Sri Raghavendra Tuition Center

COMPLEX UNIT 2

12th Standard

Maths

	Da	te:	13-N	Iay-2	24
Reg.No.:					

TEACHER NAME: P. DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

APPLICATION NAME: ARCHANGEL PHONE NUMBER: 9944249262

ONLINE / OFFLINE CLASSES AVAILABLE TRICHY(DT), THOTTIYAM(TK), 621207

Exam Time: 01:30:00 Hrs

Total Marks: 50

 $10 \times 1 = 10$

I. ANSWER ALL QUESTION

If
$$z=rac{\left(\sqrt{3}+i
ight)^3(3i+4)^2}{\left(8+6i
ight)^2}$$
 , then $\left|z
ight|$ is equal to

2) If
$$\frac{z-1}{z+1}$$
 is purely imaginary, then $|z|$ is

(a)
$$\frac{1}{2}$$
 (b) 1 (c) 2 (d) 3

The solution of the equation
$$|z| - z = 1 + 2i$$
 is

(a)
$$\frac{3}{2} - 2i$$
 (b) $-\frac{3}{2} + 2i$ (c) $2 - \frac{3}{2}i$ (d) $2 + \frac{3}{2}i$

The principal argument of
$$\frac{3}{-1+i}$$
 is

(a)
$$\frac{-5\pi}{6}$$
 (b) $\frac{-2\pi}{3}$ (c) $\frac{-3\pi}{4}$ (d) $\frac{-\pi}{2}$

The value of
$$\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$$
 is

(a)
$$cis\frac{2\pi}{3}$$
 (b) $cis\frac{4\pi}{3}$ (c) $-cis\frac{2\pi}{3}$ (d) $-cis\frac{4\pi}{3}$

6) The principal argument of the complex number
$$\frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$$
 is

(a)
$$\frac{2\pi}{3}$$
 (b) $\frac{\pi}{6}$ (c) $\frac{5\pi}{6}$ (d) $\frac{\pi}{2}$

(a)
$$\frac{1}{2}|z|^2$$
 (b) $|z|^2$ (c) $\frac{3}{2}|z|^2$ (d) $2|z|^2$

If z is a complex number such that
$$z \in \mathbb{C} \setminus \mathbb{R}$$
 and $z + \frac{1}{z} \epsilon R$, then $|z|$ is

9) If
$$(1+i)(1+2i)(1+3i)...(1+ni) = x + iy$$
, then $2 \cdot 5 \cdot 10...(1+n^2)$ is

(a) 1 (b) i (c)
$$x^2+y^2$$
 (d) $1+n^2$

10) If
$$\omega \neq 1$$
 is a cubic root of unity and $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix}$ = 3k, then k is equal to

(a) 1 (b) -1 (c)
$$\sqrt{3i}$$
 (d) $-\sqrt{3i}$

II.ANSWER ANY 5 QUESTION

 $5 \times 2 = 10$

Evaluate the following if
$$z = 5-2i$$
 and $w = -1+3i$
 $z - iw$

12) Find the following
$$\left|\overline{(1+i)}(2+3i)(4i-3)\right|$$

- 13) Find the modulus of $\frac{1-i}{3+i} + \frac{4i}{5}$
- 14) Find the following $\left|\frac{2+i}{-1+2i}\right|$

III. ANSWER ANY 3 QUESTION

 $5 \times 3 = 15$

- The complex numbers u, v, and w are related by $\frac{1}{u} = \frac{1}{v} + \frac{1}{w}$ If v = 3-4i and w = 4+3i, find u in rectangular form.
- 16) If $z_1 = 3$, $z_2 = -7i$, and $z_3 = 5 + 4i$, show that $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$
- If $\omega \neq 1$ is a cube root of unity, then the show that $\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}+\frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2}=-1$
- For any two complex number z_1 and z_2 such that $|z_1| = |z_2| = 1$ and $z_1z_2 \neq -1$, then show that $\frac{z_1+z_2}{1+z_1z_2}$ is real number.
- 19) If $(x_1 + iy_1)(x_2 + iy_2)(x_3 + iy_3)...(x_n + iy_n) = a + ib$, show that $\sum_{r=1}^{n} tan^{-1} \left(\frac{y_r}{x_r}\right) = tan^{-1} \left(\frac{b}{a}\right) + 2k\pi, k\epsilon Z$
- Show that the following equations represent a circle, and, find its centre and radius |3z-6+12i| = 8

IV. ANSWER ANY 3 QUESTION

 $3 \times 5 = 15$

- If z = x + iy is a complex number such that $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = 0$ show that the locus of z is $2x^2 + 2y^2 + x 2y = 0$
- 22) If $\frac{1+z}{1-z}=cos2\theta+isin2\theta$, show that z = i $tan\theta$
- Show that $\left(\frac{19+9i}{5-3i}\right)^{15}-\left(\frac{8+i}{1+2i}\right)^{15}$ is purely imaginary.
- If $\omega \neq 1$ is a cube root of unity, show that the roots of the equation $(z-1)^3 + 8 = 0$ are $-1, 1 2\omega, 1 2\omega^2$.
- 25) Find the cube roots of unity.

All The Best
