+\cos \mathrm{A} \cdot \sin \mathrm{B}$ ．
45．（a）Find the vector equation（any form）or Cartesian equation of a plane passing through the points $(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$ ．

OR

（b）Show that the angle between the curves $y=x^{2}$ and $x=y^{2}$ at $(1,1)$ is $\tan ^{-1}\left(\frac{3}{4}\right)$ ．
46．（a）The distribution function of a continuous random variable X is ：
$\mathrm{F}(x)=\left\{\begin{array}{rrr}0, & x<1 \\ \frac{x-1}{4}, & & 1 \leq x \leq 5 \\ 1, & x>5\end{array}\right.$
Find（i） $\mathrm{P}(\mathrm{X}<3)$（ii） $\mathrm{P}(2<\mathrm{X}<4)$
（iii） $\mathrm{P}(3 \leq \mathrm{X})$
OR
（b）Show that the area of the region bounded by $3 x-2 y+6=0, x=-3, x=1$ and x－axis，is $\frac{15}{2}$ ．
47．（a）Show that the solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}=1+y^{2}$ is $\tan ^{-1} y=\tan ^{-1} x+\mathrm{C}$（or） $\tan ^{-1} x=\tan ^{-1} y+\mathrm{C}$ ．

OR
（b）Prove $p \rightarrow(q \rightarrow r) \equiv(p \wedge q) \rightarrow r$ using truth table．

Answers

PART - I

1. (b) 1
2. (c) $\mathrm{F}(x)$ is real valued decreasing function
3. (d) $\frac{1}{(x+1)^{2}} d x$
4. (d) $\frac{1}{10100}$
5. (d) $\frac{\pi}{6}$
6. (a) 19
7. (b) $-\frac{q}{r}$
8. (a) $x^{2}+y^{2}$
9. (c) 9
10. (a) 0
11. (d) -3
12. (d) $x^{2}+y^{2}+6 x+8 y+16=0$
13. (d) $y=c e^{-\int p d x}$
14. (c) $\frac{2}{27}$
15. (a) $(1,0)$
16. (a) $\frac{\pi}{2}$
17. (a) Multiplication
18. (a) If A is a square matrix of order n, and λ is a scalar, then $\operatorname{Adj}(\lambda A)=\lambda^{n}(\operatorname{Adj} A)$.
19. (c) $\cot x$
20. (b) 24

PART - II
21. Let $z=x+i y$ where x is the $\operatorname{Re}(z)$ and y is the $\operatorname{Im}(z)$.

$$
\begin{aligned}
\text { Then } \bar{z} & =x-i y \\
z+\bar{z} & =x+i y+x-i y=2 x \\
\therefore \frac{z+\bar{z}}{2} & =x \\
\Rightarrow \quad \frac{z+\bar{z}}{2} & =\operatorname{Re}(z)
\end{aligned}
$$

$$
\begin{aligned}
\text { Also } z-\bar{z} & =x+i y-(x-i y) \\
& =x+i y-x+i y=2 i y \\
\therefore \frac{z-\bar{z}}{2 i} & =y \\
\Rightarrow \quad \frac{z-\bar{z}}{2 i} & =\operatorname{Im}(z)
\end{aligned}
$$

22. Since $2-\sqrt{3}$ is a root and the coefficients are rational numbers, $2+\sqrt{3}$ is also a root. A required polynomial equation is given by $x^{2}-$ (Sum of the roots) $x+$ Product of the roots $=0$ and hence $x^{2}-4 x+1=0$ is a required equation.
23. Let $\tan ^{-1}(\sqrt{3})=y$. Then,

$$
\tan y=\sqrt{3} \text {. Thus, } y=\frac{\pi}{3}
$$

Since $\frac{\pi}{3} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
Thus the principal value of $\tan ^{-1}(\sqrt{3})$ is $\frac{\pi}{3}$.
24. The slope of the line $y=x$ is 1 . The tangent to the given curve will be parallel to the line, if the slope of the tangent to the curve at a point is also 1 . Hence,

$$
\frac{d y}{d x}=3 x^{2}-6 x+1=1
$$

which gives $3 x^{2}-6 x=0$
Hence, $x=0$ and $x=2$.
Therefore, at $(0,-2)$ and $(2,-4)$ the tangent is parallel to the line $y=x$.
25. Taking differentials,

$$
\begin{align*}
d f & =(2 x+3) d x \\
\text { When } x & =2, d x=0.1 \\
d f & =[2(2)+3](0.1)=7(0.1)=0.7 \tag{1}
\end{align*}
$$

26. Given $: y=\mathrm{A} e^{x}+\mathrm{B} e^{-x}$

Differentiate (1) with respect to x, we get,

$$
\begin{equation*}
\frac{d y}{d x}=\mathrm{A} e^{x}-\mathrm{B} e^{-x} \tag{2}
\end{equation*}
$$

Differentiate (2) with respect to x, we get,

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}
\end{aligned}=\mathrm{A} e^{x}+\mathrm{B} e^{-x},
$$

$\Rightarrow \frac{d^{2} y}{d x^{2}}-y=0$ is the required differential equation.
Hence proved.
27. Separating the variables we get,

$$
\begin{aligned}
\frac{d y}{\sqrt{1-y^{2}}} & =\frac{d x}{\sqrt{1-x^{2}}} \\
\sin ^{-1} y & =\sin ^{-1} x+\mathrm{C}[\text { on integrating both sides we get }]
\end{aligned}
$$

28. Since the given function is a probability mass function, the total probability is one. That is $\sum f(x)=1$.

From the given data $k+2 k+6 k+5 k+6 k+10 k=30 k=1 \Rightarrow k=\frac{1}{30}$
29. When 3 fair coins are tossed, sample space
$s=\{$ HHH, HHT, THH, HTH, HTT, THT, TTH, TTT $\}$
Let X denote the number of tails occured.

$$
\begin{aligned}
\mathrm{X}(\text { no tail }) & =\{\mathrm{HHH}\}=1 \\
\mathrm{X}(1 \text { tail }) & =\{\mathrm{HHT}, \mathrm{THH}, \mathrm{HTH}\}=3 \\
\mathrm{X}(2 \text { tails }) & =\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}=3 \\
\mathrm{X}(3 \text { tails }) & =\{\mathrm{TTT}\}=1
\end{aligned}
$$

$\therefore \mathrm{X}$ takes the values $0,1,2,3$.

Values of random variable X	0	1	2	3	Total
Number of elements in inverse images	1	3	3	1	8

30. Distance from the origin to the plane

$$
\begin{aligned}
\delta & =\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{|7|}{\sqrt{(3)^{2}+(6)^{2}+(2)^{2}}}=\frac{|7|}{\sqrt{9+36+4}} \\
& =\frac{|7|}{\sqrt{49}}=\frac{7}{7}=1
\end{aligned}
$$

PART - III

31. Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 1 & -2 & 3 \\ 1 & -1 & 1\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
3 & -1 & 2 \\
1 & -2 & 3 \\
1 & -1 & 1
\end{array}\right] \xrightarrow[R_{4} \rightarrow R_{4}-R_{1}]{\substack{R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}}}\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -7 & 5 \\
0 & -4 & 4 \\
0 & -3 & 2
\end{array}\right] \\
& \xrightarrow{R_{3} \rightarrow R_{3} \div 4}\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & -7 & 5 \\
0 & -1 & 1 \\
0 & -3 & 2
\end{array}\right] \xrightarrow{R_{4} \rightarrow R_{4}-3 R_{3}}\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & -7 & 5 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

$\xrightarrow{\mathrm{R}_{3} \rightarrow 7 \mathrm{R}_{3}-\mathrm{R}_{2}}\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & -7 & 5 \\ 0 & 0 & 2 \\ 0 & 0 & -1\end{array}\right] \xrightarrow{\mathrm{R}_{4} \rightarrow 2 \mathrm{R}_{4}+\mathrm{R}_{3}}\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & -7 & 5 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$
The last equivalent matrix is in row echelon form and it has three non-zero rows
$\therefore \rho(A)=3$
32. The matrix form of the system is $\mathrm{AX}=\mathrm{B}$, where $\mathrm{A}=\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right], \mathrm{B}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

We find $|\mathrm{A}|=\left|\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right|=10-6=4 \neq 0$. So A^{-1} exists and $A^{-1}=\frac{1}{4}\left[\begin{array}{rr}2 & -2 \\ -3 & 5\end{array}\right]$.
Then, applying the formula $\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}$, we get
$\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{4}\left[\begin{array}{rr}2 & -2 \\ -3 & 5\end{array}\right]\left[\begin{array}{l}3 \\ 5\end{array}\right]=\frac{1}{4}\left[\begin{array}{r}6-10 \\ -9+25\end{array}\right]$

$$
=\frac{1}{4}\left[\begin{array}{c}
-4 \\
16
\end{array}\right]=\left[\begin{array}{c}
\frac{-4}{4} \\
\frac{16}{4}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
4
\end{array}\right]
$$

So the solution is $x=-1, y=4$.
33. Let the points be $\mathrm{A}(10-8 i), \mathrm{B}(11+6 i)$ and $\mathrm{C}(1+i)$

Distance between A and C is $|(10-8 i)-(1+i)|$

$$
\begin{aligned}
& |10-8 i-1-i|=|9-9 i| \\
& \sqrt{9^{2}+(-9)^{2}}=\sqrt{81+81}=\sqrt{2 \times 81}=\sqrt{162}
\end{aligned}
$$

Distance between B and C is $|(11+6 i)-(1+i)|$

$$
\begin{aligned}
& =|11+6 i-1-i|=|10+5 i| \\
& =\sqrt{10^{2}+5^{2}}=\sqrt{100+25}=\sqrt{125}
\end{aligned}
$$

Since $\sqrt{125}<\sqrt{162}, \mathrm{~B}$ is closest to C .
$\therefore 11+6 i$ is closest to $1+i$
34. Since the sum of the co-efficients is
$2-9+10-3=12-12=0$
$\Rightarrow \quad x=1$ is a root of $f(x)$
$\therefore(x-1)$ is a factor of $f(x)$
To find the other factor, let us divide $f(x)$ by $x-1$

1	2	-9	10	-3
	0	2	-7	3
3	2	-7	3	0
	0	6	-3	
	2	-1	0	

[Using synthetic division]

$$
f(x)=(x-1)(x-3)(2 x-1)=0
$$

$\Rightarrow x-1=0, x-3=0$ or $2 x-1=0$
$\Rightarrow x=1, x=3, x=\frac{1}{2}$
Hence the roots are $1,3, \frac{1}{2}$.
35. Let A be the point $(2,0,-1)$. Then the position vector of A is $\overrightarrow{\mathrm{OA}}=2 \hat{i}-\hat{k}$ and therefore $\vec{r}=\overrightarrow{\mathrm{AO}}=-2 \hat{i}+\hat{k}$.
Then the given force is $\overrightarrow{\mathrm{F}}=2 \hat{i}+\hat{j}-\hat{k}$ So, the torque is
$\vec{t}=\vec{r} \times \overrightarrow{\mathrm{F}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & 1 \\ 2 & 1 & -1\end{array}\right|=-\hat{i}-2 \hat{k}$
The magnitude of the torque $=|-\hat{i}-2 \hat{k}|=\sqrt{5}$ and the direction cosines of the torque are $-\frac{1}{\sqrt{5}}, 0,-\frac{2}{\sqrt{5}}$.
36. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3}{x^{2}-5 x+3}=\lim _{\frac{1}{x} \rightarrow 0} \frac{2-\frac{3}{x^{2}}}{1-\frac{5}{x}+\frac{3}{x^{2}}}$

$$
=\frac{2-0}{1-0+0}=\frac{2}{1}=2
$$

37. Given

$$
r=2 \mathrm{~mm}
$$

$$
\begin{aligned}
d r & =(2.1-2)=0.1 \mathrm{~mm} \\
\text { Area } & =\pi r^{2}
\end{aligned}
$$

Approximate area $d \mathrm{~A}=2 \pi r d r=2 \pi(2)(0.1)$

$$
=4 \pi(0.1)=0.4 \pi \mathrm{~mm}^{2}
$$

38. Let $\mathrm{I}=\int_{0}^{\frac{\pi}{3}} \frac{\sec x \tan x}{1+\sec ^{2} x} d x$

Put $\sec x=u$. Then, $\sec x \tan x d x=d u$
When $x=0, u=\sec 0=1$.
When $x=\frac{\pi}{3}, u=\sec \frac{\pi}{3}=2$.

$$
\therefore \mathrm{I}=\int_{1}^{2} \frac{d u}{1+u^{2}}=\left[\tan ^{-1} u\right]_{1}^{2}=\tan ^{-1}(2)-\tan ^{-1} 1=\tan ^{-1}(2)-\frac{\pi}{4}
$$

39. Given $a * b=a+b+a b-7$

Let $a, b \in \mathbb{R}$
$a * b=a+b+a b-7 \in \mathbb{R}$,
$\therefore *$ is binary operation on \mathbb{R}.
$3 *\left(\frac{-7}{15}\right)=3-\frac{7}{15}+\not \beta^{1}\left(\frac{-7}{15_{5}}\right)-7$
$\left[\right.$ Here $a=3, b=\frac{-7}{15}$]

$$
\begin{aligned}
& =3-\frac{7}{15}-\frac{7}{5}-7 \\
& =\frac{45-7-21-105}{15}=\frac{-88}{15}
\end{aligned}
$$

$$
\therefore 3 *\left(\frac{-7}{15}\right)=\frac{-88}{15}
$$

40. Equation of the circle with end points of the diameter as $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\begin{array}{r}
\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0 \\
(x+4)(x+1)+(y+2)(y+1)=0 \\
x^{2}+x+4 x+4+y^{2}+y+2 y+2=0 \\
x^{2}+y^{2}+5 x+3 y+6=0
\end{array}
$$

Hence proved.
PART - IV
41. (a) When the coefficient matrix is a square matrix and non-singular, then the matrix can solved by Cramer's rule.
Coefficient matrix

$$
\begin{aligned}
\left|\begin{array}{rrr}
3 & 1 & 1 \\
1 & -3 & 2 \\
7 & -1 & 4
\end{array}\right| & =3(-12+2)-1(4-14)+1(-1+21) \\
& =3(-10)-1(-10)+1(20) \\
& =-30+10+20=0
\end{aligned}
$$

\therefore Coefficient matrix is singular
\therefore Cramer's rule is not applicable.
(b) Differentiating with respect to x, we get

$$
\begin{aligned}
f^{\prime}(x) & =24 x^{5}-24 x^{3} \\
& =24 x^{3}\left(x^{2}-1\right) \\
& =24 x^{3}(x+1)(x-1) \\
f^{\prime}(x) & =0 \Rightarrow x=-1,0,1 .
\end{aligned}
$$

Hence the critical numbers are $x=-1,0,1$.
Now, $f^{\prime \prime}(x)=120 x^{4}-72 x^{2}=24 x^{2}\left(5 x^{2}-3\right)$
$\Rightarrow f^{\prime \prime}(-1)=48, f^{\prime \prime}(0)=0, f^{\prime \prime}(1)=48$.
As $f^{\prime \prime}(-1)$ and $f^{\prime \prime}(1)$ are positive by the second derivative test, the function $f(x)$ has local minimum at -1 and 1.
42. (a)

$$
\begin{array}{lrl}
\Rightarrow & |x+i y+i| & =|x+i y-1| \\
\Rightarrow & |x+i(y+1)| & =|(x-1)+i y| \\
\Rightarrow & \sqrt{x^{2}+(y+1)^{2}} & =\sqrt{(x-1)^{2}+y^{2}} \\
\Rightarrow & x^{2}+(y+1)^{2} & =(x-1)^{2}+y^{2}
\end{array}
$$

(b)

$$
\begin{equation*}
\text { Let I }=\int_{0}^{a} \frac{f(x)}{f(x)+f(a-x)} d x \tag{1}
\end{equation*}
$$

Applying the formula $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ in equation (1), we get

$$
\begin{aligned}
\mathrm{I} & =\int_{a}^{0} \frac{f(a-x)}{f(a-x)+f(a-(a-x))} d x \\
& =\int_{0}^{a} \frac{f(a-x)}{f(x)+f(a-x)} d x
\end{aligned}
$$

Adding equation (1) and (2), we get

$$
2 \mathrm{I}=\int_{0}^{a} \frac{f(x)}{f(x)+f(a-x)} d x+\int_{0}^{a} \frac{f(a-x)}{f(x)+f(a-x)}
$$

$$
\int_{0}^{a} \frac{f(x)+f(a-x)}{f(x)+f(a-x)} d x=\int_{0}^{a} d x=a
$$

Hence, we get $\mathrm{I}=\frac{a}{2}$
43. (a) Parabola is open left and axis of symmetry as x-axis and vertex $(0,0)$.

Then the equation of the required parabola is

$$
\begin{aligned}
(y-0)^{2} & =-4 \sqrt{2}(x-0) . \\
y^{2} & =-4 \sqrt{2} x
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { Let } \cot ^{-1}(1)=x \\
& \Rightarrow \quad \cot x=1 \\
& \Rightarrow \quad \tan x=1 \\
& \Rightarrow \quad \tan x=\tan \frac{\pi}{4} \\
& \Rightarrow \quad x=\frac{\pi}{4} \\
& \text { Let } \sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=y \\
& \Rightarrow \quad \sin y \quad=\frac{-\sqrt{3}}{2}=-\sin \frac{\pi}{3} \\
& \Rightarrow \quad \sin y \quad=\sin \left(\frac{-\pi}{3}\right) \\
& \Rightarrow \quad y=\frac{-\pi}{3} \\
& \text { Let } \sec ^{-1}(-\sqrt{2})=z \\
& \Rightarrow \quad \sec z \quad=-\sqrt{2} \Rightarrow \cos z=\frac{-1}{\sqrt{2}} \\
& \Rightarrow \quad \cos z=-\cos \frac{\pi}{4} \\
& \Rightarrow \quad \cos z=\cos \left(\pi-\frac{\pi}{4}\right) \\
& \Rightarrow \quad \cos z=\cos \left(\frac{3 \pi}{4}\right) \Rightarrow z=\frac{3 \pi}{4} \\
& \therefore \cot ^{-1}(1)+\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)-\sec ^{-1}(-\sqrt{2})=\frac{\pi}{4}-\frac{\pi}{3}-\frac{3 \pi}{4}=\frac{3 \pi-4 \pi-9 \pi}{12}=\frac{-10^{5} \pi}{122_{6}}=\frac{-5 \pi}{6} \\
& \therefore \cot ^{-1}(1)+\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)-\sec ^{-1}(-\sqrt{2})=\frac{-5 \pi}{6}
\end{aligned}
$$

44. (a)

$$
\mathrm{AS}=94.5 \times 10^{6} \mathrm{~km}, \mathrm{SA}^{\prime}=152 \times 10^{6} \mathrm{~km}
$$

$$
\begin{aligned}
& a+c=152 \times 10^{6} \\
& a-c=94.5 \times 10^{6}
\end{aligned}
$$

Subtracting $2 c=57.5 \times 10^{6}=575 \times 10^{5} \mathrm{~km}$
Distance of the Sun from the other focus is $\mathrm{SS}^{\prime}=575 \times 10^{5} \mathrm{~km}$.

OR
(b)

Let $\hat{a}=\overrightarrow{\mathrm{OA}}$ and $\hat{b}=\overrightarrow{\mathrm{OB}}$ be the unit vectors and which make angles α, β respectively with positive x-axis
Draw AL and BM \perp^{r} to x-axis.

$$
\begin{array}{rlrl}
& \text { Then }|\overrightarrow{\mathrm{OL}}| & =|\overrightarrow{\mathrm{OA}}| \cos \mathrm{A} \\
\Rightarrow \quad \overrightarrow{\mathrm{OL}}: & =|\overrightarrow{\mathrm{OA}}| \hat{i}=\cos \mathrm{A} \hat{i} \\
\Rightarrow \quad|\overrightarrow{\mathrm{LA}}| & =|\overrightarrow{\mathrm{OA}}| \sin \mathrm{A} \\
\Rightarrow \quad & \overrightarrow{\mathrm{LA}} & =|\overrightarrow{\mathrm{OA}}| \hat{j}=\sin \mathrm{A}(-\hat{j})=-\sin \mathrm{A} \hat{j}
\end{array}
$$

[$\overrightarrow{\mathrm{LA}}$ is in the opp direction of y axis]

$$
\begin{align*}
\hat{a} & =\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{LA}}=\cos \mathrm{A} \hat{i}-\sin \mathrm{A} \hat{j} \tag{1}\\
\text { Similarly } \hat{b} & =\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{MB}}=\cos \mathrm{B} \hat{i}+\sin \mathrm{B} \hat{j} \tag{2}\\
\text { Now } \hat{a} \times \hat{b} & =|\hat{a}||\hat{b}| \sin (\mathrm{A}+\mathrm{B}) \hat{k}=\sin (\mathrm{A}+\mathrm{B}) \hat{k} \tag{3}
\end{align*}
$$

$$
[|\hat{a}|=|\hat{b}|=1]
$$

$$
\text { Also } \begin{aligned}
\hat{a} \times \hat{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\cos \mathrm{~A} & -\sin \mathrm{A} & 0 \\
\cos \mathrm{~B} & \sin \mathrm{~B} & 0
\end{array}\right| \\
& =\hat{i}(0)-\hat{j}(0)+\hat{k}(\cos \mathrm{~A} \sin \mathrm{~B}+\sin \mathrm{A} \cos \mathrm{~B})
\end{aligned}
$$

$$
\begin{equation*}
(\sin A \cos B+\cos A \sin B) \hat{k} \tag{4}
\end{equation*}
$$

Using (3) and (4) we get,
$\sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}+\cos \mathrm{A} \sin \mathrm{B}$
Hence proved.
45. (a) Given plane is passing through the points

$$
\vec{a}=2 \hat{i}+2 \hat{j}+\hat{k} \text { and } \vec{b}=9 \hat{i}+3 \hat{j}+6 \hat{k}
$$

Equation of the given plane is $2 x+6 y+6 z=9$. It can be written as $\vec{r} \cdot(2 \hat{i}+6 \hat{j}+6 \hat{k})=9$.
Since the given plane is perpendicular to $2 \hat{i}+6 \hat{j}+6 \hat{k}$, the required plane is parallel to $\vec{c}=2 \hat{i}+6 \hat{j}+6 \hat{k}$. Hence, parametric form of vector equation of plane passing through two points and parallel to a vector is

$$
\begin{aligned}
\vec{r} & =\vec{a}+s(\vec{b}-\vec{a})+\overrightarrow{t c}, s, t \in \mathbb{R} \\
\vec{r} & =2 \hat{i}+2 \hat{j}+\hat{k}+s(7 \hat{i}+\hat{j}+5 \hat{k})+t(2 \hat{i}+6 \hat{j}+6 \hat{k}), s, t \in \mathbb{R}
\end{aligned}
$$

Cartesian equation of the plane is

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=0
$$

$$
\begin{aligned}
& \Rightarrow \quad\left|\begin{array}{ccc}
x-2 & y-2 & z-1 \\
7 & 1 & 5 \\
2 & 6 & 6
\end{array}\right|=0 \\
& \Rightarrow(x-2)(6-30)-(y-2)(42-10)+(z-1)(42-2)=0 \\
& \Rightarrow(x-2)(-24)-(y-2)(32)+(z-1)(40)=0 \\
& \Rightarrow \quad-24 x+48-32 y+64+40 z-40 \quad=0 \\
& \Rightarrow \quad-24 x-32 y+40 z+72 \quad=0
\end{aligned}
$$

$\div-8$ we get, $3 x+4 y-5 z-9=0$ is the Cartesian form.
\therefore The parametric form of vector equation is $\vec{r} \cdot(3 \vec{i}+4 \vec{j}-5 \vec{k})=9$.
OR
(b) Let us now find the slopes of the curves.

Let m_{1} be the slope of the curve $y=x^{2}$,

$$
\text { then } m_{1}=\frac{d y}{d x}=2 x
$$

Let m_{2} be the slope of the curve $x=y^{2}$

$$
\text { then } m_{2}=\frac{d y}{d x}=\frac{1}{2 y}
$$

Let θ_{1} and θ_{2} be the angles at $(0,0)$ and $(1,1)$ respectively.
At $(0,0)$ we come across the indeterminate form of $0 \times \infty$ in the denominator of $\tan \theta_{1}=\left|\frac{2 x-\frac{1}{2 y}}{1+2 x\left(\frac{1}{2 y}\right)}\right|$ and so we follow the limiting process.

$$
\tan \theta_{1}=\lim _{(x, y) \rightarrow(0,0)}\left|\frac{2 x-\frac{1}{2 y}}{1+2 x\left(\frac{1}{2 y}\right)}\right|=\lim _{(x, y) \rightarrow(0,0)}\left|\frac{4 x y-1}{2(y+x)}\right|=\infty
$$

Which gives $\theta_{1}=\tan ^{-1}(\infty)=\frac{\pi}{2}$
At $(1,1), m_{1}=2, m_{2}=\frac{1}{2}$,

$$
\tan \theta_{1}=\left|\frac{2-\frac{1}{2}}{1+(2)\left(\frac{1}{2}\right)}\right|=\frac{3}{4}
$$

Which gives $\theta_{2}=\tan ^{-1}\left(\frac{3}{4}\right) \quad$ Hence proved.
46. (a) (i)

$$
\mathrm{P}(\mathrm{X}<3)=\mathrm{P}(\mathrm{X} \leq 3)=\mathrm{F}(3)=\frac{3-1}{4}=\frac{1}{2} \quad \text { (since } \mathrm{F}(x) \text { is continuous). }
$$

(ii)

$$
\mathrm{P}(2<\mathrm{X}<4)=\mathrm{P}(2 \leq \mathrm{X} \leq 4)=\mathrm{F}(4)-\mathrm{F}(2)=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}
$$

(iii)

$$
\mathrm{P}(3 \leq \mathrm{X})=\mathrm{P}(\mathrm{X} \geq 3)=1-\mathrm{P}(\mathrm{X}<3)=1-\frac{1}{2}=\frac{1}{2}
$$

OR
(b) Given equation of line is $3 x-2 y+6=0$
$2 y=3 x+6 \Rightarrow y=\frac{3 x+6}{2}$

x	0	-2
y	3	0

$$
\begin{aligned}
\therefore \text { Area } & =\int_{-3}^{-2}-y d x+\int_{-2}^{1} y d x \\
= & \frac{-1}{2} \int_{-3}^{-2}(3 x+6) d x+\frac{1}{2} \int_{-2}^{1}(3 x+6) d x \\
& =\frac{-1}{2}\left[\frac{3 x^{2}}{2}+6 x\right]_{-3}^{-2}+\frac{1}{2}\left[\frac{3 x^{2}}{2}+6 x\right]_{-2}^{1} \\
& =-\frac{1}{2}\left[\left(\frac{12}{2}-12\right)-\left(\frac{27}{2}-18\right)\right]+\frac{1}{2}\left[\left(\frac{3}{2}+6\right)-\left(\frac{12}{2}-12\right)\right] \\
& =-\frac{1}{2}\left[(-6)-\left(\frac{27-36}{2}\right)\right]+\frac{1}{2}\left[\left(\frac{3+12}{2}\right)-(-6)\right] \\
& =-\frac{1}{2}\left[-6+\frac{9}{2}\right]+\frac{1}{2}\left[\frac{15}{2}+6\right] \\
& =-\frac{1}{2}\left[\frac{-3}{2}\right]+\frac{1}{2}\left[\frac{27}{2}\right]=\frac{3}{4}+\frac{27}{4}=\frac{30}{4}=\frac{15}{2}
\end{aligned}
$$

$\therefore \mathrm{A}=7.5$ sq.units
47. (a) Given that $\left(1+x^{2}\right) \frac{d y}{d x}=1+y^{2}$.

The given equation is written in the variables separable form

$$
\begin{equation*}
\frac{d y}{1+y^{2}}=\frac{d x}{1+x^{2}} \tag{2}
\end{equation*}
$$

Integrating both sides of (2), we get $\tan ^{-1} y=\tan ^{-1} x+C$.
But $\tan ^{-1} y-\tan ^{-1} x=\tan ^{-1}\left(\frac{y-x}{1+x y}\right)$
Using (4) in (3) leads to $\tan ^{-1}\left(\frac{y-x}{1+x y}\right)=\mathrm{C}$, which implies $\frac{y-x}{1+x y}=\tan \mathrm{C}=a$ (say)
Thus, $y-x=a(1+x y)$ gives the required solution.
OR
(b)

p	q	r	$q \rightarrow r$	$p \rightarrow(q \rightarrow r)$	$p \wedge q$	$(p \wedge q) \rightarrow r$
T	T	T	T	T	T	T
T	T	F	F	F	T	F
T	F	T	T	T	F	T
T	F	F	T	T	F	T
F	T	T	T	T	F	T
F	T	F	F	T	F	T
F	F	T	T	T	F	T
F	F	F	T	T	F	T

$\therefore p \rightarrow(q \rightarrow r) \equiv(p \wedge q) \rightarrow r$
Hence proved.

