Sri Raghavendra Tuition Center

Slip test 14 - Unit 2.1 to 2.4, 12.2

12th Standard

Maths

	Date:	18-May-24
Reg.No.:		

TEACHER NAME: P. DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

APPLICATION NAME: ARCHANGEL PHONE NUMBER: 9944249262

ONLINE / OFFLINE CLASSES AVAILABLE TRICHY(DT), THOTTIYAM(TK), 621207

Exam Time: 01:30:00 Hrs

Total Marks: 50

 $10 \times 1 = 10$

I. Answer all questions

- 1) Which one of the following is a binary operation on N?
 - (a) Subtraction (b) Multiplication (c) Division (d) All the above
- 2) A binary operation on a set S is a function from
 - (a) $S \rightarrow S$ (b) $(SxS) \rightarrow S$ (c) $S \rightarrow (SxS)$ (d) $(SxS) \rightarrow (SxS)$
- Which one of the following statements has the truth value T?
 - (a) sin x is an even function (b) Every square matrix is non-singular
 - (c) The product of complex number and its conjugate is purely imaginary
 - (d) $\sqrt{5}$ is an irrational number
- 4) The operation * defined by $a*b = \frac{ab}{7}$ is not a binary operation on
 - (a) Q^+ (b) Z (c) R (d) C
- Which one is the contrapositive of the statement (pVq) \rightarrow r?
 - (a) $\neg r \rightarrow (\neg p \land \neg q)$ (b) $\neg r \rightarrow (p \lor q)$ (c) $r \rightarrow (p \land q)$ (d) $p \rightarrow (q \lor r)$
- 6) If a compound statement involves 3 simple statements, then the number of rows in the truth table is
 - (a) 9 (b) 8 (c) 6 (d) 3
- 7) $\begin{array}{c|c} p & q & (p \land q) \longrightarrow \neg q \\ \hline T & T & (a) \\ \hline T & F & (b) \\ \hline F & T & (c) \\ \hline F & F & (d) \\ \end{array}$

Which one of the following is correct for the truth value of $(p \land q) \rightarrow \neg p$?

(a)	(b)	(c)	(d)
(a) (b) (c) (d)	(a) (b) (c) (d)	(a)(b)(c)(d)	(a) (b) (c) (d)
TTTT	FTTT	FFTT	TTF

- In the last column of the truth table for $\neg (p \lor \neg q)$ the number of final outcomes of the truth value 'F' are
 - (a) 1 (b) 2 (c) 3 (d) 4

- 9) Which one of the following is not true?
 - (a) Negation of a negation of a statement is the statement itself
 - (b) If the last column of the truth table contains only T then it is a tautology.
 - (c) If the last column of its truth table contains only F then it is a contradiction
 - (d) If p and q are any two statements then $p \leftrightarrow q$ is a tautology.
- 10) The proposition $p \land (\neg p \lor q)$ is
 - (a) a tautology (b) a contradiction (c) logically equivalent to p \(\Lambda \) (d) logically equivalent to p \(\Lambda \) q

II. Answer any 5 question

 $5 \times 2 = 10$

- 11) If $z_i = 2-i$ and $z_2 = -4+3i$, find the inverse of z_1z_2 and $\frac{z_1}{z_2}$
- Show that the equation $z^2 = \bar{z}$ has four solutions.
- Find the square roots of 4+3i
- Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two boolean matrices of the same type. Find AvB and A \land B.
- How many rows are needed for following statement formulae? $p \lor \neg t \land (p \lor \neg s)$
- How many rows are needed for following statement formulae? $((p \land q) \lor (\neg r \lor \neg s)) \land (\neg t \land v))$
- Construct the truth table for the following statements. $\neg p \land \neg q$
- Construct the truth table for the following statements $\neg (p \land \neg q)$
- Construct the truth table for the following statements. ($p \ V \ q) \ V \ \neg q$

III. Answer any 5 questions

 $5 \times 3 = 15$

- Show that the following equations represent a circle, and find its centre and radius |z-2-i|=3
- 21) If $2cos\alpha=x+rac{1}{x}$ and $2cos\ \beta=y+rac{1}{y}$, show that $x^my^n+rac{1}{x^my^n}=2cos(m\alpha+n\beta)$
- Construct the truth table for $(p\ \overline{\lor}\ q) \land (p\ \overline{\lor}\ \neg q)$
- 23) Prove that $q \rightarrow p = \neg p \rightarrow \neg q$
- Establish the equivalence property connecting the bi-conditional with conditional: $p \leftrightarrow q \equiv (p \rightarrow q)$ $\land (q \rightarrow p)$
- 25) Show that $\neg(p\leftrightarrow q) = p\leftrightarrow \neg q$

Any 3 Question

 $3 \times 5 = 15$

- If the area of the triangle formed by the vertices z, iz and z + iz is 50 square units, find the value of |z|
- 27) Prove $p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$ without using truth table.
- 28) Show that $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
- 29) Prove that $p \rightarrow (\neg q \ V \ r) = \neg p V(\neg q V r)$ using truth table.
- 30) Show that $\neg(p \rightarrow q) \equiv p \land \neg q$

All the best

MAN SALAS SALALINA SALAS SALAS

