www.Padasalai.Net

T.Vediyappan.,M.Sc.,B.Ed.,M.Phil.,

www.Trb Tnpsc.Com

Old Syllabus book back, creative and year questions

I. ELECTROSTATICS

One Mark Questions : Book Back Questions:

A glass rod rubbed with silk acquires a charge of 8×10^{-12} C. The number of 1. electrons it has gained or lost a) 5 x 10⁻⁷ (gained) b) 5 x 10⁷ (lost) c) 2 x 10⁻⁸ (lost) d) -8 x 10⁻¹² (lost) The electrostatic force between two point charges kept at a distance d apart, in 2. a medium ε_r = 6, is 0.3 N. The force between them at the same separation in vacuum is d) 2 N a) 20 N b) 0.5 N c) 1.8 N Electric field intensity is 400 Vm⁻¹ at a distance of 2 m from a point charge. It 3. will be 100 V m⁻¹ at a distance? (**P** Y) a) 50 cm b) 4 cm c) 4 m d) 1.5 m Two point charges +4q and +q are placed 30 cm apart. At what point on the 4. line joining them the electric field is zero? a) 15 cm from the charge q b) 7.5 cm from the charge q \mathbf{d} 5 cm from the charge q c) 20 cm from the charge 4q A dipole is placed in a uniform electric field with its axis parallel to the field. 5. It experiences (**P**Y) a) only a net force b) only a torque c) both a net force and torque d) neither a net force nor a torque If a point lies at a distance x from the midpoint of the dipole, the electric 6. potential at this point is proportional to (PY) a) 1/x² b) $1/x^{3}$ c) $1/x^4$ d) $1/x^{3/2}$ Four charges +q, +q,-q and -q respectively are placed at the corners A, B, C 7. and D of a square of side a. The electric potential at the centre O of the square is (PY) a) $\frac{1}{4\pi\varepsilon_a} \frac{q}{a}$ b) $\frac{1}{4\pi\varepsilon_a} \frac{2q}{a}$ c) $\frac{1}{4\pi\varepsilon_a} \frac{4q}{a}$ d) zero 8. Electric potential energy (U) of two point charges is (PY) b) $\frac{q_1q_2}{4\pi\varepsilon_2 r}$ a) $\frac{q_1q_2}{4\pi\epsilon_0 r^2}$ c) pE cos θ d) pE sin θ

人

9.	The work done in moving 500 μ C charge between two points on equi potential				
	surface is (P Y)				
	a) zero		b) finite positive		
	c) finite negative		d) infinite		
10.	Which of the follo	wing quantities is s	scalar? (P Y)		
	a) Dipole moment		b) electric force	• • • • • • • • • • • •	
	c) electric field		d) electric potent	ial	
11.	The unit of permi	ttivity is (P Y)			
	a) C ² N ⁻¹ m ⁻²	b) Nm ² C ⁻²	c) Hm ⁻¹	d) N C ⁻² m ⁻²	
12.	The number of ele	ectric lines of force	originating from a c	harge of 1 C is (PY)	
	a) 1.129 x 10 ¹¹		b) 1.6 x 10 ⁻¹⁹		
	c) 6.25 x 10 ¹⁸		d) 8.85 x 10 ¹²		
13.	The electric field o	outside the plates of	two oppositely cha	rged plane sheets of	
	charge density σ is (P Y)				
	a) $\frac{+\sigma}{2\varepsilon_o}$	b) $\frac{-\sigma}{2\varepsilon_o}$	c) $\frac{\sigma}{\varepsilon_o}$	d) zero	
14.	The capacitance o	f a parallel plate cap	pacitor increases fro	m 5 µF to 60 µF when	
	dielectric is filled	between the plates	. The dielectric cons	stant of the dielectric	
	is (P Y)				
	a) 65	b) 5 🔨	c) 12	d) 10	
15.	A hallow metal ba	all carrying an elect	tric charge produces	s no electric field at a	
	point (PY)				
	a) outside the sph	ere	b) on its surface		
	c) inside the sphe	ere	d) at a distance more than twice		
	Previous Year	Questions :			
16.	Which one of the:	following is not a d	ielectric?		
	a) Ebonite	b) Mica	c) oil	d) Gold	
17. 🗸	An example of con	nductor is (P Y)			
	a) glass	b) human body	c) dry wood	d) ebonite	
18.	Quantization of e	lectric charges is gi	ven by		
	a) q = ne	b) $q = cV$	c) $q = \frac{e}{n}$	d) q = $\frac{c}{V}$	
19.	The law that gove	rns the force betwe	en electric charges i	IS	
	a) Ampere's law		b) Faraday's law		
	c) Coulomb's law		d) Ohm's law		

20. The value of permittivity of free space is a) 8.854 x 10¹² C²N⁻¹m⁻² b) 9 x 10⁹ C²N⁻¹m⁻² d) $\frac{1}{4\pi \sqrt{9} \times 10^9}$ C²N⁻¹ m⁻² c) $\frac{1}{0 \times 10^9}$ C²N⁻¹m⁻² The Repulsive force between two like charges of 1 coulumb was separated 21. by distance of 1m in vacuum is equal to a) 9×10^9 N b) $10^9 N$ c) $9 \times 10^{-9} N$ d) 9 N What must be the distance two equal and opposite point charges (say + q and - q)22. for the electrostatic force between them to have a magnitude of 16N? 4k metre **b)** $\frac{q}{4}\sqrt{k}$ *metre* c) 4kq metre a) $4\sqrt{kq}$ metre The unit of relative permittivity is _____ 23. d) NC⁻² m^{-2} a) $c^2 N^{-1} m^{-2}$ c) No unit b) Nm^2C^{-2} The value of relative permittivity of air is _ 24. b) 9 x 10⁹ N⁻¹m⁻² d) 8.854 x 1012 a) 8.854 x 10⁻¹² C²N⁻¹m² c) 1 25. The unit of electric field intensity is b) CN⁻¹ c) VC⁻¹ d) NC⁻¹ a) Vm The magnitude of the force acting on a charge of 2x10⁻¹⁰ C placed in a uniform 26. electric field 10 Vm⁻¹ is b) 4 x 10⁻⁹ N c) 2 x 10⁻¹⁰ N d) $4 \times 10^{-10} N$ a) 2 x 10⁻⁹ N 27. The intensity of electric field at a point is equal to a) the force experienced by a charge q b) the work done in bringing unit positive charge form infinity to that point c) the positive gradient of the potential d) the negative gradient of the potential 28. The intensity of the electric field that produces a force of 10⁻⁵N on a charge of 5 μ C is a) 5 x 10⁻¹¹ NC⁻¹ b) 50 NC⁻¹ c) 2 NC⁻¹ d) 0.5 NC⁻¹ Two point charges +q and -q are placed at points A and B respectively separated 29. by a small distance. The electric field intensity at the midpoint a) is zero b) acts along AB d) acts perpendicular to AB c) acts along BA The number of electric lines of force originating from a charge of micro 30. coulomb is a) 1.129 x 10⁵ b) 1.6 x 10⁻¹⁹ c) 6.25 x 10¹⁸ d) 8.85 x 10⁻¹²

Vetri Vikaas

31. The unit of electric dipole moment is (PY) b) coulomb / metre $\left|\frac{C}{m}\right|$ a) volt / metre $\left|\frac{v}{m}\right|$ c) volt metre (Vm) d) coulomb metre (Cm) The direction of electric field at a point on the equatorial line due to an electric 32. dipole is a) alone the equatorial line towards the dipole b) alone the equatorial line away from the dipole c) parallel to the axis of the dipole and opposite to the direction of the dipole moment d) parallel to the axis of the dipole and in the direction of the dipole moment Torque on a dipole in a uniform electric field is maximum when angle 33. between \vec{P} and \vec{E} is a) 0° d) 180° b) 90° c) 45° An electric dipole is placed in a non-uniform electric field with its 34. experiences ____ b) only torque a) only a net force d) Neither a net force and a torque c) both a net force and torque The torque (τ) experienced by an electric dipole placed in a uniform electric 35. Field (E) at an angle θ with the field is a) PE $\cos \theta$ b) -PE $\cos \theta$ c) PE sin θ d) 2PE sin θ An electric dipole of moment is placed in a uniform electric field of intensity 36. at an angle with respect to the field. The direction of the torque is a) along the direction of b) opposite to the direction of c) along the direction of d) perpendicular to the plane containing \overrightarrow{P} and \overrightarrow{E} Electric potential energy of an electric dipole in an electric field is given as 37. a) pE sin θ c) -pE cos θ b) -pE sin θ d) pE cos θ When an electric dipole of dipole moment P is aligned parallel to the electric 38. field E then the potential energy of the dipole is given as _____ a) PE c) - PE d) PE /2 b) zero An electric dipole of dipole moment ' P ' is kept parallel to an electric field of 39. intensity "E". The work done in rotating the dipole through an angle of 90° is b) -pE a) zero c) pE d) 2pE

40.	The work done in moving $4 \mu C$ charge from one point to another in an electric field is 0.012 J. The potential difference between them is			
	a) 3000 V	b) 6000 V	c) 30 V	d) 48 x 10 ³ V
41.	When a point cha	arge of a $6 \mu\mathrm{C}$ is m	oved between two	points in an electric
	Field the work d	one is 1.8 x 10 ⁻⁵ J.	The potential diffe	erence between the
	two points is			
	a) 1.08 V	b) 1.08V	c) 3 V	d) 30 V
42.	The negative grad	ient of potential is		
	a) electric force		b) torque	
	c) electric current		d) electric field ir	ntensity
43.	On moving a char	rge of 20 C by 2 cm	, 2 J of work is don	e, then the potential
	difference betwee	n the points is		
	a) 0.5 V	b) 0.1 V	c) 8 V	d) 2 V
44.	The ratio of elect of an electric dipo	tric potential at po le along its axial lin	oint 10 cm and 20 ie is	cm from the centre
	a) 1 : 2	b) 2 : 1	c) 1 : 4	d) 4 : 1
45.	The potential ener	rgy of two equal po	int charges of mag	nitude 2 μ C placed
	1 m apart in air is			
	a) 2 J	b) 0.36 J	c) 4 J	d) 0.036 J
46.	The unit of electric	c flux is		
	a) Nm ² C ⁻¹	b) Nm ⁻² C ⁻¹	c) Nm ² C	d) Nm ⁻² C
47.	The unit of the nur	mber of electric line	s of force passing th	rough a given area is
	a) no unit	b) NC ⁻¹	c) Nm ² C ⁻¹	d) Nm
48.	The electric field in	ntensity at a distanc	e r due to infinitely l	ong straight charged
	wire is directly pr	oportional to		
	a) r	b) $\frac{1}{r}$	c) r ²	d) $\frac{1}{r^2}$
49. 🔨	The electric field in	tensity at a short dis	stance r from a unifo	rmly charged infinite
	plane sheet of cha	rge is		5 0
•	a) proportional to	r	b) proportional to	1/r
	c) proportional to	$1/r^{2}$	d) independent of	fr
50.	The electric field in charge density is	nside the plates of t	wo oppositely charg	ged plane sheels of
	a) $+\frac{\sigma}{2\varepsilon_0}$	b) $\frac{\sigma}{2\epsilon_0}$	c) $\frac{\sigma}{\epsilon_0}$	d) zero

- 6 -

60. A capacitor of capacitance 6 μ F is connected to a 100 V battery. The energy stored in the capacitor is a) 30J b) 3J c) 0.03J d) 0.06J A dielectric medium is placed in an electric field E0. The field induced inside 61. the medium is a) acts in the direction of electric field E_0 b) acts opposite to E_0 c) acts perpendicular to E_0 d) is zero A non-polar dielectric is placed in an electric field (E). Its induced 62. dipole moment a) zero b) acts in the direction of E c) acts opposite to the direction of E d) acts perpendicular to E The principle used in lighting conductor is (PY) 63. a) corona discharge b) mutual induction c) self-induction d) electromagnetic induction Van de Graaff generator works on the principle of 64. a) electromagnetic induction and action of points b) electrostatic induction and action of points c) electrostatic induction only d) action of points only Point charges +q, +q, -q and -q are placed at the corners A, B, C and D 65. respectively of a square. O is the point of intersection of the diagonals AC and BD. The resultant electric field intensity at the point O: a) acts in a direction parallel to AB b) acts in a direction parallel to BC c) acts in a direction parallel to CD d) is zero Two point charges $+ q_1$ and $+ q_2$ are placed in air at a distance of 2 m apart. One of thecharges is moved towards the other through a distance of 1 m. The work done is : b) $\frac{2q_1q_2}{4\pi\epsilon_0}$ c) $\frac{\mathbf{q}_1 \mathbf{q}_2}{8\pi\varepsilon_0}$ a) $\frac{q_1q_2}{4\pi\varepsilon_0}$ d) $\frac{q_1q_2}{16\pi\epsilon_0}$

d) $C^{-1}m^2V$

- 67. The unit of molecular polarisability is : a) $C^2 N^{-1} m$ b) $Nm^2 C^{-1}$ c) $N^{-1} m^{-2} C^2$
- 68. The capacitance 0.5 μF and 0.75 μF are connected in parallel. The effective capacitance of the capacitors are a) 0.80 μF b) 0.70 μF c) 0.25 μF d) **1.25** μF
- 69. The equipotential surface of an electric dipole isa) Sphere whose centre coincides with the centre of the electric dipole
 - b) A plane surface inclined at an angle 45° with the axis of the electric dipole
 - c) A plane surface passing through the centre of the electric dipole and perpendicular to the axis of the electric dipole
 - d) any plane surface parallel to the axis of the electric dipole
- 70. A and B are two hollow metal spheres of radii 50 cm and 1m respectively. They are connected externally by a connecting wire. Now the charge flows from
 - a) A to B till the charges become equal

b) A to B till the potentials become equal

- c) B to A till the changes become equal
- d) B to A till the potentials become equal
- 71. When a dielectric slab is introduced between the plates of a charged parallel plate capacitor, its
 - a) potential increases **b) electricfield decreases**
 - c) charge increases
- d) capacitance decreases
- 72. The force between two charges situated in a medium of permittivity ε is a) $\frac{\varepsilon}{4\pi} \frac{q_1 q_2}{r^2}$ b) $9x10^9 \varepsilon_r \frac{q_1 q_2}{r^2}$ c) $9x10^9 \frac{q_1 q_2}{r^2}$ d) $\frac{9x10^9}{\varepsilon_r} \frac{q_1 q_2}{r^2}$
- 73. The work done in moving 6 μ C charge between two points is 1.2 x 10⁻⁵ J. Find the potential difference between two points
 - a) 6 V (b) 2 V c) 12 V d) 72 V

PTA Objective Questions:

- 1. If two charged bodies of charges +2q and -5q are brought in contact, the total charge of the system is
- a) +3q b) -3q c) zero d) either +2q or -3qThe unit of electric field intensity is a) NC⁻¹ b) $N^{-1}C^2m^{-2}$ d) Volt c) Cm 3. SI unit of electric charge is b) ampere second c) voltsecond a) coulomb d) all the above ohm Which one of the following is an insulator? 4.
 - 4. Which one of the following is an insulator?
 a) human body
 b) earth
 c) copper
 d) ebonite

- 9 -

19. According to Gauss law

	a) $\varphi = \frac{q}{\epsilon_0}$	b) $\phi = \varepsilon_0 + q$	c) $q = \frac{\phi}{\varepsilon_0}$	d) $q = \frac{\varepsilon_0}{\phi}$	
20	A lighting cond	luctor works on the	principle of	,	
20.	a) corona disch	aroe	b) action of sh	arp points	
	c) (a) or (b)		d) none	mp points	
21	A device not w	orking with the priv	nciple of electrost	actic induction is	
21,	a) Vande Graff	generator	b) microwave	oven	
	c) lightning arr	estor	d) a (or) b		
22	When two capa	citors are connected	d in series to a sou	rce of emf then each one	
<i></i> ,	of them will ha	ve same		ree of entry men each one	
	a) voltage		b) electric fiel	d	
	c) both (a) & (b))	d) charge		
23	A dipole is plac	, ced in a uniform ele	ectric field with its	axis parallel to the field	
_0.	it experiences			pulling pulliner to the field	
	a) net force onl	V	b) torque only	T	
	c) both net forc	e and torque	d) neither a n	et force nor a torque	
24.	If a point lies a	at a distance x fron	the mid point o	of the dipole, the electric	
	potential at this point is proportional to				
	1	1		1	
	a) $\frac{1}{-2}$	b) $\frac{1}{3}$	c) $\frac{1}{4}$	d) $\overline{3/2}$	
25.	Four charges	$+q$, $+q$, $x^{-}q$ and $-q$,	respectively are	e placed $x_{at}^{\chi/2}$ the corners	
	A, B, C and D	of a square of side	'a'. The electric p	otential at the centre 'O'	
	of the square is				
	$\frac{q}{}$	2q	$\frac{4q}{2}$	(L	
	a) $4\pi\varepsilon_0 a$	^{by} 4πε ₀ a	^{C)} 4πε ₀ a	a) zero	
26.	Workdone in r	noving 500 μC cha	arge between two	points on equipotential	
	surface is	0 1	0		
	a) zero	b) finite positiv	ve c) finite negat	ive d) infinite	
27.	Which of the fo	ollowing quantity is	scalar?	,	
	a) dipole mome	ent	b) electric for	ce	
	c) electric field		d) electric po	tential	
28,	SI unit of perm	ittivity is	, 1		
7	a) $C^2 N^{-1} m^{-2}$	b) N m ² C ⁻²	c) H m ⁻¹	d) N C ⁻² m ⁻²	
29.	Electric field ou	tside the plates of tw	o oppositely charg	ged plane sheets of charge	
	density σ is	I		. 0	
	uclisity 0 15				
	σ	$-\sigma$	σ		

30.	A hollow metal ball carrying an electric charge produces no electric field at			
	points			
	a) outside the sphere	b) on its surface		
	c) inside the sphere	d) at a distance r	nore than twice	
31.	If the medium between two	charges is replaced by air, t	hen the force between	
	them			
22	a) increase b) decre	eases c) becomes zero	d)remains constent	
32.	The electric potential energy	y of a system of two charges	s is given by	
	a) $\frac{q_1 q_2}{1 q_2}$ b) $\frac{q_1 q}{1 q_2}$	$\frac{2}{2}$ (c) $\frac{q_1 q_2}{2}$	d) $\frac{q_{I}q_{I}}{q_{I}}$	
	$9x10^9r$ $9x10^9r$ $4\pi\varepsilon$	$r = \frac{c}{9x10^9}r^2$	$4\pi\varepsilon_0 r_2$	
33.	An electric dipole consists	of two		
	a) like and equal charges	b) like and unequ	ual charges	
	c) Unlike and equal charge	es d) Unlike and ur	nequal charges	
34.	If a Gaussian surface encl	oses a dipole of moment 20	qd, then the total flux	
	through the surface is			
	<i>q 2q</i>	q	1) 0	
	a) $\frac{1}{\varepsilon_0}$ b) $\frac{1}{\varepsilon_0}$	c) $\overline{2\varepsilon_0}$	d) 0	
35.	'Action of points' is used in			
	a) dynamo	b) lightning conc	ductor	
	c) vande graff generator	d) both (b) & (c)		
36.	When air medium in capac	itor is replaced by a meduin	n of dielectric constant	
	ε_r , the capaciance			
	a) decreases ε_r times	b) remains the sr	nae	
	c) increases ε_r times	d) increased ε_r^2	times	
37.	An example for polar mole	cule		
	a) N ₂ b) H ₂	c) H ₂ O	d) O_2	
38.	A glass rod rubbed with si	lk acquires a charge of $+8 \text{ x}$	10 ⁻¹² C. The number of	
	electrons it has gained or lo	ost		
	a) 5×10^{-7} (gained) b) 5×10^{-7}	.0 ⁷ (lost) c) 2 x 10 ⁻⁸ (lost)	d) -8 x 10 ⁻¹² (lost)	
39.	Electrostatic force between	two point charges kept at a	distance d apart, in a	
	medium of $\varepsilon_{rr} = 6$ is 0.3 N.	The force between them at t	he same separation in	
K 4	vacuum is		I	
Y	a) 20N b) 0.5 N	c) 1.8 N	d) 2N	
40.	Electric field intensity is 40	, 0 Vm ⁻¹ at a distance of 2 m f	rom a point charge. It	
2 -	will be 100 Vm ⁻¹ at a distan	ce	1 0 0 0	
	a) 50 cm b) 4cm	c) 4 m	d) 1.5 m	

41.	41. Two point charges +4q and +q are placed 30 cm apart. At what point on the				
	line joining them, t	the electric field is z	zero?	1	
	a) 15 cm from the o	charge q	b) 7.5 cm from the	charge q	
	c) 20 cm from the	charge 4 q	d) 5 cm from the c	harge q	
42.	The number of elec	ctric lines of force c	originating from a c	harge of 1C is	
	a) 1.129 x 10 ¹¹	b) 1.6 x 10 ⁻¹⁹	c) 6.25×10^{18}	d) 8.85×10^{12}	
43.	The capacitance of	a parallel plate capa	acitor increases from	$15\mu F$ to $60\mu F$ when	
	a dielectric is filled	between the plate	s. The value of elect	tric constant is	
	a) 65	b) 55	c) 12	d) 10	
44.	Two charges 10 ⁻⁶	and 10 ⁻⁷ C repel ea	ach other with a fo	orce of 400 N. The	
	distance between t	he charges is			
	a) 0.15 mm	b) 1.5 mm	c) 15 mm	d) 1.5 m	
45.	The potential diffe	rence between two	parallel plates is 1	00 V and the electric	
	field between them	n is 10 ⁴ V/m. Then t	the distance betwee	n the plates.	
	a) 1 mm	b) 1 m	c) 10 cm	d) 1 cm	
46.	The plates of a par	callel plate capacito	or are separated by	a distance of 1 mm.	
If the capacitance is 8.854 μF , then the area of the plates is					
	a) 10 ⁻³ m ²	b) 10 m ²	c) $10^3 \mathrm{m}^2$	d) $10^2 m^2$	
47.	If a capacitor of ca	apacitance 55 PF is	s charged to 1.6 V,	then the number of	
	electrons on its neg	gative plate is 🛛 🛀	7		
	a) 55 x 10 ⁷	b) 5.5 x 10 ⁷	c) 550 x 10 ⁷	d) 0.55 x 10 ⁷	
48.	The workdone in	moving a charge	of 2 μC between	two points having	
	different potential	of 110 V and 220 V	' is		
	a) 22 x 10 ⁻⁴ J	b) 2.2 x 10 ⁴ J	c) 22 x 10 ⁺⁴ J	d) 2.2 x 10 ⁻⁴ J	
49.	Two charges + 4 C	and +1C are separ	ated by a distance o	of 3 m. To keep these	
	charges in equilibr	ium, a third charge	e is to be placed at	_	
	a) 2m from the cha	arge 4 C	b) 2 m from the ch	arge 1 C	
	c) 1.5 cm from the	charge 4 C	d) 2.5 m from the	charge 1 C	
50.	Equivalent capacit	ance of two capaci	tors when connecte	ed in parallel is 8 μF	
	and when conne	ected in series is	$15/8 \ \mu F$. Then	values of the two	
	capacitors are		·		
	a) $7 \mu F$ and $1 \mu F$	b) 6 μF and 2 μF	c) $4 \mu F$ and $4 \mu F$	d) 5 μF and 3 μF	
51.	Two capacitors of	capacitance 200 P	F and 600 PF are c	onnected in parallel	
\checkmark \prime	and then charged t	o a potential of 120	V. Then the value of	of the total charge on	
Y	the capacitors is	1		Ū.	
	a) 24 x 10 ⁻⁹ C	b) 96 x 10 ⁻⁹ C	c) 48 x 10 ⁻⁹ C	d) 72 x 10 ⁻⁹ C	
52.	The intensity of	the electric field	that produces a	force of 10N on a	
	charge of $5 C$ is		1		
	a) 2 NC ⁻¹	b) 50 NC ⁻¹	c) 5 NC ⁻¹	d) 0.5 NC ⁻¹	
	,	,	,	/	

53.	53. If two identical point charges separated by 3 m experience a force of 10 N				
	then the value of e	each charge is			
	a) 10 ⁻¹ C	b) 10 C	c) 1 C	d) 10 ⁻⁴ C	
54.	Two identical n	netal spheres ha	ave charges + 15	μC and +25 μC	
	and are separate	ed by a distance.	If the spheres are	first brought into	
	contact and then s	separated to the ori	iginal distance, then	the ratio of the	
	new force between	n them to the previ	ous force is		
	a) 15 : 16	b) 3 : 5	c) 16 : 15	d) 5 : 3	
55.	If the moment o	f an electric dipo	ole is 1.2 x 10 ⁻⁹ Cn	n and the distance	
	between the char	ges is 3 mm then th	e charge of the dipo	leis	
	a) 3.6 <i>µ</i> C	b) 40 μC	c) 3.6 x 10 ⁻¹² C	d) 0.4 µC	
56.	A parallel pla	te capacitor co	nsists of two c	ircular plates of	
	radius 3 cm sepa	rated by a dielec	tric material of thi	ckness 0.5 mm and	
	dielectric constan	t $\varepsilon_r = 4$. Then the c	capacitance of the ca	pacitor is	
	a) 50 PF	b) 200 PF	c) 2 PF	d) 0.5 PF	
57.	A parallel plate	e capacitor conn	ected to a 12 V	source is charged	
	to 21 μC If the	capacitor is filled	l with an oil of di	electric constant 3,	
	then the charge st	ored is			
-0	a) 7 μC	b) 63 µC	\sim 14 μ C	d) 57 μC	
58.	The equivalent of	apacitance of two	capacitors in seri	les is 1.5 μ F. The	
	capacitance of one 2	e of them is 4 μ F.	The value of capacit	ance of other is $D = 4.17 \dots E$	
FO	a) 2.4 μF	D = U = U = U = U = U = U = U = U = U =	C) 0.417 μF	D) 4.17 μF	
59.	charges on each of	μ	<i>l</i> F are in parallel act	toss 5 v supply. The	
	(1) (2)	suc	b) $10 \text{ mC} 25 \text{ mC} 1$	5.11	
	a) $12 \mu C$, $30 \mu C$,		d) $6\mu C$, $25\mu C$, 3	uC	
60	In the electric cir	cuit given below	capacitance of eacl	h capacitor is $1 \mu F$	
00.	The effective capa	citance between th	e points P and O is ($(in \mu F)$	
	ine checure cup			(iii pu)	
~ [•]			ō		
Y	2	6	5	5	
	a) <u>-</u>	b) $\frac{-}{5}$	c) $\overline{6}$	d) $\frac{1}{2}$	
61.	If the distance bet	ween two protons	in uranium atom is	$9 \ge 10^{-15}$ m, then the	
	r				

mutual electric potential energy between them is

a) 9 x 10⁻¹⁴ J b) 1.44 x 10⁻¹⁵J c) 2.56 x 10⁻¹⁴ J d) 1.6 x 10⁻⁵ J Three Mark Questions: Book Back Questions :

- 1. State Coulomb's law in electrostatics and represent it in vector form. (**P**Y)
- 2. What is permittivity and relative permittivity? How are they related?
- 3. What is electric dipole? Define electric dipole moment. (PY)
- 4. What does an electric dipole experience when kept in a uniform electric field and non uniform electric field.
- 5. Distinguish between electric potential and potential difference.
- 6. What is an equipotential surface? Give the examples.
- 7. Define electric flux. Give its unit. (PY)
- 8. State and principle of superposition of charges.
- 9. Define electric field at a point. Give its unit.
- 10. State Gauss's law. (PY)
- 11. What is a capacitor? Define its capacitance. (**P**Y)
- 12. What is meant by dielectric polarization? (PY)
- 13. Why is it safer to be inside a car than standing under a tree during lightning? (PY)
- 14. What is polar molecule? Give any two example. (P Y) Previous Year Questions :
- 15. What you meant by "Additive nature of charge"? Give an example.
- 16. Define one 'Coulomb' on the basis of Coulomb's law.
- 17. Mention any three properties of electric lines of force.
- 18. Define electric potential at a point.
- 19. Explain the working of a microwave oven.
- 20. What is electrostatic shielding?
- 21. Write the application of capacitor.
- 22. What is non-polar molecule? Give example.
- 23. What is carona discharge? What are its advantages?
- 24. Three capacitors each of capacitance 9 pF are connected in series. What is the total capacitance of the combination? **(Eg)**
- 25. Calculate the potential at a point due to a charge of 4 x 10⁻⁷C located at 0.09 m away from it.

6. Calculate the effective capacitance of the combination as shown in the figure:

- 27. A sample of HCl gas is placed in an electric field of $2.5 \times 10^4 \text{ NC}^{-1}$. The dipole moment of each HCl molecule is 3.4×10^{-30} Cm. Find the maximum torque that can act on a molecule.
- 28. An infinite line charge produces a field of 9 x 10⁴ NC ⁻¹ at a distance of 2 cm. Calculate the linear charge density.
 Five Mark Questions:

Book Back Questions :

- 1. Explain the principle of superposition.
- 2. Write the properties of electric lines of forces. (**P**Y)
- 3. Define electric field at a point. Give its unit and obtain an expression for the electric field at a point due to a point charge .
- 4. Derive an expression for torque acting on the electric dipole when placed in a uniform field. (P Y)
- 5. Define electric potential at a point. Is it a Scalar or Vector? Obtain an expression for electric potential due to a point charge. (**P Y**)
- 6. What is electrostatic potential energy of a system of two point charges? Deduce an expression for it. **(P Y)**
- 7. What is capacitor? Explain the principle of capacitor.
- 8. A parallel plate capacitor is connected to a battery. If the dielectric slab of thickness equal to half the plate separation is inserted between the plates what happens to (i) capacitance of the capacitor (ii) electric field between the plates (iii) potential difference between the plates.
- 9. Prove that the energy stored in a parallel plate capacitor is $q^2/2C$. (**P** Y)

Previous Year Questions :

- 10. What is a capacitor? Explain the principle of a capacitor.
- 11. Deduce an expression for the capacitance of a parallel plate capacitor.
- 12. Two positive charges of 12 μ C and 8 C respectively are 10 cm apart. Find the work done in bringing them 4 cm closer, so that are 6 cm apart. **(Ex)**
- 13. A square of side 1.3m has charges +12 nC, -24 nC, +31 nC and +17 nC at its corners. Calculate the electric potential at the centre of the square. **(Eg)**
- 14. A parallel plate capacitor has plates of area 200 cm² and separation between the plates is 1mm. Calculate i) the potential difference between the plates is 1 nC charge is given to the capacitor. ii) With the same charge (1 nC) if the plate separation is increased to 2mm, what is the new potential difference and iii) the electric field between the plates? **(Eg)**

- 15. Three capacitors each of capacitance 9 pF are connected in series. i) What is the total capacitance of the combination? ii) What is the potential difference across each capacitor if the combination is connected to 120 V supply? **(Ex)**
- 16. Two capacitors of capacitances capacitors 0.5 F and 0.75 F are connected in parallel and the combination to a 110 V battery. Calculate the charge from the source and charge on each capacitor. **(Ex)**
- 17. Two capacitors of unknown capacitances are connected in series, and parallel. If the net capacitances in the two combinations are 6 F and 25 F respectively, find their capacitances. **(Ex)**
- 18. A plates of a parallel capacitor have an area of 90 cm² and each separated by 2.5 mm. The capacitor is charged by connecting it to a 400 V supply. How much electrostatic energy is stored by the capacitor? **(Eg)**
- 19. Three charges -2 x 10⁻⁹ C, +3 x 10⁻⁹ C and -4 x 10⁻⁹ C are placed at the vertices of an of an equilateral triangle ABC of side 20 cm, calculate the work done in shifting the charges from A, B and C to A₁, B₁ and C₁ respectively. Which are the mid-points of the sides of triangles?

Ten Mark Questions:

Book Back Questions : Derive an expression for electric field due to

- 1. Derive an expression for electric field due to an electric dipole at a point on its axial line (**P Y**)
- 2. Derive an expression for electric field due to an electric dipole at a point along the equatorial line. **(P Y)**
- 3. Derive an expression for electric potential due to an electric dipole. Discuss the special cases. (**P** Y)
- 4. State Gauss's law. Applying this, calculate electric field due to an infinitely long straight charged wire with uniform charge density. (P Y)
 (ii) an infinite plane sheet of charge of q.
- 5. Explain the principle of capacitor. Deduce an expression for the capacitance of the parallel plate capacitor. (**P Y**)
- 6. What is dielectric? Explain the effect of introducing a dielectric slab between the plates of parallel plate capacitor.
- 7. Deduce an expression for the equivalent capacitance of capacitors connected in series and parallel. **(P Y)**
- 8. State the principle and explain the construction and working of Vande Graaff generator. **(P Y)**

II. CURRENT ELECTRICITY

One Mark Questions Book Back Questions : A charge of 60 C passes through an electric lamp in 2 minutes. Then the current 1. in the lamp is a) 30A b) 1A c) 0.5A d) 5A The material through which electric charge can flow easily is (**P Y**) 2. c) germanium b) mica d) copper a) quartz 3. The current flowing in a conductor is proportional to a) drift velocity b) 1/ area of cross section c) 1/ no of electrons d) square of area of cross section A toaster operating at 240 V has a resistance of 120 Ω . The power is (**P Y**) 4. c) 480W a) 400 W b) 2W d) 240 W 5. If the length of a copper wire has a certain resistance R, then on doubling the length its specific resistance (**P Y**) b) will become $1/4^{th}$ a) will be doubled d)will remain the same c) will become 4 times 6. When two 2 Ω resistance are in parallel, the effective resistance is (**P Y**) b) 4 Ω (1Ω) d) 0.5 Ω a) 2 Ω In the case of insulators, as the temperature decreases, resistivity (PY) 7. a) decreases b) increases c) remain constant d) becomes zero If the resistance of the coil is 2 Ω at 0°C and α = 0.004/°C, then its resistance at 8. 100° C is b) 0Ω c) 4 Ω a) 1.4 Ω d) 2.8 Ω According to Faraday's law of electrolysis, when a current is passed, the mass 9. of ion deposited at the cathode is independent of b) charge a) Current c) time d) resistance When n resistors of equal resistances (R) are connected in series, the effective 10. resistance is (PY) a) n/R c) 1/nRb) R/nd) nR **Previous Year Questions :** The relation between current and drift velocity is 11. a) $I = \frac{nAV_d}{c}$ **b)** I = nAV_de c) $I = \frac{neV_d}{A}$ d) $I = nAV_dE$

When the diameter of a conductor is doubled, its resistance 12. a) decreases twice b) decreases four times c) decreases sixteen times d) increases four times The electrical resistivity of a thin copper wire and a thick copper rod are 13. respectively . $\rho_1 \Omega m$ and $\rho_2 \Omega m$ Then b) $\rho_2 > \rho_1$ c) $\rho_1 = \rho_2$ d) $\frac{\rho_1}{\rho_2} = \alpha$ a) $\rho_1 > \rho_2$ 14. The unit of conductivity is d) mho- m^{-1} a) mho b) ohm c) ohm-m In the case of insulators, as the temperature increase, resistivity 15. d) becomes zero b) increases a) decrease c) remains constant 16. The transition temperature of mercury is c) 2.4°C d) 2.4K b) 4.2 K a) 4.2°C The colour code on a carbon resistor is red-red-black. The resistance of the 17. resistor is c) 220 Ω a) 2.2 Ω **b) 22** Ω d) 2.2 K Ω The brown ring at one end of a carbon resistor indicates a tolerance of 18. a) 1% b) 2% c) 5% d) 10% Resistance of a metal wire of length 10 cm is 2 Ω . If the wire is stretched 19. uniformly to 50 cm, then the resistance is c) 5 Ω a) 25 Ω b) 10 Ω d) 50 Ω When 'n' resistors of equal resistance (R) are connected in series and in parallel 20. respectively, then the ratio of their effective resistance is a) $1: n^2$ b) $n^2:1$ d) 1 : 1 c) n : 1 The resistance of a nichrome wire at 0° C is 10Ω . If its temperature co-efficient 21. of resistance is 0.004/°C, find its resistance at boiling point of water. b) 13 Ω a) 14 Ω c) 10 Ω d) 15 Ω A cell of emf 2.2 V sends a current of 0.2 A through a resistance of 22. 10 Ω . The internal resistance of the cell is a) 0.1 Ω **b) 1** Ω c) 2 Ω d) 1.33 Ω The resistance of the filament of a 110 W, 220 V electric blub is 23. a) 440 Ω b) 220 Ω c) 484 Ω d) 848 Ω The unit of electrochemical equivalent is b) $\frac{\text{kg}}{\text{ampere}}$ c) $\frac{\text{kg}}{\text{amperesec}}$ d) $\frac{\text{coulomb}}{\text{kg}}$ a) kg. coulomb

25. A graph is drawn taking potential difference across the ends of a conductor along X-axis and current through the conductor along the Y-axis. The slope of the straight line given :

8. The unit of mobility is a) $m^2 V^1 s^{-1}$ c) $m^{-2}V^{-1}S^{-1}$ b) $m^2 V^{-1} s^1$ d) $m^2 V^{-1} s^{-1}$ Drift velocity of electrons is proportional to 9. a) electric field intensity b) charge of protons c) area of the conductor d) none of these Drift velocity of electrons is of the order of 10. c) 0.1 m s⁻¹ a) 0.2 cm s⁻¹ b) 0.1 cm s⁻¹ d) 1 cm s⁻¹ 11. The unit of current density is a) A m⁻¹ b) $A m^2$ c) A m⁻² d) A m 12. The relation between current and drift velocity is a) I = nJeV₄ b) nI = AeV_d c) I = $nAeV_{d}$ d) I = neV_d Relation between current density and drift velocity is, 13. a) I = JneV_{d} b) $V_d = Jne$ c) V_d = neJA d) J = neV_d Expression for electric resistance (R) is, 14. d) $R = \frac{mLV}{nAe^2\tau}$ c) $R = \frac{nAe}{2}$ a) $\mathbf{R} = \frac{\mathbf{mL}}{\mathbf{nAe^2\tau}}$ b) $R = \frac{nL}{mAe^2\tau}$ Reciprocal of resistance is 15. b) conductivity c) inductance a) resistivity d) conductance 16. The unit of conductance is a) ohm b) mho c) mho ⁻¹ d) mho m⁻¹ The resistance of a conductor of unit length having unit area of cross 17. section is a) resistivity b) conductivity c) conductance d) capacitance 18. The unit of resistivity is a) ohm m⁻¹ b) mho m c) ohm m d) mho m⁻¹ The reciprocal of resistivity is 19. a) conductance b) inductance d) conductivity c) resistance The unit of conductivity is 20. a) ohm m⁻¹ b) mho m⁻¹ c) mho m d) ohm m The conductivity of a material is obtained by the formula 21. c) $\sigma = l/RA$ a) $\sigma = RA / l$ b) $\sigma = lA / R$ d) $\sigma = \rho A / R$ Materials having resistivity of the order of 10^{-6} - 10^{-8} $_{\Omega}$ m are classified as 22. b) conductors a) insulators c) semiconductors d) none of these If the resistivity of materials ranges from $10^8 - 10^{14} \Omega$ m, then they are 23. called as a) insulators b) conductors c) semiconductors d) none of these

4

24.	Semiconductors have resistivity of the order of				
	a) 10 ⁻⁶ - 10 ⁻⁸ _Q m	b) 10^8 - 10^{14} $_{\it O}$ m	c) 10^{-2} - $10^{4} \Omega \mathrm{m}^{-1}$	d) 10^{-2} - $10^4 _{\Omega} \mathrm{m}$	
25.	Discontinuous ch	hange in specific hea	at of a material occu	urs at	
	a) transition tem	perature	b) high temperat	ure	
	c) 0 K		d) room tempera	ture	
26.	Resisitivity of me	ercury is zero at			
	a) 2.4 K	b) 4.2°C	c) 4.2 K	d) 2.4°C	
27.	At the transition	temperature the elc	trical resistivity dre	ops to	
	a) zero	b) maximum	c) zero	d) none of these	
28.	At the transition	temperature the cor	nductivity becomes		
	a) zero	b) infinity	c) minimum	d) none of these	
29.	The core of a carb	oon resistor is made	of 🔥		
	a) carbon	b) silver	c) ceramic	d) iron	
30.	The tolerance of	f silver, gold, red	and brown rings	in carbon resistors	
	are respectively.				
	a) 1%, 2%, 5% and	d 10%	b) 10%, 2%, 5% and 1%		
	c) 10%, 5%, 1% an	nd 2%	d) 10%, 5%, 2% a	nd 1%	
31.	The tolerance of o	carbon resistors wit	hout a colour ring i	s	
	a) 20%	b) 10%	c) 2%	d) 25%	
32.	The colour code f	for 1 in carbon resist	ors is		
	a) Black	b) Brown	c) Silver	d) Red	
33.	In a carbon resist	or the third coloure	d ring indicates		
	a) first significan	t figure	b) tolerance		
	c) powers of 10 t	o be multiplied	d) second significant figure		
34.	The formula for	equivalent resista	nce of a number	resistors connecteed	
	in series is				
	a) $R_s = \frac{1}{p} + \frac{1}{p}$		b) $\frac{1}{R_1} = R_1 + R_2 +$		
	K_1 K_2		K_s		
	c) $\frac{1}{R_c} = \frac{1}{R_1} + \frac{1}{R_2} \dots$		$d) R_{s} = R_{1} + R_{2}$		
35.	The reciprocal	of the effective i	resistance of a n	umber of resistors	
/	connected in para	allel is			
	$(a) \mathbf{R} = \mathbf{R} + \mathbf{R} + \mathbf{R}$		b) $\frac{1}{} = \frac{1}{-+} \frac{1}{}$		
	$a_1 \mathbf{x}_p \mathbf{x}_1 + \mathbf{x}_2 + \dots$		$\mathbf{P}_{\mathbf{P}} \mathbf{R}_{\mathbf{p}} \mathbf{R}_{1} \mathbf{R}_{2}$		
	c) $\frac{1}{R} = R_1 + R_2 +$		d) $\frac{1}{R} + \frac{R_1}{R}$		
	γR_p		′ К _Р К ₂		

The effective resistance of two resistances (R_1, R_2) connected in parallel is 36. **a)** $\mathbf{R}_{P} = \frac{\mathbf{R}_{1}\mathbf{R}_{2}}{\mathbf{R}_{1} + \mathbf{R}_{2}}$ **b)** $R_{P} = \frac{R_{1} + R_{2}}{R_{1}R_{2}}$ **c)** $R_{P} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ **d)** $R_{P} = R_{1} + R_{2}$ If $R_{_0} \mbox{ and } R_{_t} \mbox{ are the resistance of a conductor at 0 <math display="inline">^0C$ and t^0C 37. respectively, then the temperature coefficient of resistance is a) $\alpha = \frac{R_0 t}{R_t - R_0}$ b) $\alpha = \frac{R_0 - R_t}{R_0 t}$ c) $\alpha = \frac{\mathbf{R}_t - \mathbf{R}_0}{\mathbf{R}_t t}$ d) $\alpha = \frac{Rt - R0}{R_t t}$ If the resistance of a material increases with increase in temperature 38. then its temperature co efficient of resistance is b) negative d) none of these a) zero c) positive The temperature coefficient of resistane of insulaors and semiconductors is 39. d) zero b) negative c) low a) positive 40. A material with negative temperature coefficient of resistance is called **c) thermistor** d) thermometer a) metal b) alloy Due to ageing, the internal resistance of a cell 41. c) does not change d) becomes zero a) increases b) decreases The temperature coefficient of manganin is 42. a) infinity b) high c) zero d) low The internal resistance of a cell can be calculated using the formula 43. a) $r = \left(\frac{E-V}{I}\right)R$ b) $r = \left(\frac{V-E}{V}\right)R$ c) $r = \left(\frac{E-V}{E}\right)R$ d) $r = \left(\frac{E-V}{V}\right)R$ The condition for bridge balance in wheatstone's bridge is 44. a) $\frac{P}{S} = \frac{R}{\Omega}$ b) PR = QSc) PS = ORd) PO = RSThe equation for electric power (P) is 45. a) P = VItb) P = VIc) $P = V^2 R$ d) $P = I^2 Rt$ Equation for electrical energy is equal to 46. a) I²Rt b) I²R c) V²Rt d) V^2 / Rt One kilo watt hour is equal to 47. a) 3.6 x 10⁵ J b) 0.36 x 10⁵ J c) 36×10^5 J d) 36×10^3 J 48. The positive ions which are mostly formed from metals or hydrogen are called b) cations a) anions c) positive particles d) atoms When one coulomb of charge is passed through the electroyte, the mass of 49. substance liberated is called a) electrochemical equivalent b) weight d) electrical resistance c) current

50.	Unit of electroche	emical equivalent is	5	
	a) C Kg ⁻¹	b) kg C	c) kg C-2	d) kg C ⁻¹
51.	The electrodes us	ed in voltaic cell ar	e	
	a) Cu, Zn	b) Cu, Fe	c) Cu, C	d) Fe, Zn
52.	The potential diff	ference between the	e two electrodes of v	voltaic cell is
	a) 1.5 V	b) 1.8 V	c) 1.08 V	d) 1.58 V
53.	The emf of Leclar	nche cell is about		• ~ • *
	a) 1.08 V	b) 1.5 V	c) 1.05 V	d) 1.1 V
54.	Leclanche cell car	n supply a current o	of	
	a) 0.25 A	b) 0.5 A	c) 2.5 A	d) 5.2 A
55.	Lechlanche cell is	s used to supply		
	a) Current of the	order 2.5 A	b) high current	
	c) very high curr	ent	d) intermittent c	urrent
56.	Daniel cell produ	ices an emf of		
	a) 1.5 V	b) 1.08 V	c) 1.8 V	d) 2.0 V
57.	In secondary cell	s the process of rep	roducing active ma	terials is called
	a) charging		b) discharging	
	c) specific gravity		d) internal resista	ance
58.	Electroylte used i	in lead - acid accum	ulator is	
	a) lead acid	b) HCl	c) dil. H_2SO_4	d) HNO ₃
59.	The emf of the Le	ad - acid accmulate	or under freshly cha	arged and
	discharged condi	tions are		
	a) 2.2V, 2V	b) 2V, 2.2V	c) 2.2V, 1.35V	d) 2V, 1.35V
60.	The values of e	mf developed and	specific gravity of	of a freshly charged
	Lead- Acid accur	nulator respectively	y are	
	a) 1.9V and 1.35		b) 2.2V and 1.35	
	c) 2.2 V and 1.28		d) 2.2V and 1.9	
61.	While on chargi	ng and dischargir	ng the value of sp	ecific gravity of the
	electrolyte of seco	ondary cells should	be	
	a) 1.12 and 1.28	b) 1.9 and 1.28	c) 1.28 and 1.12	d) 2 and 2.2
62,	A charge of 60 C	C passes through a	n electric lamp in 2	2 minutes. Then the
1	current in the lan	np is	-	
	a) 30 A	b) 1 A	c) 0.5 A	d) 5 A
63.	The material thro	yugh which electric	, charge can flow is	,
	a) quartz	b) mica	c) germanium	d) copper
	a) Yuur 12	~/ 11100	c) Sermannann	-, copper

64.	The current flowing in a conductor is proportional to				
	a) drift velocity		b) 1 / area of o	b) 1 / area of cross section	
	c) 1 / no. of elec	ctrons	d) square of a	rea of cross	
65.	A toaster opera	ting at 240 V has a	resistance of 120 g	Ω . The power is	
	a) 400 W	b) 2 W	c) 480 W	d) 240 W	
66.	If the length of	a copper wire has	s a certain resistar	nce R, then on doubling	
	the length its specific resis				
	a) will be doubl	ed	b) will becom	le 1/4 th	
	c) will become 4	4 times	d) will remain	ns the same	
67.	When two 2Ω	resistors are in para	allel, the effective r	resistance is	
	a) 2Ω	b) 4Ω	c) 1Ω	d) 0.5 \Q	
68.	In the case of in	sulators, as the tem	nperature decrease	es, resistivity	
	a) decreases		b) increases		
	c) remains cons	stant	d) becomes ze	d) becomes zero	
69.	If the resistance	e of a coil is 2Ω at (0° c and $\alpha = 0.004$	/ °C, then the resistance	
	at 100° C is				
	a) 1.4 Ω	b) 0 Ω	$c) 4 \Omega$	d) 2.8 Ω	
70.	According to Fa	araday's law of elec	trolysis, when a cu	irrent is passes, the mass	
	of ions deposite	ed at the cathode is	independent of		
	a) current	b) charge	c) time	d) resistance	
71.	The effective r	esistance of 'n' re	sistors of equal re	esistance (R) connected	
	in series is		a) a / D	d) a D	
70	a) K	DIK/II	C) N / K h an alastria aguir	a) nk	
12.	If a charge of	through it is	ii ali electric equij	pinent in 10 s, then the	
	current nowing	h 1 A	\sim 0.1 A	d) 10 A	
72	a) 0.5 A	D) I A	C) U.I A	a) 10 A	
73.	The markings a	at the bottom of a	rdor is	as 10110ws. 9v, 430111A.	
		b) 200 0	$c) 1/20^{2}$	d) 2 0	
74 •	An electrical in	b) 200 52	$C_{1} = \frac{1}{20} \frac{1}{20} \frac{1}{20}$	$u/2^{3/2}$	
1.	a) 240 W	b) 1200 W	c) 920 W	d) 1920 W	
75	uj 270 vv	of resistances 200	$O_{1} = 20$ W	connected in series then	
70.	the effective res	sistance of the evet	$\frac{1}{2}$ and 0.1 $\frac{1}{2}$ are		
	a) 200 1 0	b) 300 O	c) $201k^{2}$	d) 21 ko	
	uj 200 . 1 82	0,000 22	$C_{1} = C_{1} \times S_{2}$	$(1) 2.1 \times 52$	

76.	5. The resistance of a wire of 1 m length and 0.034 mm^2 area cross section			
	having a specific	resistance of 1.7 x 1	$0^{-8}\Omega$ m is	
	a) 0.5 Ω	b) 5.0 Ω	c) 2Ω	d) 0.05 Ω
77.	A wire of resista	nce 0.1Ω having a	length of 30 m has	a specific resistance
	of $2.7 \times 10^{-8} \Omega$ m.	The area of cross se	ction of the wire is	1
	a) 0.81 x 10 ⁻⁶ m ²	b) 8.1 x 10 ⁻⁵ m ²	c) 8.1 x 10 ⁻⁴ m ²	d) 8.1 x 10 ⁻⁶ m ²
78.	The resistance o	of a conductor of 1	0 m long and 0.1	1 mm^2 area is 1.7Ω .
	The specific resist	tance of the materia	l of the conductor i	is
	a) 2.7 x 10 ⁻⁸ Ω m	b) 1.7 x 10 -8 Ω m	c) 17 x 10 ⁻⁸ Ω m	d) 1.7 x 10 ⁻⁶ Ω m
79.	The number of e	lectrons flowing pe	r second through	a conductor, when a
	current of 3.2 A fl	ows through it is	-	
	a) 2 x 10 ¹⁹	b) 3 x 10 ¹⁸	c) 6.25 x 10 ¹⁸	d) 6.25 x 10 ¹⁹
80.	A 1.15 kW, 230 V	water heater can di	raw a current of	
	a) 0.2 A	b) 2 A	c) 5 A	d) 0.5 A
81.	The ratio of the d	iameters of two cop	per wires of length	is 2m and 8m having
	equal resistance is	S		
	a) 2 : 1	b) 2 : 8	c) 1 : 4	d) 1 : 2
82.	A current of 0.3 A	A from a cell of emf	1.5 V is passed the	rough a resistance of
	4Ω . The internal	resistance of the cel	lis	
	a) 0.1 Ω	b) 1 Ω	c) 10Ω	d) 0.01 Ω
83.	If charge per unit	t volume of a condu	actor is 600C and t	he current density is
	1.2Am ⁻² , then the	drift velocity of the	electron is	
	a) 0.2 x 10 ⁻² m/s	b) 7.2 x 10 ⁻³ m/s	c) 200 m/s	d) $5 \times 10^{-3} \text{ m/s}$
84.	Three resistance c	of values 10Ω , 2Ω as	nd 3 Ω are connected	ed to form the sides of
	a triangle AB, BC	and CA respectivel	y. The effective res	istance between A
	and B is		·	
.	a) 3.33Ω	b) 2.33 Ω	c) 3.5 Ω	d) 3.9 Ω
85.	A cell of emf 9	and internal resis	stance 1Ω is conn	ected to an external
1	resistance of 8 Ω ,	the potential differ	ence across the cel	1 1S
	a) 9 V	b) I V	c) 6 V	
86.	In wheatstone	s bridge, under l	oridge balance c	ondition, the four
\checkmark	resistances of the	four arms in cyclic	order are	
07	a) 5, 10, 4, 8	b) 5, 10, 8, 4	c) 5, 8, 10, 4	a) 5, 4, 8, 10
87.	i wo resistances 6	Ω and 4Ω are coni	nected in parallel ai	nu the combination is
	connected in serie	es with a resistance	or 2.6 Ω and an acc	rumulator of emf 2 V,
	1 nen the current	In the circuit is $1 \ge 7 + 4 = 4$		
	a) 5 / 2 A	b) 5 / 4 A	c) 2/5 A	a) 5 A

88.	In a metre bridg ratio of balancin	e, with a standard 1 g length is 3 : 2. The	resistance of 5 ohn value of the other	n in the right gap, the resistance is
	a) 10 / 3 Ω	b) 10 / 9 Ω	c) 15/2 Ω	d) 3 / 5 Ω
89.	The balancing l	engths of two cells	are 250 cm and	750 cm respectively,
	in a potentiome	ter experiment. If t	he emf of the firs	t cell is 2 V, the emf
	of the second cel	lis		
	a) 6 V	b) 4 V	c) 2 / 3 V	d) 3 / 2 V
90.	A copper wire	of 10 ⁻⁶ m ² area of o	cross section carr	ies a current of 1 A.
	The current dens	sity is		
	a) $2 \times 10^6 \text{A/m}^2$	b) $0.1 \times 10^6 \text{ A/m}^2$	c) 1 x 10 ⁻⁶ A / m ²	2 d) 1 x 10° A/m ²
91.	A 750 W power	iron box is used for	4 hours. If the cos	st per unit is 75 paise,
	the total expense	eis		
	a) Rs. 22.50	b) Rs. 5.25	c) Rs. 2.25	d) Rs. 3.00
92.	The value of a	carbon resistor w	ith the colour co	de of yellow, violet
	and organge is			
	a) 37 k Ω	b) 4.7 kΩ	c) 47 k Ω	d) 3.7 k Ω
93.	The value of a ca	rbon resistor is 33 k	Ω . Then the color	ır code is
	a) Yellow , Orang	ge, Red	b) Brown, Yellov	v , Orange
	c) Red, Blue, Ora	ange 🧲	d) Orange, Oran	ige, Orange
94.	If 6.25×10^{18} ele	ectrons flow throug	gh a given cross	section in unit time,
	then the current	is		
	a) 1 A	b) 2 A c) 0.1	A	d) 0.2 A
95.	An incandescen	t lamp is operated	at 240 V and the o	current is 0.5 A, then
	the resistance of	the lamp is		
	a) 840Ω	b) 480 Ω	c) 240Ω	d) 380 Ω
96.	The resistance	of nichrome wir	e at 0° C is 10_{Ω} .	If its temperature
	coeffeicient of re	sistance is $0.004 / °C$	<i>L</i> , then its resistance	ce at 100°C is
~	a) 4 Ω	b) 12Ω	c) 14Ω	d) 18Ω
97.	A cell has a po	tential difference of	t 6 V in an open	circuit, but it falls to
1	4V when a curr	ent of 2 A is draw	n from it. Then th	ne internal resistance
	of the cell is	1) 10 0		1) 0
	a) 1Ω	b) 10Ω	c) 0.1Ω	d) 2Ω
98.	In a Wheatston	s bridge, $P = 1000$	$\Omega, \mathbf{Q} = 10,000 \Omega$	and $R = 20\Omega$. If the
1	galvano meter si	nows zero deflection	h, the value of S is	1) 2000 0
00	a) 20Ω	b) 200 \2	c) 2Ω	a) 2000Ω
99.	An electric iron	of resistance 80Ω i	soperated at 200 \	for two hours. The
	electric energy co	onsumed is	-) 1 1-1471-	1) 0 1 1.747
	a) I W h	b) 10 kWh	c) I KWh	d) 0.1 KWh

Three Mark Questions: Book Back Questions :

- 1. State ohms law. (**P Y**)
- 2. The colour of a carbon resistor is orange, orange, orange. What is the value of resistor?
- 3. Why is copper wire not suitable for a potentiometer?
- 4. Distinguish between electric power and electric energy. (PY)
- 5. Why automobile batteries have low internal resistance?

Previous Year Questions :

- 6. Define drift velocity.
- 7. Define mobility of electrons. Give its unit.
- 8. Distinguish between drift velocity and mobility.
- 9. Define the term specific resistance. Give its unit.
- 10. What is meant by super conductor and super conductivity?
- 11. Define transition temperature.
- 12. What are the changes observed at transition temperature when the conductor becomes a superconductor?
- 13. Mention any three applications of super-conductors.
- 14. Define temperature coefficient of resistance.
- 15. Define internal resistance of a cell.
- 16. State Kirchoff's first law. Mention the sign convention.
- 17. State Kirchoff's second law. Mention the sign convention.
- 18. State Kirchoff's (i) current law and (ii) voltage law.
- 19. State Faraday's law of electrolysis.
- 20. What is the principle of a potentiometer?
- 21. Distinguish between electromotive force and potential difference.
- 22. **Give the applications of secondary cells**.
- 23. If 6.25×10^{18} electrons flow through a given cross-section of a conductor in
 - unit time, find the current. [Given : Charge of an electron is 1.6 x 10⁻¹⁹ C] (Eg)
- 24. An incandescent lamp is operated at 240 V and the current is 0.5 A. What is the resistance of the lamp?
- 25. Two wires of same material and length have resistance 5Ω and 10Ω respectively. Find the ratio of radii of the wires. **(Eg)**

- 26. A manganin wire of length 2m has a diameter of 0.4 mm with a resistance of 70 Ω . Find the resistivity of the material. (Ex)
- 27. Three resistors are connected in series with 10V supply as shown in the figure. Find the voltage drop across each resistor. **(Eg)**

28. From the following network find the effective resistance between A and B. $R_1 = R_2 = 15 \Omega$.

29. In the given circuit, what is the total resistance and current supplied by the battery. **(Ex)**

- 30. The resistance of a platinum wire at 0°C is 4. If its temperature coefficient of resistance of platinum is 0.0038/°C. Find its resistance at boiling point of water.
- 31. The resistance of a nichrome wire at 0°C is 10. If its temperature co-efficient of resistance is 0.004/°C, find its resistance at boiling point of water. Comment of the result. (Eg)
- 32. In the following circuit, calculate the current through the circuit. Mention its direction?

Find the magnitude and direction of the current in the following circuit.

- 34. An iron box of 400W power is used daily for 30 minutes. If the cost per unit is 75 paise, find the weekly expense on using the iron box. **(Eg)**
- 35. A 1.5 V carbon zinc dry cell is connected across a load of 1000 Ω . Calculate the current and power supplied to it.
- 36. Define current density? Give its unit.
- 37. Distinguish between primary cell and secondary cell.

Five Mark Questions: Book Back Questions :

- 1. Explain the flow of charges in a metallic conductor.
- 2. Distinguish between drift velocity and mobility. Establish a relation between drift velocity and current. (**P Y**)
- 3. Define resistivity of a material. How are materials classified based on resistivity?
- 4. Write a short note on superconductivity. List some applications of superconductors. (PY)
- 5. Explain the effective resistance of series network and parallel network. **(PY)**
- 6. Discuss the variation of resistance with temperature with an expression and a graph. **(P Y)**
- 7. Explain the determination of the internal resistance of a cell by using voltmeter. (**P**Y)
- 8. State and explain Kirchoff's second law for electrical networks. (PY)
- 9. Describe an experiment to find unknown resistance and temperature coefficient of resistance using metre bridge?
- 10. Define the term specific resistance. How will you find this using a metre bridge.
- 11. Explain the principle of a potentiometer with a neat diagram. (**P**Y)
- 12. How can emf of two cells be compared using potentiometer? (**P**Y)
- 13. State and Explain Faraday's first laws of electrolysis. How is the law verified experimentally? (PY)
- 14. State and Explain Faraday's second laws of electrolysis. How is the law verified experimentally? (**P**Y)
 - 15. Explain the action of the lead acid accumulator. **(P Y)**

Previous Year Questions :

- 16. Define mobility. Establish a relation between drift velocity and current.
- 17. Obtain the condition for bridge balance in Wheatstone bridge.

- 18. Explain the reactions at the electrodes of Daniel cell
- 19. Explain the reactions at the electrodes of Lechlanche cell.
- 20. A copper wire of 10^{-6} m² area of cross section carriers a current of 2A. If the number of electrons per cubic metre is 8×10^{28} , Calculate the current density and average drift velocity. (Given e = 1.6×10^{-19} C) (Eg)
- 21. What is the drift velocity of an electron in a copper conductor having area $10 \times 10^{-6} \text{ m}^2$, carrying a current of 2 A. Assume that there are 10×10^{28} electrons/m³. (Ex)
- 22. The effective resistance are $10 \ \Omega$, 2.4 Ω when they are connected in series and parallel respectively. What are the resistances of individual resistors?
- 23. In the given network, calculate the effective resistance between points A & B.Fig. (Eg)

- 24. Find the current flowing across three resistors 3Ω , 5Ω and 2Ω connected in parallel to a 15V supply. Also find the effective resistance and total current drawn from the supply. (Eg)
- 25. The resistance of a field coil measure 50 Ω at 20°C and 65 Ω at 70° C. Find the temperature coefficient of resistance.
- 26. In a metre bridge, the balancing length for a 10 Ω resistance in left gap is 51.8 cm. Find the unknown resistance and specific resistance of a wire of length 108 cm and radius 0.2 mm (Ex).

III. EFFECTS OF ELECTRIC CURRENT

	One Mark Questions						
	Book Back Ques	stions :					
1.	Joules law of heati	ng is (P Y)					
	a) H = $\frac{I^2}{R}t$	b) H = V^2Rt	c) H = VIt	d) H = IR ² t			
2.	Nichrome wire is	used as the heating	element because it l	has (PY)			
	a) low specific resi	istance	b) low melting poi	nt 💦			
	c) high specific re	esistance	d) high conductivity				
3.	Peltier coefficient at a junction of a thermocouple depends on $(\mathbf{P} \mathbf{Y})$						
	a) The current in the thermocouple						
	b) The time for wh	ich current flow					
	c) the temperature	e of the junction					
	d) the charge that passes through the thermocouple						
4.	In a thermocouple, the temperature of the cold junction is 20° C, the neutral						
temperature is 270°C.The temperature of inversion is (P Y)							
	a) 520°C	b) 540°C	c) 500°C	d) 510°C			
5.	Which of the follow	wing equation repr	resent Biot – savart l	aw ? (P Y)			
	a) $dB = \frac{\mu_0}{4\pi} \frac{Idl}{r^2}$		b) $dB^{\rho} = \frac{\mu_0}{4\pi} \frac{Idl\sin\theta}{r^2}$				
	c) $dB = \frac{\mu_0}{4\pi} \frac{\vec{Idl} \times \vec{r}}{r^2}$		d) $\overrightarrow{\mathbf{B}} = \frac{\mu_0}{4\pi} \frac{\overrightarrow{\mathbf{IdI}} \times}{r^3}$	<u>r</u>			
6.	Magnetic inducti	on due to an infi	nitely long straigh	t conductor placed			
	in medium of perm	neability µ is (PY)					
	a) $\frac{\mu_0 I}{4\pi a}$	b) $\frac{\mu_0 I}{2\pi a}$	c) $\frac{\mu I}{4\pi a}$	d) $\frac{\mu I}{2\pi a}$			
7.	In a Tangent galva	anometer, for a con	stant current, the de	eflection is 30° . The			
	plane of the coil is	rotated through 90	0° . Now, for the same	e current, deflection			
./	will be (PY)	0					
Y	a) 30°	b) 60°	c) 90 ⁰	d) 0 ⁰			
8.	The period of rev	olution of a charg	ed particle inside a	cyclotron does not			
	depend on (PY)						
	a) the magnetic in	duction	b) the charge of the	e particle			
	c) the velocity of t	the particle	d) the mass of the	particle			

9.	The torque on a rectangular coi	l placed in a uniform magnetic field is	
	large, when		
	a) the number of turns is large		
	b) the number of turns is less		
	c) the plane of the coil is perpendic	ular to the field	
	d) the area of the coil is small		
10.	Phosphor – bronze wire is used for suspension in a moving coil galvanometer,		
	because it has (P Y)		
	a) high conductivity	b) high resistivity	
	c) large couple per unit twist	d) small couple per unit twist	
11.	Of the following devices, which ha	s small resistance? (P Y)	
	a) moving coil galvanometer	b) ammeter of range 0 -1 A	
	c) ammeter of range 0 – 10 A	d) voltmeter	
12.	A galvanometer of resistance G Ω is	shunted with SQ. The effective resistance	
	of the combination is R ₂ , then which of the following statement is true?		
	a) G is less than S	b) S is less than R_a but greater than G	
	c) \mathbf{R}_{a} is less than both G and S	d) S is less than both G and R_a	
13.	An ideal voltmeter has (P Y)		
	a) Zero resistance		
	b) infinite resistance less than G but greater than zero		
	c) resistance greater than G but less than infinity		
	d) infinite resistance		
	Previous Year Ouestions :		
11	In the experiment to verify Joule's	law when the current passed through the	
14.	singuit is doubled keeping resisten	raw when the current passed through the	
	circuit is doubled keeping resistance (K) constant and time of passage of		
	a) increases twice	b) increases four times	
	a) increases twice	d) degreeses four times	
15	Which of the following produces la	rga joula beating affects	
15.	. which of the following produces large joule heating effects		
\checkmark	b) 1 A surrout through 20 resistor for 2 second		
1	c) 2 A current through 10 resistor f	for 2 second	
	d) 3 A current through 10 resistor for 1 second		
16	Fuse wire is an allow of		
10.	a) Lead and Tin b) Tin and Cont	per_c) Lead and Conner_d) Lead and Iron	
	a, zeur and im b, intana cop	c, c, lead and copper a, lead and non	

17.	Fuse wire		
	a) is an alloy of lead and copper	b) has low resista	nce
	c) has high resistance	d) has high meltir	ng point
18.	In which one of the following pairs maximum?	s of metal of a therm	nocouple the e.m.f. is
	a) Fe-Cu b) Cu-Zn	c) Pt-Ag	d) Sb-Bi
19.	For a given thermocouple the neutr a) depends upon the temperature of b) depends upon the temperature of c) the temperature of junction d) the charge that passes through the	al temperature f cold junction f hot junction he thermocouple	Philip
20.	In a thermocouple, the temperature temperature is 600°C, and then the	of the cold junction neutral temperature	is 20°C, the inversion is
	a) 310°C b) 320°C	c) 300°C	d) 315°C
21.	In a thermocouple, the temperature of inversion is 520°C.The neutral temperature of the second secon	of the cold junction is 2 mperature is	20°C, the temperature
	a) 500°C b) 540°C	c) 270°C	d) 260° C
22.	In a thermocouple, the temperature of temperature is 270°C. then the temp	of the cold junction is perature inversion is	-30°C, and the neutral
	a) 520°C b) 540°C	c) 500°C	d) 570 °C
23.	Peltier effects is the converse of		
	a) Joule's effect	b) Raman's effect	
	c) Thomson's effect	d) Seebeck's effe	ect
24.	Unit of Peltier co-efficient is		
	a) ohm 🧹 b) mho	c) volt	d) ampere
25.	AB is a rod of lead. Ther end A is heated. A current I is allowed to flow along AB. Now, due to Thomson effect, in rod AB. a) heat is absorbed		
^	b) heat is liberated	_	
V	c) heat is neither absorbed nor lib	erated	
01	d) heat is tirst absorbed and then lik	perated	
26.	I hermopile is used to	1 \	
	a) measure temperature	b) measure curren	nt
	c) detect thermal radiation	a) measure pressi	are

27. Which one of the following principles is used in a thermopile? a) Thomson effect b) Peltier effect c) Seebeck effect d) Joule's effect 28. Consider a circular coil of radius 10 cm in an air medium. If 5A current passes through it, what would be the magnetic induction at its centre? d) $\pi \times 10^{15}$ T a) $\pi \times 10^{-5}$ T b) $\pi \times 10^5$ T c) $\pi \times 10^{-15}$ T The unit of reduction factor of tangent galvanometer is 29. b) tesla d) ampere / degree a) no unit c) ampere 30. In a tangent galvanometer a current 1A, produces a deflection of 30°. The current required to produce a deflection of 60° is c) $\sqrt{3}$ A a) 3A b) 2A d) 31. The magnitude and direction of the magnetic Lorentz force is given by c) $\vec{\mathbf{F}} = \mathbf{q}(\vec{\mathbf{V}} \times \vec{\mathbf{B}})$ d) $\vec{F} = V(\vec{q} \times \vec{B})$ b) q / $\vec{V} \times \vec{B}$ a) $\vec{F} = \vec{V} \times \vec{B}$ An electron is moving with a velocity of 3 x 10⁶ ms⁻¹ perpendicular to a uniform 32. magnetic field of induction 0.5 T. The force experienced by the electron is b) 13.6 x 10⁻²⁷ N c) 13.6 x 10⁻¹¹ N a) 2.4 x 10⁻¹³ N d) zero The current carrying rectangular coil is perpendicular to uniform magnetic 33. field of the induction the torque is a) maximum b) zero c) minimum d) infinite A galvanometer is converted into a voltmeter by connecting a 34. a) low resistance in series b) high resistance in parallel c) high resistance in series d) low resistance in parallel When the number of turns (n) in a galvanometer is doubled, current sensitivity 35. a) remains constant b) decreases twice c) increases twice d) increases fourth 36. In Joule's Calorimeter experiment, when a current of 1 ampere is passed through a coil for a known interval of time 't', the temperature of water increases from 30°C to 33°C. When a current of 2 A is passed through the same coil placed in the same quantity of water and for the same time, the temperature of water increases from 30° C to : a) 33°C b) 36°C c) 39°C d) 42°C 37. A proton and an α particle are projected with the same velocity normal to a uniform magnetic field. The ratio of the magnetic Lorentz force experienced by the proton and the α particle is : a) 1 : 1 b) 1:2 c) 2 : 1 d) 1:0

	38.	A wire of length 1m is made into a circular loop and it carries a current of $3.14A$. The magnetic dipole moment of the current loop (in AM ²) is		
		a) 1 b) 0.5	c) 0.25 d) 0.314	
	39.	In a thermocouple, when the temp	perature of cold junction is increased	
		(but less than neutral temperature) th	he temperature of inversion	
		a) increases	b) decreases	
		c) does not change	d) first increases and then decreases	
		e) dees not change	d) instancicases and men decicases	
		PTA Objective Questions :		
1.		For a steady current I, the amount of	heat produced in time t is	
		a) VIt b) V ² It	c) I / Vt d) VI^2t	
	R, heat produced is			
		a) directly proportional to the square	e of current	
		b) directly proportional to the current		
		c) inversely proportional to the squar	e of current	
		d) inversely proportional to the current	nt	
	3.	Which of the following is wrong, acco	ording to Joules law of heating effect	
		a) H α I ² , for a given R	b) H α R for given I	
		c) H α V for a given R	d) H αI_R for a given V	
	4.	Nichrome is an alloy of		
		a) nickel and manganese	b) nickel, carbon and iron	
		c) nickel and iron	d) nickel and chromium	
	5.	Nichrome is used as the heating elem	ent, because	
		a) it has high specific resistance	b) it has high melting point	
		c) it is not easily oxidized	d) all the above	
	6.	Fuse wire is an alloy of		
		a) 37 % Pb & 63 % Sn	b) 63 % Pb & 36 % Sn	
		c) 73 % Pb & 27 % Sn	d) 37 % Sb & 63 % Sn	
	7.	Melting point of tungsten is	-	
		a) 3380°C b) 3380 K	c) 380° C d) 380 K	
	8.	Filament of an electric bulb is usually	enclosed in a glass bulb containing	
		a) inert gas at high pressure	b) inert gas at low pressure	
$\boldsymbol{\wedge}$	•	c) ideal gas at high pressure	d) ideal gas at low pressure	
	9.	In which of the following, Joule heating	ng effect undesirable?	
		a) electric iron	b) electric toaster	
		c) transformer and dynamos	d) fuse wire	
	10.	Which of the following is not a therm	o emf effect?	
		a) Peltier effect	b) Thomson effect	
		c) Joule effect	d) Seeback effect	

11.	Complementary effect of seeback effe	ect is		
	a) Peltier effect	b) Thomson effect		
	c) Joule effect	d) Negative Thomson effect		
12.	In a circuit consisting of two dissimilar metals, an emf is developed, when			
	junctions are maintained			
	a) very high temperature	b) very low temperature		
	c) same temperatures	d) different temperatures		
13.	In a Cu - Fe thermocouple, the direct	ion of the current at the hot junction is		
	a) from Cu to Fe	b) from Fe to Cu		
	c) either (a) or (b) depending on temp	erature of hot junction		
	d) random direction			
14.	Position of the metal in the thermoele	ectric series depends on		
	a) temperature	b) nature of th metal		
	c) magnitude of thermo emf	d) atomic number of metal		
15.	The temperature dependence of therr	no emf of a thermocouple is given by		
	a) $\mathbf{V} = \alpha \theta + \frac{1}{2} \beta \theta^2$ b) $V = \alpha (\theta + \beta \theta)$	c) $V = \alpha \theta + \frac{V}{2} \beta \theta^3$ d) $V = \alpha \theta^2 + \beta \theta^4$		
16.	For small temperature difference, the	graph showing the variation of thermo		
	emf with temperature of the hot june	tion is		
	a) Parabola b) circle	c) straight line d) hyperbola		
17.	For a given thermocouple, the netura	l temperature is		
	a) maximum b) minimum	c) zero d) a constant		
18.	For a given thermocouple, the temper	rature of inversion		
	a) is constant			
	b) depends upon the temperature of	the cold junction		
	c) is independent of temperature of co	old junction		
	d) depends on the neutral temperature			
19.	Inversion temperature, neutral temp	perature and the temperature of cold		
	junction of a thermocoulpe is related	by		
	a) $\theta = 2\theta \pm \theta$, b) $\theta = (\theta - \theta)/2$	c) $\theta_{-1} = -\frac{1}{2}(\theta_{-1} + \theta_{-1}) d \theta_{-1} = 2\theta_{-1} + \theta_{-1}$		
	$a_1 o_c = 2 o_n + o_1 = 0 + o_n - (o_c - o_1)/2$	$2^{(0_c+0_i)} \alpha^{(0_l+0_l+0_c)}$		
20.	Nichrome is used as the heating elem	ent because, it has		
1	a) low specific resistance	b) low melting point		
	c) high specific resistance	d) high conductivity		
21.	Electric filament lamp is working on the basis of			
	a) Joule's heating effect	b) Peltier effect		
	c) Thomson effect	d) Seeback effect		
22.	Peltier co - efficie	ent of a junction of a	a thermocouple dep	ends on
-------	----------------------------------	---------------------------------------	------------------------	----------------------------------
	a) the current in t	the thermocouple		
	b) time for which	the current flows		
	c) temperature of	t the junction		
00	d) charge that pa	sses through the ju	nction	•,1 , • 1 1 • 1
23.	Heating element	of an electric heate	er should be made w	vith a material which
	should have		malting point	
	b) high specific r	esistance and low n	nelting point	
	c) low specific res	sistance and low m	elting point	
	d) low specific re	sistance and high r	nelting point	
24.	An example for a	conductor with ne	egative Thomson eff	ect is
	a) silver	b) Zinc	c) cadmium	d) mercury
25.	Án example for p	positive Thomson n	netal is	
	a) iron	b) cobalt	c) copper	d) nickel
26.	In a thermocoup	le, Peltier co - effici	ent is	
	a) more at the ho	t junction	b) more at the col	d junction
	c) same at hot an	d cold junction	d) none of the abo	ove
27.	is used	as one of the met	al to form a thermo	couple with another
	metal for the pur	pose of drawing th	ermoelectric diagrai	ms.
• •	a) Pt	b) Ag	c) Pb	d) Cu
28.	The device therm	opile is based on		
20	a) Joule's effect	b) Peltier effect	c) Seeback effect	t d) Thomson effect
29.	In a thermocou	ple, the temperat	ture of the cold ju	nction is 20°C, the
	$2 \times 250^{\circ} \text{ C}$	1000000000000000000000000000000000000	c) 5000 C	d) 51.00 C
30	a) 250°C	a the temperature	of cold junction is 20	0° while the neutral
50.	temperature is 3	00° C Its temperature	re of inversion is	, c, while the field of
	a) 580° C	b) 850° C	c) 508° C	d) 805° C
31. 🗸	In a thermocoup	le, the temperature	e of the cold junction	n is 20° C, the neutral
	temperature is 27	$^{70^{\circ}}$ C, then the temp	perature of inversion	n is
	a) 520°C	b) 540° C	c) 500° C	d) 510° C
32.	Two wires of equ	ual length are first	connected in series	and then in parallel
/	with a voltage so	urce. The ratio of h	eat developed in tw	o cases is
	a) 2 : 1	b) 1 : 2	c) 4 : 1	d) 1 : 4
33.	Amount of heat of	dissipated per seco	nd in a wire of resis	tance 5 ohm through
	which a current of	of 5 A flows is		
	a) 125 J / s	b) 250 J / s	c) 50 J /s	d) 75 J / s

Current is flowing through a conductor of resistance 10 ohm. Indicate in which 34. of the following cases, maximum heat will be generated a) 5A passing for 2 minutes b) 4A passing for 3 minutes c) 3A passing for 6 minutes d) 2A passing for 5 minutes If the heating element of an electric toaster has resistance of 22 ohm and is 35. connected to an voltage source of 110V, the amount of heat generated in 1 minute is _____ b) 22 KJ c) 66 KJ a) 33 KJ d) 3.3 KJ _____ is a device used to detect thermal radiation 36. a) thermocouple **b) thermopile** c) thermometer d) thermoscope In a thermopile, the deflection in the galvanometer is proportional to _ 37. of the radiation c) velocity d) energy a) intensity b) frequency Lead is used as one of the metal to form a thermocouple to _____ 38. a) get large thermo emf b) get large thermo current d) get large heat c) draw thermoelectric diagrams 39. Which of the following expression represents Biot - Savart law? a) $dB = \frac{\mu_o}{4\pi} \frac{Idl}{r^2}$ b) $\vec{dB} = \frac{\mu_o}{4\pi} \frac{Idl\sin\theta}{r^2}$ c) $dB = \frac{\mu_o}{4\pi} \frac{\vec{Idl} \cdot \vec{x} \cdot \vec{r}}{r^2}$ d) $\vec{dB} = \frac{\mu_o}{4\pi} \frac{\vec{Idl} \cdot \vec{x} \cdot \vec{r}}{r^3}$ Magnetic induction at a point due to infinitely long straight conductor 40. carrying current at a distance of 'a' from the axis is a) directly proportional to a b) directly proportional to a² c) inversely proportional to a d) inversely proportional to a² Tangent galvanometer works on the principle of 41. a) Biot -Savart law b) Ampere circuital law c) Tangent law d) Ampere rule Magnetic needle of a tangent galvanometer is kept small because, the 42. magnetic field is a very large at the centre b) considered to be small and uniform at the centre c) such that it is convenient to handle small needle d) radial at the centre If a current of $\sqrt{3}$ A produces a deflection of 45° in a tangent galvanometer, 43. then the current required to produce a deflection of 60° is b) $\frac{I}{\sqrt{3}}A$ c) 3 A a) 1.732A d) 5 A

d) 0°

44. In a tangent galvanometer, for a constant current, the deflection is 30°. The plane of the coil is rotated through 90°. Now for the same current, the deflection will be

a)
$$30^{\circ}$$
 b) 60° c) 90°

45. A current of $\sqrt{3}$ A produces a deflection of 45° in a tangent galvanometer having 50 turns and radius 10 cm. The reduction factor of the tangent galvanometer is

a) 1. 732 A b)
$$\frac{1}{\sqrt{3}}A$$
 c) $50\sqrt{3}$

46. Reduction factor of the tangent galvanometer is

a)
$$\frac{2a\mu_0 B_H}{n}$$
 b) $\frac{2an}{\mu_0 B_H}$ c) $\frac{2aB_H}{\mu_0 n}$

47. A current of 2 A flows through 5 turn coil of a tangent galvanometer having a radius of 12.5 cm. If the deflection of the needle at the centre is 45°, the horizontal component of the earth field at that point is

a)
$$16\pi \times 10^{-5} \text{ T}$$
 b) $16\pi \times 10^{-6} \text{ T}$ c) $16\pi \times 10^{-7} \text{ T}$ d) $16\pi \times 10^{-8} \text{ T}$

48. In a tangent galvanometer, the plane of the coil should be adjusted to be in
a) geographic meridian
b) magnetic meridian
c) any direction
d) parallel to east - west direction

49. Each section of the coil of wire of a tangent galvanometer has number of turns

50. If the reduction factor of a tangent galvanometer is 0.9 A ,then the current that produces a deflection of 30° is

a) 450 mA () 520 mA c) 780 mA d) 520 A

51. When a current of 1.5 A flows through a tangent galvanometer, a deflection of 60° is produced in it. The current required to produce a deflection of 30° is
a) 500 mA
b) 250 mA
c) 250A
d) 50A

52. In a tangent galvanometer experiment, the deflection has to be adjusted between 30° and 60°, since the galvanometer is most sensitive at a deflection of

- 53. Biot Savart law expressed in an alternative way is called
 - a) end rule b) Gauss law

c) Ampere circuital law d) Fleming left hand rule

54.	In a more generalised way, Ampere circuital law is written as			
	a) $\oint \vec{B} \cdot \frac{dI}{\mu_0} = dl$ b) $\oint I \cdot dl = \frac{dB}{\mu_0}$	C) $\oint \vec{\mathbf{B}} \cdot \vec{\mathbf{dl}} = \mu_0 \mathbf{I}$	d) $\oint \vec{B} \cdot \vec{dl} = I$	
55.	A long closely wound helical coil is ca	alled		
	a) toroid b) solenoid	c) inductor	d) resistor	
56.	Direction of magnetic field due to a ci	ircular closed loop i	s given by	
	a) Ampere - circuital law	b) right hand rule		
	c) right hand screw rule	d) right hand palr	n rule	
57.	For a solenoid, whose length is very la	rge compared to its	radius, the magnetic	
	field at points outside the solenoid is			
	a) maximum b) minimum	c) zero	d) $/\mu_0$	
58.	The magnetic polarity of a current car	rrying solenoid is gi	ven by	
	a) Ampere - circuital law	b) right hand palm	ırule	
	c) end rule	d) Biot - Savart ru	le	
59.	The force on a charged particle movin	ng inside a magneti	c field is known as	
	a) Lorentz force	b) Coloumb force		
	c) mechanical force	d) electromagnetic	c force	
60.	Magnitude and direction of Lorentz f	orce is given by the	expression	
	a) $\overrightarrow{F} = v(\overrightarrow{q} \times \overrightarrow{B})$ b) $\overrightarrow{F} = q(\overrightarrow{V} \times \overrightarrow{B})$	c) $\vec{F} = \vec{B}(\vec{V} \times \vec{B})$	d) $\vec{F} = v^2 \left(\vec{q} x \vec{B} \right)$	
61.	An electron is moving with a veloc	ity of $3 \ge 10^6 \text{ m/s}$	perpendicular to a	
	magnetic field of 0.5 T, then the force	experienced by the	electron is	
	a) $24 \times 10^{-11} \text{ N}$ b) $2.4 \times 10^{-13} \text{ N}$	c) 13.6 x 10 ⁻²⁷ N	d) 13.6 x 10 ⁻¹¹ N	
62.	In the presence of electric field and m	nagnetic field, the to	otal force on moving	
	charged particle is	\downarrow \rightarrow \rightarrow \rightarrow \rightarrow		
	a) $F = q[vxBxE]$	b) $F = q[(v x B)] + E$		
	c) $\vec{\mathbf{F}} = \mathbf{q} [(\vec{\mathbf{v}} \mathbf{x} \vec{\mathbf{B}}) + \vec{\mathbf{E}}]$	d) $\vec{F} = q \left[(\vec{B}x\vec{v}) + \vec{E} \right]$		
63.	Period of circular motion of the ch	arged particle in a	uniform magnetic	
	field is			
K •/	$2\pi m$ Bq	Bq	$\frac{m}{1}$	
	a) Bq b) $\frac{1}{2\pi m}$	c) $\frac{1}{m}$	$^{a)}Bq$	
64.	Angular frequency and period of	rotation of the ch	arged particle in a	
	magnetic field is independent of	of the particle		
	a) mass and radius	b) velocity and ra	dius	
	c) charge and velocity	d) mass and charg	e	

65.	A charged particle of mass 3.2×10^{-27} kg and charge 1.6×10^{-19} C moves in a circular orbit under the influence of perpendicular magnetic field of strength 3.14 T, then the period of revolution of the particle is				
	a) 10 ⁻⁸ s	b) 2 x 10 ⁻⁸ s	c) 3 x 10 ⁻⁸ s	d) 4 x 10 ⁻⁸ s	
66.	An α - particle w	ith (e / m) ratio 4.8	x 10 ⁻¹¹ CKg ⁻¹ travels	in a circular path of	
	radius 0.45 m in a	magnetic field of 1.	2 T. then the speed	of the α - particle is	
	a) $2.6 \times 10^4 \text{ m/s}$	b) 2.6 x 10⁵ m/s	c) 2.6 x 10^6 m/s	d) $1.3 \times 10^7 \text{ m/s}$	
67.	Cyclotron cannot	accelerate	, , ,		
	a) an electron	b) a proton	c) a deutron	d) an α - particle	
68.	In cyclotron, the d	lee's are connected	to		
	a) high frequency	RF oscillator	b) high frequency	AF oscillator	
	c) high voltage DC	Csource	d) high voltage AC	Source	
69.	Period of revolutio	on of a charged parti	cle inside a cyclotror	does not depend on	
	a) the magnetic in	duction	b) the charge of th	e particle	
	c) the velocity of	the particle	d) the mass of the	particle	
70.	Mechanical force	acting on a current o	carrying conductor j	placed in a magnetic	
	field is given by		C		
	a) F = BIl sin θ	b) $F = Ilx B$	c) BII $\cos \theta$ d) bo	oth (a) and (b)	
71.	Workdone by a Lo	orentz force is			
	a) zero when θ =	90°	b) zero when $\theta = \theta$	45^{0}	
	c) always zero		d) maximum θ = 9	90°	
72.	Two parallel strai	ght conductors carr	ying currents in the	same direction	
	a) repel each other	r	b) attract each oth	ler	
	c) do not experien	ce any force	d) experience a ma	aximum force	
73.	Direction of a force	e acting on a current	nt carrying conduct	or placed in a	
	magnetic field is given by				
	a) Fleming left ha	nd rule	b) Fleming right ha	and rule	
	c) end rule		d) Ampere - circu	ital law	
74.	A current of 2 A	flows through t	wo long straight p	parallel conductors	
	separated by a dis	tance of 10 cm. The f	force per unit length	on each conductor is	
\checkmark	a) 0.0458 N	b) 8 x 10 ⁻⁴ N	c) 8 x 10 ⁻⁵ N	d) 8 x 10 ⁻⁶ N	
75.	Two straight par	allel current carry	ving conductors se	parated by certain	
	distance carrying	equal current, exp	erience a force of 1	6 N. If the distance	
	between them is o	toubled and the cu	rrent in each condu	ictor is halved ,then	
	the force between	them will be		1) • • • •	
	a) 64 N	b) 16 N	c) 4 N	d) 2 N	

76.	If a current carrying loop is placed in	a magnetic field by its plane				
	a) perpendicular to the field; it will ro	tate				
	b) Perpendicular to the field; it will not rotate					
	c) parallel to the field; it will not rotat	e				
	d) perpendicular or parallel; it will no	ot rotate				
77.	The coil in moving coil galvanometer	is suspended by a				
	a) aluminium wire b) copper wire c) iron wire d) phosphor - bronze wire					
78.	In case of a moving coil galvanometer	r, the deflection is				
	a) non - linearly proportional to the co	urrent				
	b) directly proportional to the currer	ıt 💦 🚺				
	c) directly proportional to the square	of current				
	d) inversely proportional to the current	nt 💦				
79.	Suspended coil galvanometers can me	easure current of the order of				
	a) 10 ⁻⁶ A b) 10⁻⁸A	c) 10 ⁶ A d) 10 ⁸ A				
80.	Current sensitivity of a galvanometer	is defined as				
a) unit deflection produced for given current						
	b) deflection produced for unit curre	ent				
	c) large deflection produced for small	current				
	d) large deflection produced for large	current				
81.	When the number of turns in a galvar	ometer is doubled, then				
	a) current sensitivity and voltage sens	itivity doubled				
	b) current sensititvity is doubled and	voltage sensitivity remains un changed				
	c) current sensitivity remains unchan	ged				
	d) voltage sensitivity is doubled					
82.	A galvanometer can be converted into	voltmeter by connecting a				
	a) low resistance in series	b) low resistance in parallel				
	c) high resistance in parallel	d) high resistance in series				
83.	Resistance to be connected in series v	with the galvanometer to convert it as a				
	voltmeter of range 'V' is given by	17				
	a) $R = V / G - Ig$ b) $R = \frac{V}{Lg} - G$	c) R = IgG - V d) IgR = $\frac{V}{C}$				
		G G				
84.	An ideal voltmeter is one which has					
05	a) zero resistance b) high resistance	c) low resistance a) infinite resistance				
85.	A gaivanometer can be converted into	an ammeter by connecting a				
	a) IOW resistance in series	b) low resistance in parallel				
	c) high resistance in parallel	a) nign resistance in series				

86.	86. The torque on a rectangular coil placed in a uniform magnetic f large when			n magnetic field is
	a) the number of t	turns is largo	b) the number of t	urns is less
	c) the plane of the	coil is perpendicu	lar to the field	um 15 15 1655
	d) the area of the	coll is small	iai to the neta	
97	Dhoophour br		d for suspension	in a maying sail
07.	rilospilour - bro	onze whe is use	ed for suspension	In a moving con
	galvanometer, bec		h) high appiationity	
	a) high conductivi	ity	d) nigh resistivity	
00	c) large couple per	r unit twist	d) small couple p	er unit twist
88.	Of the following, v	which has small re	sistance:	
	a) moving coil gal	vanometer	b) ammeter of ran	ge 0 - 1A
00	c) ammeter of ran	ige 0 - 10 A	d) voltmeter	
89.	A galvanometer o	of resistance G oh	m is shunted with S	ohm. The effective
	resistance of comb	pination is R _a then,	which of the following	ng statement is true?
	a) G is less than S		b) S is less than R _a	but greater than G
	c) R _a is less than b	both G and S	d) S is less than bo	oth G and R_a
90.	An ideal voltmete	r has		
	a) zero resistance	C	b) finite resistar	nce less than infinity
	c) resistance great	er than G but less	than infinity d) inf	inite resistance
91.	The deflection in	moving coil galva	anometer is reduced	d to half, when it is
	shunted with a	resistance of 4	0 ohm, then the	resistance of the
	galvanometer will	l be		
	a) 80 ohm	b) 40 ohm	c) 20 ohm	d) 10 ohm
92.	A galvanometer o	f resistance 50 ohn	n is shunted with a v	vire of 10 ohm. The
	current through th	ne galvanometer w	when the current in t	he circuit is 12 A is
	a) 3 A	b) 2A	c) 5A	d) 6A
93.	If the resistance of	f a moving coil ga	lvanometer is 100 ol	nm and if it shows a
	full scale deflectio	n for 1 mA, then by	y connecting 900 ohr	n in series, the range
1	of the voltmeter is	S		
	a) 1 V	b) 10 V	c) 100 V	d) 100 mV
94.	The value of gyron	magnetic ratio is		
	a) 8.8 x 10 ⁹ Ckg ⁻¹	b) 8.8 x 10 ¹⁰ CKg	¹ c) 8.8 x 10 ⁻¹⁰ CKg ⁻¹	d) 8.8 x 10 ⁻⁹ CKg ⁻¹
95.	Experessions for t	he orbital magneti	c moment of an elec	tron are
	e ,	neh	nel	1) 1 .1 / \ ~ /1 \
	a) $-L$	b) $$	c)	d) both (a) & (b)

Three Mark Questions: Book Back Questions :

- 1 State Joule's law of heating.
- 2. Define Peltier coefficient and write its unit. (PY)
- 3. Define Thomson coefficient. (PY)
- 4. State Biot-Savart law.
- 5. What is Ampere's circuital law ? (PY)
- 6. Define Ampere. **(PY)**

Previous Year Questions :

- 7. Why nichrome used as a heating element?
- 8. What are the characteristics of heating element used in electric heating device?
- 9. What is neutral temperature of a thermocouple?
- 10. Mention any two differences between Peltier effect and Joule's heating effect.
- 11. State tangent law.
- 12. Mention the limitations of cyclotron.
- 13. State Fleming's left hand rule.
- 14. How is a galvanometer converted into (i) an ammeter (ii) a voltmeter?
- 15. In a Galvanometer, increasing the current sensitivity does not necessarily increase the voltage sensitivity.
- 16. How can we increase the current sensitivity of a galvanometer?
- 17. Calculate the resistance of the filament of a 100 W, 220 Volt electric bulbs.
- 18. A conductor or length 50 cm carrying of 5A is placed perpendicular to a magnetic field of induction 2×10^{-3} T. Find the force on the conductor. **Five Mark Questions:**

Book Back Questions :

- 1. Explain how you will convert a galvanometer into an ammeter. (PY)
- 2. Explain how you will convert a galvanometer into an voltmeter.(PY) Provious Year Questions :

Previous Year Questions :

- 3. State and explain Biot-Savart law.
 - 4. What are the special features of magnetic Lorentz force?
- 5. Explain in detail the principle, construction of a tangent galvanometer (diagram, theory not necessary)
- 6. A long straight wire carrying current produces a magnetic induction of 4×10^{-6} T at a point 15 cm from the wire. Calculate the current through the wire. **(Eg)**

- A circular coil of radius 20 cm has 100 turns of wire and it carries a current of 5 A. Find the magnetic induction at a point along its axis at a distance of 20 cm from the centre of the coil. (Ex)
- 8. A current of 4A flows through 5 turn coil of a tangent galvanometer having a diameter of 30 cm. If the horizontal component of Earth's magnetic induction is 4×10^{-5} T, find the deflection produced in the coil. (Given $\mu_0 = 4\pi \times 10^{-7}$ Hm⁻¹)
- 9. Two parallel wires each of length 5m are placed at a distance of 10 cm apart in air. They carry equal currents along the same direction and experience a mutually attractive force of 3.6 x 10⁻⁴N. Find the current through the conductors. **(Eg)**
- 10. Two straight infinitely long parallel wires carrying equal current placed at a distances of 20 cm apart experience a mutually attractive force of 4.9 x 10⁻⁵ N per unit length of the wire. Calculate the current.
- 11. A circular coil of 50 turns and radius 25 cm carries a current of 6A. It is suspended in a uniform magnetic field of induction 10⁻³ T. The normal to the plane of the coil makes an angle of 60° with the field. Calculate the torque of the coil.
- 12. A rectangular coil of 500 turns and of area $6 \times 10^{-4} \text{ m}^2$ is suspended inside a radial magnetic field of induction 10^{-4} T by a suspension wire of torsional constant 5×10^{-10} Nm per degree. Calculate the current required to produce deflection of 10° . (Ex)
- 13. The rectangular coil of area 20 cm x 10 cm with 100 turns of wire is suspended in a radial magnetic field of induction 5×10^{-3} T. If the galvanometer shows an angular deflection of 15° for a current of 1 mA, find the torsional constant of the suspension wire.
- 14. A moving coil galvanometer of resistance 20 $_{\Omega}$ produces full scale deflection for a current of 50 mA. How will you convert the galvanometer into i) an ammeter of range 20 A and ii)a voltmeter of range 120 Volt? **(Eg)**
- 15. A galvanometer has a resistance of 40 Ω. It shows full scale deflection for a current of 2 mA. How will you convert the galvanometer into a voltmeter of range 0 to 20 V? [0 20 V] (Ex)
- 16. The deflection galvanometer falls from 50 divisions when 12 ohm resistance is connected across the galvanometer .calculate the galvanometer resistance.
- 17. In a hydrogen atom electron moves in an orbit of radius 0.5 Å making 10^{16} evolutions per second. Determine the magnetic moment associated with orbital motion of the electron. (Given: $e = 1.6 \times 10^{-19} \text{ C}$) (Eg)

Ten Mark Questions:

Book Back Questions :

- 1. State Joule's law. Explain Joule's calorimeter experiment to verify Joule's laws of heating. **(P Y)**
- 2. Obtain an expression for the magnetic induction at a point due to an infinitely long straight conductor carrying current. **(P Y)**
- 3. Deduce the relation for the magnetic induction at a point along the axis of a circular coil carrying current. (P Y)
- 4. Explain in detail the principle, construction and theory of a tangent galvanometer. (**P**Y)
- 5. Define Ampere's circuital law. Applying it, find the magnetic induction due to along solenoid carrying current. **(PY)**
- 6. Deduce an expression for the force on a current carrying conductor placed in a magnetic field. (**P Y**)
- 7. Explain in detail the principle, construction and the theory of moving coil galvanometer.

Previous Year Questions :

- 8. Discuss the motion of charged particles in a uniform magnetic field.
- 9. Explain in detail the principle, construction, working and limitations of a cyclotron with a diagram.
- 10. Obtain an expression for the force between two long parallel current carrying conductors. Hence define 'ampere'.

IV. ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT

	One Mark Questions					
	Book Back Ques	tions :				
1.	Electromagnetic in	nduction is not used	d in (P Y)			
	a) transformer	b) room heater	c) AC generator	d) choke coil 🔥 💡		
2.	A coil of area of	cross section 0.5	m ² with 10 turns	in a plane which is		
	perpendicular to a	an uniform magneti	c field of 0.2 Wb/	m². The flux through		
	the coil is (P Y)					
	a) 100 Wb	b) 10 Wb	c) 1 Wb	d) zero		
3.	Lenz's law is in ac	cordance with the	law of (PY)			
	a) conservation of	charges	b) conservation o	f flux		
	c) conservation of	momentum	d) conservation c	of energy		
4.	The self – inducta	nce of a straight cor	nductor is (P Y)			
	a) zero	b) infinity	c) very large	d) very small		
5.	The unit Henry al	so be written as (P)	()			
	a) Vs A ⁻¹	b) Wb A ⁻¹	c) Ω s	d) all		
6.	An emf of 12 V is	induced when the	current in the coil o	changes at the rate of		
	40 A S ⁻¹ . The coeff	icient of self inducti	on of coil is (PY)			
	a) 0.3 H	b) 0.003 H	c) 30 H d) 4.8 H		
7.	A DC of 5 A produ	uces the same heati	ng effect as an AC o	of (P Y)		
	a) 50 A rms curren	nt sta	b) 5 A peak curre	nt		
	c) 5 A rms current		d) none of these			
8.	Transformer work	cs on (PY)				
	a) AC only b) D	Conly c) both AC a	nd DC d) AC mor	e effectively than DC		
9.	The part of the AC	generator that pass	es the current from t	he coil to the external		
	circuit is (P Y)					
4	a) field magnet	b) split rings	c) slip rings	d) brushes		
10.	In an AC circuit t	he applied emf e =	$E_0\sin(\omega t+\pi/2)$ lea	ads the current		
▲ ● ● ⁄	$I = I_0 \sin(\omega t - \pi/2)$	2) by (PY)				
	a) $\pi/2$	b) π/4	C) π	d) 0		
11.	Which of the follo	wing cannot be step	oped up in a transfo	ormer? (PY)		
	a) input current	b) input voltage	c) input power	d) all		
12.	The power loss is l	less in transmissior	lines when (P Y)			
	a) voltage is less b	ut current is more	b) both voltage ar	nd current are more		
	c) voltage is more	but current is less	d) both voltage a	nd current are less		

13	. Which of	the following devices do	oes not allow d.c to p	bass through (P Y)
	a) resisto	r b) capacitor	c) inductor	d) all the above
14	. In an ac c	circuit (PY)		
	a)the ave	erage value of current is	zero	
	b) the ave	erage value of square of	current is zero	
	c) the ave	erage power dissipation	is zero	A •
	d) the rm	is current is $\sqrt{2}$ times of	peak current.	
	Previous	Year Questions :		
15	. The angle	e between the area vecto	or \vec{A} and the plane of	of the area A is
	(a) π	(b) 2 π	(c) π/2	(d) zero
16	If the flux	x associated with a coil	varies at the rate of	1 Wb/minute then the
	induced e	e.m.f. is a) 1V	b) 1/60 V c) 60	d) 0.60V
17	A coil of a	area of cross-section 0.5 n	n² with 10 turns is in	a plane which is parallel
	to a unifo	orm magnetic field of 0.2	Wb / m ² . The flux t	hrough the coil is
	a) 100 WI	b b) 10 Wb	c) 1 Wb	d) zero
18	An emf 2	5V is induced when the	current in the coil cl	hanges at the of100As ⁻¹ .
	The co –e	efficient of self Induction	of coil is	
	a) 0.3 H	b) 0.25 H	c) 2.5 H	d) 0.25 mH
19	An emf o	f 12 V is induced when the	ne current in the coil	changes from 2 A to 6 A
	in 0.5 s. T	The coefficient of self-ind	uction of the coil is	
	a) 1.5 H	b) 6 H	c) 0.3 H	d) 30 H
20	. The gene	rator rule is		
	a) Flemin	ng's left hand rule	b) Fleming'	s right hand rule
	c) Maxwe	ell's right hand corkscrev	w rule d) Right har	nd palm rule
21	. The co-ef	ficient of self induction of	of a solenoid is inde	pendent of
	a) the nu	mber of turns of solenoic	1	
	b) area of	the cross section of the s	solenoid	
	c) the leng	gth of solenoid		
	d) the cu	rrent passing through th	ne coil	
22	. A rectang	gular coil is uniformly ro	otated in a uniform i	nagnetic field such that
	the axis of	f rotation is perpendicula	ir to the direction of the	he magnetic field. When
	the plane	e of the coil is perpendici	illar to the magnetic	field.
	a) (1) mag	gnetic flux is zero, (ii) inc	iuced e.m.f. is zero	
	b) (1) mag	gnetic flux is maximum,	(11) induced e.m.f. 18	
	c) (1) mag	gnetic flux is maximum,	, (11) induced e.m.f.	is zero
	a) (1) mag	gnetic flux is zero, (11) inc	iucea e.m.f. 18 maxif	num

In a three phase AC generator the three coil are fastened rigidly together and 23. are displaced from each other by an angle a) 90° b) 180° c) 120° d) 360° In steps-up transformer the output voltage is 11KV and the input voltage is 24. 220V. The ratio of number of turns of secondary to primary is a) 20 : 1 b) 22 : 1 c) 50 : 1 d) 1 : 50 25. In a transformer, eddy current loss is minimized by using a) laminated core made of mumetal b) laminated core made of stelloy c) shell type core d) thick copper wires A power of 11,000 W is transmitted at 220 V. The current through line wires is 26. a) 50 A b) 5 A c) 500 A d) 0.5A The r.m.s. value of an a.c. voltage with a peak value of 311V is 27. c) 50V b) 220V a) 110V d) 70.7V The r.m.s. value of the alternating current (AC) flowing throughout a resistor 28. is 5A. Its peak value is c) 7.07 A d) 7 A a) 3.536 A b) 70.7 A The effective value of alternating current is 29. a) $\frac{I_0}{2}$ b) $\frac{I_0}{\sqrt{2}}$ c) $I_0 \sqrt{2}$ d) $2I_{0}$ 30. In an a.c. circuit with an inductor a) voltage lags current by $\frac{\pi}{2}$ b) voltage and current are in phase d) current lags voltage by $\frac{\pi}{2}$ c) voltage leads current by π In an A.C. circuit, the current I = I_osin ($\omega t + \frac{\pi}{2}$) lags behind the e.m.f. 31. $e = E_o sin(\omega t + \frac{\pi}{2}) by$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ a) 0 d) π The reactance offered by 300 mH inductor to an AC supply of frequency 32. 50 Hz is a) 1046 Ω **b) 94.2** Ω c) 9420 Ω d) 104.6 Ω 33. In a AC circuit with capacitor only, if the frequency of the signal is zero, then the capacitive reactance is c) finite maximum d) finite minimum a) infinity b) zero For a d.c circuit, the value of capacitive reactance (Xc) is 34. c) $\frac{\pi}{2}$ b) infinity d) π a) Zero - 49 -

35.	In an a.c. circuit, the voltage leads the current by a phase of , then the circuit has				
	a) only an inductor (I.)	b) only a capacitor (C)			
	c) only a resistor (R)	d) L.C. and R is series			
36	When the frequency of AC increas	es, the capacitive reactance offered by			
00.	capacitor connected in the circuit	ee, and capacitate reactance entered by			
	a) increases b) decreases	c) remains the same d) becomes zero \checkmark			
37.	The instaneous emf and current equ	uations of an a.c circuit are respectively			
	$e = 200\sin(\omega t + \frac{\pi}{3})$ and $i = 10\sin\omega t$	The average power consumed over			
	one complete cycle is				
	a) 2000 W b) 1000 W	c) 500 W d) 707 W			
38.	In RLC series circuit, at resonance				
	a) current is minimum	b) impedance is maximum			
	c) circuit is purely inductive	d) current is in phase with the voltage			
39.	In LCR circuit when $X_L = X_C$ the curr	ent			
	a) is zero	b) is in phase with the voltage			
	c) leads the voltage	d) lags behind the voltage			
40.	In LCR series a.c. circuit, the phase d	ifference between current and voltage is			
	30° . The reactance of the circuit is 17	.32. The value of resistance is			
	a) 30 Ω b) 10 Ω	c) 17.32 Ω d) 1.732 Ω			
41.	In a series LCR circuit, at resonance				
	a) impedance (Z) maximum	b) current minimum			
10	c) equal to impedance (Z)	d) current maximum			
42.	In a series LCR circuit, at resonance				
	a) $X_{L} = X_{C}$ b) $X_{L} > X_{C}$	c) $X_{I} < X_{C}$ d) $\omega = \frac{I}{IC}$			
40					
43.	The resonant frequency of RLC circi	Let is v_0 . The inductance is doubled. The			
	capacitance also doubled. Now the re	esonant frequency of the circuit is			
	\mathbf{v}_{0}	a) $\frac{v_0}{v_0}$ d) $\frac{v_0}{v_0}$			
V/	a) $2 v_0$ b) $\frac{1}{2}$	c) $\frac{1}{4}$ c) $\frac{1}{\sqrt{2}}$			
44.	The Q-factor(quality factor) of an inductance L and capacitance C is	a.c. circuit containing a resistance R,			
	a) $Q = \frac{1}{\sqrt{LC}}$ b) $Q = \frac{1}{R} \sqrt{\frac{C}{L}}$	c) $\mathbf{Q} = \frac{1}{\mathbf{R}} \sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$ d) $\mathbf{Q} = \frac{1}{\sqrt{LR}}$			

In RLC ac circuit, instaneous emf and current are $I = I_0 \sin(\omega t - \frac{\pi}{3})$ and 45. $e = E_0 \sin \omega t$, phase difference between current and voltage. b) 180° c) 60° d) 4 a) zero 46. The average power consumed over one cycle in an a.c. circuit is **b**) $\mathbf{E}_{rms} \mathbf{I}_{rms} \cos \phi$ c) $\mathbf{E}_{rms} \mathbf{I}_{rms} \sin \phi$ a) $E_{rms}I_{rms}$ d) E₁ cos ϕ In an A.C. circuit average power consumed is 200 W and the apparent 47. power is 300 W. The power factor is d) 1 a) 1.5 b) 0.66 c) 0.33 48. The core used in audio frequency chokes is a) iron b) carbon c) lead d) steel In an A.C. circuit, the instantaneous values of emf and current are respectively 49. $e=200\sin\left(\omega t-\frac{\pi}{3}\right);i=10\sin\left(\omega t+\frac{\pi}{6}\right)$ The phase relation between current and volt age is: a) voltage lags behind current by a phase angle of $\frac{\pi}{3}$ b) current leads voltage by a phase angle of $\frac{\pi}{6}$ c) current leads voltage by a phase angle of $\frac{\pi}{2}$ d) voltage leads current by a phase angle of $\frac{\pi}{2}$ In step-up transformer the output voltage is 11 KV and the input voltage is 50. 220V. The ratio of number of turns of primary to secondary is a) 50 : 1 b) 1:50 c) 25 : 1 d) 1 : 25 If the frequency of AC circuit connected with an inductor of inductance 51. 0.03 H only is 50 Hz, then inductive reactance is a) 3.14 Ω b) 9.42 Ω d) 6.28 Ω c) 3 Ω 52. In a series LCR circuit, at resonance a) impedance (z) maximum b) current minimum d) $\gamma_0 = \frac{1}{\sqrt{LC}}$ c) impedance (z) is equal to R Q - factor of series resonant circuit is 53. a) $Q = \frac{1}{\sqrt{LC}}$ b) $Q = \frac{1}{R}\sqrt{\frac{C}{L}}$ c) $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$ d) $Q = \frac{1}{\sqrt{LR}}$ The instantaneous emf and current equation of an RLC series circuit are 54. $e=200\sin\left(\omega t-\frac{\pi}{6}\right)$. $i=20\sin\left(\omega t-\frac{\pi}{6}\right)$ The average power consumed per cycle is b) 2000 W c) 1000 W d) 500 W a) zero

55. A rectangular coil of wire palced in a uniform magnetic field such that the plane of the coil is parallel to the magnetic field. The magnetic flux linked with the coil and the emf induced are respectively a) zero and zero b) zero and maximum c) maximum and zero d) maximum and maximum In an AC circuit containing only a capacitor the instantaneous current is given 56. by the equation $I = I_0 \sin\left(\omega t + \frac{\pi}{3}\right)$. The instantaneous emf is given by the equation a) $e = E_0 \sin \omega t$ b) $e = E_0 \sin \left(\omega t - \frac{\pi}{6} \right)$ c) $e = E_0 \sin \left(\omega t + \frac{\sqrt{\pi}}{6} \right)$ d) $e = E_0 \sin \left(\omega t + \frac{\pi}{6} \right)$ The instantaneous curreent in an AC circuit containing a pure inductor is 57. $i = I_0 \sin \omega t$. The instantaneous emf is b) $e = E_0 \sin\left(\omega t - \frac{\pi}{2}\right)$ a) $e = E_0 \sin\left(\omega t + \frac{\pi}{2}\right)$ c) $e = E_0 \sin(\omega t - \pi)$ d) $e = E_0 \sin(\omega t + \pi)$ 58. In RLC series AC circuit at resonance b) Net reactance is zero a) Resistance is zero c) impedance is maximum d) voltage leads the current by phase a angle **PTA Objective Questions:** The reverse effect of Oersted experiment was demonstrated by _____ 1. b) Ohm c) Henry d) Lenz a) Faraday An emf of 12 volt is induced when the current in the coil changes at the rate 2. of $40As^{-1}$. The co-efficient of self induction of the coil is _____ a) 0.3 H b) 0.003 H c) 30 H d) 4.8 H Transformer works on 3. a) AC only b) DC only c) both AC and DC d) AC more effectively than DC A fuse wire has a current rating of 5 A. Then the peak value of the current in 4. the fuse wire is b) 1 A a) 0.7 A c) 7.07 A d) 70.7 A 5. The power loss is less in transmission lines when _____ a) voltage is less but current is more b) both voltage and current are more c) voltage is more but current is less d) both voltage and current are less A generator produces an emf given by e = 141 sin 88 t. The frequency and rms 6. value of voltage are ____ a) 50 Hz and 99.7 V b) 7 Hz and 49.5 V

d) 50 Hz and 49.5 V

c) 14 Hz and 99.7 V

7.	The emf in an AC containing only inductance will				
	a) lag behind the	current by $\pi/2$	b) leads behind (of current by $\pi/2$	
	c) have current ir	n phase with the app	olied voltage		
	d) always be out	of phase			
8.	An ideal transfor	mer has a power in	put of 10 kW. The	secondary current is	
	25 A. If the ratio of	of number of turns in	n the primary and t	the secondary coils is	
	5:1, then the pot	ential difference ap	plied to the primar	y is	
	a) 100 V	b) 200 V	c) 2000 V	d) 1500 V	
9.	Which of the follo	owing devices does	not allow d.c. to par	ss through?	
	a) resistor	b) capacitor	c) inductor	d) all the above	
10.	In a LCR circuit,	when $X_L = X_C$	_		
	a) current is minimum, impedance is maximum				
	b) current is maxi	imum, impedance is	maximum		
	c) current is maximum, impedance is minimum				
	d) current is mini	mum, impedance is	minimum		
11.	The unit henry ca	an also be written as			
	a) _{VsA⁻¹}	b) <i>WbA</i> ⁻¹	c) Ω_s	d) all	
12.	An aeroplane ha	ving a wingspan of	35 m flies at a spe	ed of 100 m/s. If the	
	vertical compone	nt of earth's magnet	ic field is 4×10 ⁴ T ,	then the induced emf	
	across the wingsp	oan is			
	a) 28 V	b) 2.8 V	c) 14 V	d) 1.4 V	
13.	The co - efficier	it of mutual induc	tion between a pa	air of coils depends	
	upon			6.1 11	
	a) size and shape	of the coil	b) number of turi	ns of the coil	
14	c) proximity of th		d) all the above		
14.	The generator ru			whether the second second s	
	a) Fleming sleft i	tand rule	b) Fleming s 1	right hand rule	
15 🔺	c) Maxwell's righ	t nand cork screw r	ale a) Ampere s s	wimming rule	
15.	EQuina The flue	tion 20 1 acts at rig	gnt angles to a col	I of area 20m ⁻ with	
	\sim 2000 W/b	h) 20000 W/h	c 0 Wb	1) 200 W/b	
16	The number of liv	b) 20000 VVD	C) U WD		
10.	a) magnetic flux	lies of force crossing	b) magnetic indu	15	
	c) induced emf		d) total flux		
17	If in an I CR circu	1 = 5000 X =	32680 R = 1000	then $\omega =$	
17.	a) 60°	b) 30 °	c) 45 °	d) 90°	
	aj oo	0) 50	() =0	u))0	

18.	Lenz's law is in accordance with law of conservation of						
	a) charges	b) momentum	c) mass	d) energy			
19.	Q factor has value	es lying between	for normal fr	equencies			
	a) 0 to 10	b) 10 to 50	c) 50 to 100	d) 10 to 100			
20.	Cores of chokes u	sed in low frequenc	y AC circuits are m	ade of			
	a) stelloy	b) mumetal	c) iron	d) aluminium			
21.	In an A.C. circu	it the applied en	$\inf e = E_0 Sin \left(\omega t + \frac{\pi}{2} \right)$	leads the current			
	$I = I_0 Sin\left(\omega t - \frac{\pi}{2}\right) b$	$pt - \frac{\pi}{2}$ by					
	a) $\frac{\pi}{2}$	b) $\pi/4$	c) π	d) 0			
22.	At what rate mus	st the current chang	ge in a 65 mH coil	to have a 1 volt self			
	induced emf?						
	a) $25 A s^{-1}$	b) 17 As ⁻¹	c) $25.4 As^{-1}$	d) 15.4As ⁻¹			
23.	Power loss due to	Joule - heating is al	so called as				
	a) copper loss	b) Eddy current lo	oss c) flux leakage	d) Hysteresis loss			
24.	The equation of a	25 cycle current sin	e wave having rms	value of 30 Å is			
	a) 30 sin 157 t	b) 30 sin 150 t	c) 30√2 sin157t	d) 30sin160 <i>t</i>			
25.	The power factor	of a choke coil havi	ng inductance "L"	and resistance "r" is			
	given by		2				
	a) $\sqrt{r^2 + \omega^2 L^2}$	b) $\frac{\sqrt{r^2 + \omega^2 L^2}}{r}$	c) $\frac{r}{\sqrt{r^2+\omega^2L^2}}$	d) $r^2 + \omega^2 L^2$			
26.	The Q factor of an	n a.c. circuit contair	ning a resistance R,	inductance L and a			
	capacitor C is						
	a) $Q = \frac{1}{\sqrt{LC}}$	b) $Q = \frac{1}{P} \sqrt{\frac{C}{L}}$	c) $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	d) $Q = \frac{1}{\sqrt{LR}}$			
27	The next of the	C concreter that r	R TC	from the soil to the			
27.	ovtornal circuit is	ic generator that p	basses the current	from the con to the			
	a) field magnet	b) slip rings	c) split rings	d) bruches			
28	The neak voltage	and neak current i	n a circuit containi	ng resistor alone are			
20.	220V and 1A resp	ectively then the po	ower in the circuit is				
	a) 110 W	b) 11 W	c) 110 kW	d) 0			
29.	The energy stored	l in a coil of inducta	nce 5H and resistar	nce 20Ω . When the			
Y	emf applied to the	e coil is 100 volt is					
	a) 62.5 J	b) 125 J	c) 12.5 J	d) 15.6 J			
30.	transmi	ts large amount of p	ower with low cos	t and high efficiency			
	a) two phase alter	rnator	b) three phase al	ternator			
	c) single phase alt	ernator	d) none of the abo	ove			

31.	AC frequency of 100 kHz to 100 MHz is required for				
	a) satellite purpo	se	b) domest	ic purpose	
	c) transmission o	of audio and video s	ignals d) high tra	nsmission	
32.	Power dissipation	n in an AC circuit in	which voltage and	current are given by	
	$E = 300 \sin(wt + \frac{2}{2})$	$\frac{\pi}{2}$) and $I = 6 \sin \omega t$ is			
	a) 0 watt	b) 750 watt	c) 375 watt	d) 1500 watt • 🔨 🍼	
33.	How much curre	ent is drawn by the p	primary of a transfo	ormer connected to a	
	220 V supply, wh	nen it delivers power	r to a 110 V and 55	0 W refrigerator.	
	a) 55 A	b) 2.5 A	c) 0.4 A	d) 44A	
34.	In low power AC	² dynamoes magneti	c field is provided	by	
	a) Permanent ma	ignets	b) electromagnet	s	
	c) horse-shoe mag	gnets	d) cylinder magn	ets	
35.	The average pow	ver of an ac is also ca	illed of t	he circuit	
	a) true power		b) instantaneous	power	
	c) reasonant pow	rer	d) RMS power		
36.	As the coil rotate	s with an angular ve	locity $(_{O})$ in an un	iform magnetic field,	
	the emf induced	is maximum when			
	a) $\omega t = 0$	b) $\omega t = \frac{\pi}{2}$	c) $\omega t = \frac{\pi}{4}$	d) $\omega t = \frac{3\pi}{2}$	
37.	In a three phase A	AC generator, the th	ee coils are incline	d at an angle of	
	a) 45°	b) 90°	c) 120°	d) 180°	
38.	For an ideal trans	sformer, efficiency <i>i</i>	1 is		
	a) greater than or	ne b) less than one	c) equal to one	d) infinity	
39.	Induction motors	are used in	_		
	a) Grinders	b) Generator	c) Refrigirators	d) Fans	
40.	The co - efficient	of mutual inductanc	e of a pair of coils i	s 4 mH. If the current	
	in one of the coils	s changes from 0.6 A	to 0.61 A in 0.02 se	econds, then induced	
	emf is				
	a) $20\mu V$ in the sa	ime coil	b) 2 mV in the c	other coil	
44	c) $20\mu V$ in the ot	her coil	d) $20mV$ in the s	ame coil	
41.	In a step-down tr	ansformer, the follo	wing condition sat	isfied	
40	a) $E_s > E_p$	D) $K < 1$	c) $I_p > I_s$	$d) N_P > N_S$	
42.	A wire cuts acros	$55 \text{ a mux of } 0.2 \times 10^{-2}$	weber in 0.12 seco	ond. what is the emf	
	ration = 1000 m	$\frac{1}{10000}$	a) 0.0167 M	4) 0 2 4 V	
	aj 0.00 v	0) 0.02 V	CJ 0.0107 V	u) 0.24 V	

Choke coils are commonly seen in _ 43. a) incandescent bulbs b) fluorescent tubes c) stabiliser circuits d) radio 44. The unit of self inductance is a) $\frac{Weber - ampere}{turns}$ b) Weber-turns ampere c) $\frac{Weber - turns}{ampere^2}$ d) $\frac{Weber - turns}{Tolt}$ A circuit will have flat resonance, if the Q value is _ 45. b) infinits c) low a) high d) zero 400 MW power produced at 15,000 V at Nevveli power station is stepped 46. upto _____ before transmission c) 110, 000 V d) 20, 000 V a) 22, 000 V b) 230, 000 V In a step down transformer, the input voltage is 22 KV and the output 47. volt age is 550 V. The ratio of number of turns in the primary to that in the secondary is c) 1 : 20 a) 1 : 40 b) 40:1 d) 20:1 Flux loss can be minimised by 48. a) using wires of low resistance b) using laminated core made of mumetal c) using shell type of core d) using laminated core made of stelloy 49. The co - efficient of mutual induction between two long solenoids S_1 and S_2 , whose core is filled with a magnetic material of perimeability a) $M = \frac{\mu_0 N_2 N_1 A}{l}$ c) $M = \frac{\mu N_1 N_2 A}{l}$ b) $M = \frac{\mu_0 N_2 N_1}{l}$ d) $M = \frac{\mu N_1 N_2 A I}{l}$

Three Mark Questions: Book Back Questions :

- 1. What is electromagnetic induction? (**P**Y)
- 2. State Faraday's laws of electromagnetic induction. (**PY**)
- 3. State lenz's law in electromagnetic induction. (**P**Y)
- 4. Define self –inductance. Give its unit. (**P**Y)
- 5. Define the unit of self inductance. **(P Y)**
- 6. Define coefficient of mutual induction.
- 7. Give the practical application of self induction.
- 8. State Fleming's right hand rule. (**P** Y)
- 9. Define rms value of a.c. (**P Y**)
- 10. State the methods of producing induced emf. (PY)
- 11. What is poly phase AC generator?
- 12. What is inductive reactance?
- 13. Define alternating current and give its expression.
- 14. What is resonant frequency in LCR circuit?
- 15. Mention the difference between the step up and step down transformer.
- 16. What is capacitive reactance?
- 17. Define power factor.
- 18. Why a d.c. ammeter cannot read a.c.? (**P**Y)
- 19. Define quality factor. What does it refer? (**P Y**)
- 20. A capacitor blocks d.c but allows a.c Explain.
- 21. What happens to the value of current in RLC series circuit, if frequency of the source is increased?
- 22. Differentiate between self- inductance and mutual inductance.
- 23. Discuss the advantages and disadvantages of a.c over d.c.
- 24. Define efficiency of a transformer. (PY)

Previous Year Questions :

- 25. A coil of area of cross-section 0.5 m² with 10 turns is in a plane perpendicular to a uniform magnetic field of 0.2 Wb/m². Calculate the flux through the coil.
- 26. An e.m.f. of 5 V is induced when the current in the coil changes at the rate of 100 As⁻¹. Find the coefficient of self-induction of the coil.
- 27. If the rate change of current of 2 As⁻¹ induces an emf of 10 mV in a solenoid, what is self-inductance of the solenoid?
- 28. A solenoid of length 1m and 0.05m diameter has 500 turns. If a current of 2A passes through the coil, calculate the co-efficient of self induction of the coil.

- 29. Calculate the mutual inductance between two coils when a current of 4 A changing to 8 A in 0.5 s in one coil, induces an e.m.f. of 50 mV in the other coil. **(Eg)**
- 30. The wings of an aero plane are 10 m apart. The plane is moving horizontally towards the north at a place where the vertical component of earth's magnetic field is 3 x 10⁻⁵T. Calculate the induced e.m.f set up between the tips of the wings if the velocity of the aero plane is 720 km/hr.
- 31. An aircraft having a wing span of 20.48 m flies due north at a speed of 40 ms^{-1} . If the vertical component of earth's magnetic field at the place is 2×10^{-5} T, calculate the e.m.f. induced between the ends of the wings. (Eg)
- 32. What is eddy current (Foucault's current)?
- 33. Mention the applications of eddy current?
- 34. State the principle of transformer.
- 35. 11 kW power is transmitted at 22,000 V through a wire of resistance 2 Ω . Calculate the power loss.
- 36. An ideal transformer has transformation ratio 1: 20. If the input power and primary voltage are 600 W and 6 V respectively, find the primary and secondary currents.
- 37. A capacitor of capacitance 2μ F is in a.c circuit of frequency 1000 Hz. If the r.m.s value of the applied e.m.f is 10 V, find the effective current flowing in the circuit. **(Eg)**
- 38. Write the equation of a 25 cycle current sine wave having rms value of 30 A.
- 39. Calculate the capacitive reactance of a capacitor of capacitance 2F in an A.C. circuit of frequency 1000 Hz.
- 40. Give the difference between AF choke and RF choke.
- 41. Magnetic field through a coil having 200 turns and cross sectional 0.04 m² changes 0.1 wbm⁻² to 0.04 wbm⁻². Find the induced emf.
- 42. Calculate the power loss in the form of heat when a power of 11,000 W is transmitted at 220 V.

Five Mark Questions:

Book Back Questions :

- 1. State Lenz's law and illustrate through an experiment. Explain how it is in accordance with the law of conservation of energy.
- 2. Obtain an expression for the self-inductance of a long solenoid.
- 3. Explain the mutual induction between the long solenoids. Obtain an expression for the mutual inductance. (**P Y**)
- 4. Explain how emf can be induced by changing the area enclosed by the coil. **(PY)**
- 5. Describe the principle, construction and working of three-phase a.c generator.

- 6. Explain how power can be transmitted efficiently to long distance.
- 7. Obtain an expression for the rms value of an a.c.
- 8. Obtain an expression for the current flowing in a circuit containing resistance only to which alternating emf is applied. Find the phase relationship between voltage and current.
- 9. Derive an expression for the average power in an ac circuit.
- 10. Describe the principle, construction and working of a choke coil.Previous Year Questions :
- 11. Explain the Energy stored in a Inductor.
- 12. An a.c. generator consists of a coil of 10,000 turns and of area 100 cm². The coil rotates at an angular speed of 140 rpm in a uniform magnetic field of 3.6×10^{-2} T. Find the maximum value of the emf induced. (Eg)
- 13. What is eddy current? Give its applications. How they are minimized.
- 14. What is efficiency of a transformer? Explain the different energy losses in a transformer? How can they be minimized?
- 15. What are the different energy losses in a transformer? How can they be minimized?
- 16. Obtain an expression for the current flowing in a circuit containing inductance only to which alternating emf is applied. Find the phase relationship between voltage and current.

Ten Mark Questions: Book Back Questions :

- 1. Discuss with theory the method of changing emf in a coil by changing its orientation with respect to the direction of the magnetic field. **(P Y)**
- 2. Describe the principle, construction and working of a single-phase a.c generator. (PY)
- 3. Explain the principle of transformer. Discuss its construction and working. **(P Y)**
- 4. What are eddy currents? Give their applications. How are they minimized? (**PY**)
- 5. Obtain an expression for the current flowing in a circuit containing a pure inductance. Find the phase relationship between voltage and current. (**P Y**)
- 6 Obtain an expression for the current flowing in a circuit containing capacitance only to which alternating emf is applied. Find the phase relationship between voltage and current. (**P Y**)
 - A source of alternating emf is connected to a series combination of a resistor R, an inductor L and a capacitor C. Obtain with the help of a vector diagram and impedance diagram, an expression for the (i) effective voltage (ii) impedance (iii) phase relationship between current and voltage.(PY)

V. ELECTROMAGNETIC WAVES AND WAVE OPTICS

One Mark Questions Book Back Questions : 1. In an electromagnetic wave (**P**Y) a) power is equally transferred along the electric and magnetic fields b) power is transmitted in a direction perpendicular to both the fields c) power is transmitted along electric field d) power is transmitted along magnetic field 2. Electromagnetic waves are (**P Y**) a) transverse b) longitudinal c) may be longitudinal or transverse d) neither longitudinal nor transverse Refractive index of glass is 1.5. Time taken for light to pass through a glass 3. plate of thickness 10 cm is c) 5 x 10⁻⁸ s d) 5 x 10⁻¹⁰ s a) 2 x 10⁻⁸ s b) 2 x 10⁻¹⁰ s In an electromagnetic wave the phase difference between electric field E and 4. magnetic field $\frac{1}{2}$ is (**PY**) b) $\pi/2$ d) zero a) $\pi/4$ **C**) π 5. Atomic spectrum should be (PY) a) pure line spectrum b) emission band spectrum c) absorption line spectrum d) absorption band spectrum 6. When a drop of water is introduced between the glass plate and Plano convex lens in Newton's rings system, the ring system (P Y) a) contracts b) expands c) remains same d) first expands, then contracts 7. A beam of monochromatic light enters from vacuum into a medium of refractive index u. The ratio of the wavelengths of the incident and refracted waves is a) µ : 1 b)1:μ c) μ^2 : 1 d) 1 : μ^2 8. If the wavelength of the light is reduced to one fourth, then the amount of scattering is (**P**Y) a) increased by 16 times b) decreased by 16 times d) decreased by 256 times c) increased by 256 times In Newton's ring experiment the radii of the mth and (m+4)th dark rings are 9. respectively $\sqrt{5}$ mm and $\sqrt{7}$ mm. What is the value of m? (**P** Y) a) 2 b) 4 c) 8 d) 10

The path difference between two monochromatic light waves of wavelength 10. 4000\AA is 2 x 10^{-7} m. The phase difference between them is d) $\frac{\pi}{2}$ c) $3\frac{\pi}{2}$ b) 2π a) π In Young's experiment, the third bright band for wavelength of light 6000 Å 11. coincides with the fourth bright band for another source in the same arrangement. The wavelength of the another source is b) 6000 Å d) 4000 Å a) 4500 Å c) 5000 Å A light of wavelength 6000 Å is incident normally on a grating 0.005 m wide 12. with 2500 lines. Then the maximum order is (**P Y**) a) 3 b) 2 d)4c) 1 A diffraction pattern is obtained using a beam of red light. What happens if 13. the red light is replaced by the blue light? (**P**Y) b) no change a) bands disappear c) diffraction pattern becomes narrower and crowded together d) diffraction pattern becomes broader and farther apart The refractive index of the medium, for the polarising angle 60° is (PY) 14. c) 1.5 a) 1.732 b)1.414 d) 1.468 **Previous Year Questions :** Velocity of the electromagnetic waves through vacuum is 15. b) $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ c) $\sqrt{\frac{\mu_{o}}{\epsilon_{o}}}$ d) $\sqrt{\frac{\varepsilon_{o}}{\mu}}$ a) $\sqrt{\mu_{o}\epsilon_{o}}$ The existence of electromagnetic waves was confirmed experimentally by 16. b) Maxwell d) Planck a) Hertz c) Huygens Which one of the following is not an electromagnetic wave? 17. b) γ - rays a) x-rays c) U-V rays d) β - rays The radiations used in physiotherapy are 18. a) ultraviolet b) infrared c) radio waves d) microwaves Which of the following is used to study crystal structure? 19. b) Infra red rays c) UV rays a) micro wave d) X- ray 20. Which of the following gives rise to continuous emission spectrum? a) Electric filament lamp b) Sodium vapour lamp d) Calcium salt in Bunsen flame c) Gases in the discharge tube 21. Electric filament gives rise to a) Line spectrum b) Continuous spectrum d) Line absorption spectrum c) Band spectrum

22. The wavelength of D1 and D2 lines emitted by sodium vapour lamp is a) 589.96nm, 589nm b) 589nm, 589.6nm c) 589.6nm, 589nm d) 589nm, 589.3 nm 23. The photoelectric effect can be explained on the basis of a) corpuscular theory of light b) wave theory of light c) electromagnetic theory of light d) quantum theory of light 24. The dark lines found in the solar spectrum are called a) Raman lines b) Fraunhofer lines c) Stoke's lines d) Anti-Stoke's lines According to Focault and Michelson experiment the velocity of light in a rarer 25. medium is : a) greater than in a denser medium b) lesser than in a denser medium c) equal to that in a denser medium d) either greater or lesser than in a denser medium In Raman effect, the incident photon makes collision with an excited molecule 26. of the substance. The scattered photon gives rise to b) anti-Stoke's line a) Stoke's line d) Zeeman line c) Rayleigh line In Raman effect, if the scattered photon gains energy, it gives rise to 27. a) stoke's line b) anti - stoke's line c) stoke's and anti-stoke's lines d) Rayleigh line In Raman effect, the spectral line with lower frequency than the incident 28. frequency is a) Fraunhofer line b) Rayleigh line c) stoke's line d) anti - stoke's line A ray of light passes from a denser medium into a rarer medium. For an angle 29. of incidence of 45°, the refracted ray grazes the surface of separation of the two media. The refractive index of the denser medium is b) $\frac{1}{\sqrt{2}}$ d) 2 c) $\sqrt{2}$ If 'i' is the angle of incidence, the angle between the incident wave front and 30. normal to the reflecting surface is b) 90° - i c) $3\pi/2$ a) i d) $\pi/2$ If C is the velocity of light in vacuum, the velocity of light in a medium with 31. refractive index μ is г

a)
$$\mu C$$
 b) $\frac{C}{\mu}$ c) $\frac{\mu}{C}$ d) $\frac{1}{\mu C}$

If the velocity of light in a medium is $2.25 \times 10^8 \text{ ms}^{-1}$, then the refractive index 32. of the medium will be a) 1.5 b) 0.5 c) 1.33 d) 1.738 The refractive index of glass is 1.5. The velocity of light in glass is 33. a) 2 x 10⁸ ms⁻¹ b) 4.5 x 10⁸ ms⁻¹ c) 3 x 10⁸ ms⁻¹ d) 1.33 x 108 ms⁻¹ In young's double slit experiment, band width â contains 34. a) a bright band only b) a dark band only c) either a bright band or a dark band d) both a bright band and a dark band 35. In Young's double slit experiment, the separation between the slits is halved, and the distance between the slits and the screen is doubled. Then the fringe width is d) quadrupled a) unchanged b) halved c) doubled Waves from two coherent sources interfere with each other. At a point where 36. the trough of one wave superposes with the trough of the other wave, the intensity of light is a) maximum b) minimum c) zero d) no change Soap bubbles exhibit brilliant colours in sun light is due to 37. a) scattering of light b) diffraction of light d) interference of light c) polarisation of light The phenomenon of light used in the formation of Newton's ring is 38. b) interference a) diffraction c) refraction d) polarisation In Newton's ring experiment, light of wavelength 5890Å is used. The order of 39. the dark ring produced where the thickness of the air film is 0.589 μ m is a) 2 b) 3 d) 5 c) 4 The radii of Newton's dark rings are in the ratio 40. a) 1:2:3.... b) $\sqrt{1}:\sqrt{2}:\sqrt{3}...$ c) $\sqrt{1}:\sqrt{3}:\sqrt{5}...$ d) 1:4:9..... The ratio of the radii of the 4th and 9th dark rings in Newton's rings 41. experiment is a) 4 : 9 b) 2:3 c) 16 : 81 d) 3 : 2 In case of Fraunhofer diffraction, the wavefront undergoing diffraction is a) spherical wavefront b) cylindrical wavefront c) elliptical wavefront d) plane wavefront In a plane diffraction grating, the unit of grating element is 43. c) metre⁻¹ a) no unit b) metre d) degree

44. A ray of light travelling in a rarer medium and reflected at the surface			d at the surface of a				
		denser medium au	itomatically underg	goes a	1 -		
		a) phase change of	$\pi/2$	b) phase change of	$t 2\pi$		
		c) path difference of λ d) path difference of $\lambda/2$					
	45.	In the grating form	nula the unit of N i	S			
		a) metre	b) metre ⁻¹	c) no unit	d) (metre) ²		
	46.	In a plane transmis	ssion grating the w	idth of a ruling is 12	2000 Å and the width		
		of the slit is 8000 Å the grating element is					
		a) 20 µm	b) 2 μm	c) 1 µm	d) 10 µm		
	47.	The transverse	nature of light w	vaves is demonst	rated only by the		
		phenomenon of					
		a) interference	b) diffraction	c) polarisation	d) reflection		
	48.	Unpoliarised light	passes through a t	ourmaline crystal. T	he emergent light is		
		analysed by an ana	lyser. When the ana	lyser is rotated thro	ugh 90°, the intensity		
		of light					
		a) remains uniform	nly bright				
		c) varies between maximum and minimum					
		b) remains uniformly dark					
		d) varies between	maximum and zer	10			
	49.	A ray of light is inc	cident on a glass pla	ate at its polarising	angle. The angle		
		between the incide	ent ray and the refle	ected ray is	0 0		
		a) 57.5°	b) 32.5°	c) 90°	d) 115°		
	50.	The polarising any	gle for water is 53°	4'. If the light is in	ncident at this angle		
		on the surface of	on the surface of water the angle of refraction in water is				
		a) 53°	b) 26°3	c) 30°	d) 36° 56′		
	51.	When a ray of ligh	t is incident on a gl	ass surface at polar	ising angle of 57.5°.		
		the angle between the incident ray and the reflected ray is					
		a) 57.5°	b) 32.5°	c) 115°	d) 90°		
	52 🔨	A ray of light is	incident on a gla	ss surface such th	at the reflected ray		
		is completely pla	ne polarised. The	angle between th	e reflected ray and		
		the refracted ray i	s	ungle between un	e reflected ray and		
	\mathbf{V}	a) 57 5°	b) 32 5°	c) 90°	d) 115°		
	53	In nicol prism the	ordinary ray is r	revented from cor	ning out of Canada		
	00.	halsam by the pho	nomenon of				
		a) reflection		b) polarization			
		a) diffusction		d) total internal -	offection		
		c) diffraction		uj total înternal r	enection		

54.	The nature of wave front corresponding to extra ordinary ray inside a			
	calcite crystal is	1.) 1 1	-) -11:(!1	1) . 1. 1 1
FF	a) plane	b) spherical		d) cylindrical
55.	o) Tourne aline	which one is plaxia		d) min
	a) rournaine	b) ice	c) calcite	d) mica
56.	An example of ur	laxial crystal is		
57	a) I ourmaine	b) mica	c) topaz	d) selenite
57.	which of the folic	wing is a blaxial cr	ystal ?	
EQ	a) calcite	b) quartz	c) tourmaline	d) topaz
58.	of the following,	h) Are servite	a) Taraz	
50		b) Aragonite	c) Topaz	d) Quartz
59.	One of the follow	ing, optically active	e material is	10 1.1
(0	a) socium chioric	le b) calcium chiori	de c) sodium	aychiorine
60.	The optical rotation	on does not depend	on	1.1.1
	a) concentration of	of the solution	b) frequency of th	e light used
(1	c) the temperatur	e of the solution	d) intensity of the	e light used
61.	which of the folic	wing is not an opti	Ically active materia	11?
	a) Quartz		b) Sugar crystals	. J.,
(2	c) l'urpentine oil		a) Calcium chior	
62. A light of wavelength 4000 A after travelling a distance of 2 μ m			e of 2 µm produces a	
	phase change of :		π	-1) ^π
(0)	a) zero	D) 3π	$\frac{c}{2}$	a) $\frac{1}{3}$
63.	According to Fou	cault and Michelson	a experiment the ve	locity of light in a
	a) greater than in a denser modium			
	b) losser then in a denser modium			
	c) aqual to that in	a denser medium		
	c) equal to that in a denser medium			
	d) enner greater (or lessor than in a u	enser meutum	
64.	In Snell's law of r	efraction $\mu = \frac{\sin r}{\sin r}$,	¹ is :	
.	a) directly propor	rtional to sin i	b) inversely prop	ortional to sin r
	c) both (a) and (b)	d) independent o	of (a) and (b)
65.	Which of the follo	owing is not an elec	tromagnetic waves	?
	a) x - rays	b) γ– rays	c) u - v rays	d) β–rays
66.	The scattering of	sunlight by gas mo	lecules in the earth'	s atmosphere is
	a) Raman's effect		b) α - scattering	
	c) Tyndall scatter	ıng	d) Kayleigh scatt	ering

67.	67. A wave of ' λ ' correspond to a phase of 2π. Calculate the phase wh distance of ' δ ' correspond to a phase of ϕ		
	a) $\phi = \frac{2\Pi}{\lambda} \mathbf{x} \delta$ b) $\phi = \frac{\lambda}{2\pi} \mathbf{x} \delta$	b) $\phi = \frac{2\pi}{\delta} \times \lambda$	d) $\phi = \frac{\pi}{2\lambda} \times \delta$
68.	The refractive index of a materia	al for a polarising angle	of 55° is
	a) 1.4281 b) 1.7321	c) 1.4141	d)1.5051
69.	A ray of light travelling in a	air is incident on a d	enser surface at an 🚽
angle of 60°. If the velocity of light in the denser of refraction			refraction inside the
	denser medium is		
	a) 30° b) sin ⁻¹ (0.75)	c) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ d) si	$n^{-1}(0.6666)$
70.	A ray of light incident nor	mally on a glass su	rface of refractive
	index 1.5. The angle of refraction	n is	
	a) 30° b) $\sin^{-1}(0.6666)$	c) zero d) sir	$1^{-1}(0.75)$
71.	In Newton's experiment, when	a wavelength of light	λ and plano convex
	lens of radius of curvature 50 cm	n is used, the radius of 10) th dark ring $\sqrt{3}$ mm.
	Then with the same wave lengt	h, a plano convex lens o	f radius of curvature
	2 m is used , the radius of the 10	th dark ring is	
	a) $3mm$ b) $2\sqrt{3}$ mm	c) 3√3 mm	d) $4\sqrt{3}$ mm
72.	 In Raman effect, wavelength of incident light is 5890 Å. THe wavelength of stokes and antistokes lines are respectively a) 5885 Å and 5880 Å b) 5895 Å and 5900 Å c) 5885 Å and 5895 Å 		
	PTA Objective Questions		
1	Angle between the electric comr	opont and magnetic cor	nnonont of an alastra
1.	magnetic wave is	onent and magnetic cor	inponent of all electro
	$\frac{1}{2}$		d) -
2	a) $(1 - 1)^{n/4}$	C_{J} II/2	$u_{j,n}$
۷.	alactromognotic yrays is	e electric field and fi	lagnetic neid of an
	b) =/4	a $\pi/2$	d) -
2	$b) \frac{\pi}{4}$	$C) \pi/2$	α) π
э.	Electromagnetic waves are	1.) .:	1
\checkmark	a) mechanical waves	b) similar to soun	d waves
X	c) transverse in nature	d) longitudinal in	nature
4.	If an electromagnetic wave is pro	opagating along x - direc	tion and electric field
	variation is along y - direction th	nen the magnetic field v	ariation will be
	a) along x - direction b) inclined at an angle of	45° with x - direction
	c) along y direction	d) along z - direction	

5.	In an electromagr	netic wave		
	a) power is equal	lv transmitted alon	g electric and mag	netic fields
	b) power is trans	mitted in a directio	n perpendicular t	o the field
	c) power is transp	nitted along electric	r field	
	d) power is transr	nitted along magne	tic field	
6	Electromagnetic y	vaves are		
0.	a) transverse	vuves ure	b) longitudinal	
	c) may be longitu	dinal or transverse	d) poither longitu	idinal nor transverse
7	If the operator of the	alactromagnetic	$c_{\rm refiner}$ is (E') then the	porgy assisted with
7.	oloctric field vocto	r electromagnetic w		inergy assiciated with
	a) F	b) 2F	(E) F/4	
8	The velocity of el	ectromagnetic way	es in vacuum or free	e space is
0.	1		1	
	a) $\overline{\mu_0 \varepsilon_0}$	b) $\mu_0 \varepsilon_0$	c) $\overline{\sqrt{\mu_0 \epsilon_0}}$	d) $\sqrt{\mu_0 \varepsilon_0}$
9.	Electromagnetic v	vaves are not defle	ceted in electric an	d magnetic fields, be
	cause			
	a) they travel with	n very high velocity	b) they are cha	rgeless waves
	c) they travel even	n in vacuam 🛛 🖒	d) they are tran	sverse in nature
10.	Existence of electr	omagnetic waves v	vas confirmed expe	erimentally by
	a) Maxwell	b) Henry	c) Hertz	d) Huygen
11.	In Hertz experime	ental arrangement,	the two metal plate	es A and B are placed
	with a separation	of		
	a) 6 m	b) 60 mm	c) 6 cm	d) 60 cm
12.	Frequency of ele	ectromagnetic way	ves produced by	Hertz arrangement
	was about	×		
	a) 5×10 ⁷ Hz	b) $50 \times 10^7 Hz$	c) $8 \times 10^{14} Hz$	d) $4 \times 10^{14} Hz$
13.	The frequency of	oscillation of charge	es between the plat	es A and B in Hertz
	experimental setu	p is given by		
		b) $\frac{1}{L}$	(1)	$\frac{1}{C}$
	a) $2\pi\sqrt{LC}$	$2\pi \sqrt{C}$	$2\pi\sqrt{LC}$	$2\pi \sqrt{L}$
14.	Frequency range	of electromagnetic s	spectrum is	
	a) 10^{-3} Hz - 10^{22} Hz		b) 10^3 Hz $- 10^{22}$ Hz	
	c) $10 Hz - 10^{22} Hz$		d) $10 Hz - 10^{-5} Hz$	
15.	Physical propertie	es of electromagnet	ic wavs are determ	ined by their
	a) wavelength	b) sources	c) method of exci	tation d) all these

16.	The overlapping in certain parts of the	e electromagnetic	spectrum reveals that
	a) can be produced by only one metho	nd b) bas very	v high energy values
	c) can be produced by different meth	d d) has very	v low energy values
17	Frequency band of radio waves used i	in cellular phones	is
17.	a) high frequency	b) low frequency	7
	c) ultra high frequency	d) very low frequency	lency
18.	Frequency range if AM band of radio	waves is from	
201	a) 54 MHz to 890 MHz	b) 530 KHz to 10	8 MHz
	c) 530 KHz to 1710 KHz	d) 88 MHz to 108	8 MHz
19.	, Radio waves used in television comm	unication is rangi	ing from
	a) 54 MHz to 890 MHz	b) 530 MHz to 1	08 MHz
	c) 530 KHz to 1710 KHz	d) 88 MHz to 10	8 MHz
20.	Radiation used to destroy bacteria and	d for sterilizing st	urgial instruments are
	a) radio waves	b) X - ray	
	c) ultra violet radiation	d) gamma rays	
21.	Microwaves are used in		
	a) radio communication systems	b) television com	munication systems
	c) Radar communication systems	d) radio & TV co	mmunications
22.	Infrared absorption spectrum is used	to study	
	a) crystal structure	b) molecular str	ucture
	c) atomic structure	d) electronic con	figuration
23.	Wavelength range of visible portion of	of electromagnetic	spectrum is from
	a) $6 \times 10^{-10} m$ to $4 \times 10^{-7} m$	b) 4×10^{-7} m to 8	$3 \times 10^{-7} \mathrm{m}$
	c) $8 \times 10^{14} m$ to $4 \times 10^{14} m$	d) $10^{-3}m$ to $0.3m$	
24.	Atoms and molecules in an electrical of	discharge produc	e
	a) X - rays b) visible light	c) IR rays	d) UV rays
25.	Infrared lamps are used in		
	a) weather forecasting	b) Infra red phot	ography
	c) Physiotherapy	d) sterlizing surgical instrument	
26.	Radiation used in the detection of forg	ged documents ar	nd finger prints in
	forensic laboratories is		
	a) IR rays b) UV rays	c) gamma rays	d) X - rays
27.	UV rays are used to find		
	a) crystal structure	b) nuclear struct	ure
	c) structure of atoms	d) molecular stru	acture

28. Match the radiations with their applications A) IR rays a) molecular structure B) UV rays b) crystal structure C) X - rays c) nuclear structure D) γ - rays d) structure of atoms a) A(a) B(b) C(c) D(d)b) A(a) B(d) C(b) D(c) c) A(c) B(b) C(d) D(a)d) A(a) B(c) C(d) D(b)29. When the light emitted by the source is directly examined by a spectrometer, the spectrum obtained is a) continuous spectrum b) emission spectrum c) band spectrum d) absorption spectrum Wavelength of two sodium lines $(D_1 \text{ and } D_2)$ are 30. b) 5893Å and 5890Å a) 8590Å and 8596Å d) 6958Å and 6950Å c) 5896Å and 5890Å Spectrum produced by incandescent solid at high temperature is 31. b) line emission spectrum a) continuous emission spectrum c) continuous absorbtion spectrum d) line absorption spectrum 32. Spectrum produced by electric filament lamp a) depends on temperature of the source only b) is independent of temperature of the source c) depends on characteristic of the source d) depends on method of excitation 33. The spectrum, consisting of unbroken luminuous bands of all wavelengths containing all colours from red to violet is given by a) mercury in mercury vapour lamp b) Calcium and barium salts in Bunsen flame c) carbon arc lamp d) CO_2 gas in molecular state in discharge tube Free excited atoms emit ______ spectrum a) continuous emission b) line emission c) band emission d) line absorption spectrum is characteristic of the emitting substance and is used to identify the gas a) Continuous emission b) Line emission d) Line absorption c) Continuous absorption

36.	Ammonia and nitrogen in molecular state in the discharge tube gives		
	a) continuous emission	b) line emission	
	c) band emission	d) line absorption	
37.	Spectrum which is the characteristic of	of the absorbing substance is	
	a) line emission spectrum	b) band emission spectrum	
	c) absorption spectrum	d) emission spectrum	
38.	When the temperature of the solid is i	increased, the spectrum spread from	
	a) red to green b) blue to green	c) red to blue d) violet to red	
39.	If a white light is allowed to pass through	ugh the solution of blood or chlorophyll	
	the resulting spectrum is		
	a) line absorbtion	b) band absorption	
	c) continuous absorption	d) line emission	
40.	The spectrum used for making dye is		
	a) line absorption	b) band absorption	
	c) continuous absorption	d) line emission	
41.	Dark lines appearing in the solar spec	ctrum are called	
	a) Raman lines b) Tyndall lines	c) Fraunhofer lines d) Rayleigh lines	
42.	Temperature of sun's outer layer is ab	pout	
	a) $14 \times 10^6 K$ b) $14 \times 10^7 K$	c) 6000° C d) 6000 K	
43.	Lifetime of atoms of the substan	nce exhibiting the phenomenon of	
	fluorescence is		
	a) more than $10^{-5} s$ b) equal to $10^{-5} s$	c) less than 10^5 s d) equal to 10^3 s	
44.	Delayed fluorescence is known as		
	a) luminescence	b) bio - luminescence	
	c) phosphorescence	d) reflection	
45.	According to corpuscular theory, the of the corpuscles	difference in colours is due to different	
1	a) shapes b) sizes	c) velocities d) energies	
46.	According to corpuscular theory, wh	en the corpuscules approach a surface	
K •/	between a two media, if they are attra	acted it gives to the phenomenon of	
	a) reflection b) scattering	c) refraction d) inteference	
47.	47. "Velocity of light in denser medium is greater than the velocity		
	medium" - this statement is TRUE in		
	a) corpuscular theory	b) wave theory	
	c) electromagnetic theory	d) quantum theory	

48.	Experimental results of Focault on velocity of light do not support		
	a) corpuscular theory	b) wave theory	
	c) electromagnetic theory	d) quantum theory	
49.	"No material medium is necessary f	or the propagation of light waves" this	
	statement is 'TRUE' according to		
	a) corpuscular theory	b) wave theory	
	c) electromagnetic theory	d) quantum theory	
50.	Energy associated with each photon i	s given by	
	a) $\mathbf{E} = \mathbf{h}\mathbf{v}$ b) $E = \frac{h}{v}$	c) $E = \frac{h}{v^2}$ d) $E = hv^2$	
51.	The value of Planck's constant is		
	a) $6.625 \times 10^{34} Js$ b) $6.625 \times 10^{-34} Js$	c) $66.25 \times 10^{34} Js$ d) $6.025 \times 10^{23} Js$	
52.	Light wave behaves as		
	a) particle in both high and low energ	y ranges	
	b) particle in low energy range, but as	s wave in high energy range	
	c) wave in both high and low energy	ranges	
	d) wave in low energy range, but as	particle in high energy range	
53.	Strength of scattering depends on		
	a) wavelngth of the light	b) size of the particle	
	c) both (a) and (b)	d) velocity of light	
54.	Absorption of light by the molecules,	followed by its reradiation in different	
	directions is called		
	a) reflection	b) multiple reflection	
	c) scattering	d) dispersion	
55.	According to Rayleigh scattering law	the amount of scattering is	
	a) directly proportional to χ^4	b) inversely proportional to λ^4	
56	c) directly proportional to χ^2	a) inversely proportional to χ^2	
50.	a) colloidal particles	h) atmosphere	
	c) molecules of liquid	d) Raman effect	
57	When light passes through a colloid	al solution, its path is visible inside the	
	solution. This is due to		
	a) Rayleigh scattering	b) Raman effect	
	c) Tyndall scattering	d) Scattering of light by atmosphere	
58.	In Raman effect, lines of shorter wave	elengths are called	
	a) Stokes lines	b) antistokes lines	
	c) Raman lines	d) Rayleigh lines	

-0			
59.	59. In Stokes lines, energy of scattered photon is		
	a) equal to energy of incident photon		
	b) lesser than the energy of incident	photon	
	c) greater than the energy of incident	photon	
	d) zero		
60.	Raman shift is		
	a) independent of the frequency of ine	cident light	
	b) characteristic of the substance		
	c) independent of characteristic of the	e substance	
	d) both (a) and (b)		
61.	Which of the following is true?		
	a) Intensity of Stokes lines is always	s greater than that of antistokes line	
	b) Intensity of Stokes lines is always le	esser than that of antistokes lines	
	c) Antistokes lines are of lower freque	ency than Stokes lines	
	d) Stokes lines are of higher frequency	y than the antistokes lines	
62.	A linear source of light at a finit	e distance in an isotropic medium	
	emits a wavefront		
	a) spherical b) cylindrical	c) circular d) plane	
63.	If the refractive index of second med	ium with respect to the first medium is	
	greater than one, then it implies that		
	a) first medium is rarer and the second medium is denser b) first medium is denser and the second medium is rarer		
	c) velocity of light in first medium is l	ess than that in the second medium	
	d) velocity of light is same in both me	dia	
64.	If v_0 is the frequency of incident	radiation and v_s is the frequency of	
	scattered radiation of given mole	ecular sample, then Raman shift of	
	Raman frequency (Δv) is given by		
	a) $\Delta \mathbf{v} = \mathbf{v}_0 - \mathbf{v}_s$ b) $\Delta v = v_s - v_0$	c) $\Delta v = v_s + v_0$ d) $\Delta v = (v_0 + v_s)$	
65.	If the path difference between two	monochromatic waves is δ , the phase	
	difference must be	2- 2-1	
	a) $2\pi\lambda\delta$ b) $\frac{\lambda}{2\pi}\delta$	c) $\frac{2\pi}{\lambda}\delta$ d) $\frac{2\pi\lambda}{\delta}$	
66.	In the interference pattern, the energy	v is	
\checkmark	a) created at position of maximum		
, Y	b) destroyed at the position of medium		
	c) conserved but it is redistributed	d) none of the above	
67.	Colours in thin films is due to		
	a) dispersion of light	b) scattering of light	
	c) interference of light	d) reflection of light	
68. A ray of light travelling in a rarer medium, gets reflected at the surface of a denser medium. the automatic path change produced is b) $\frac{3\lambda}{4}$ d) $\frac{\lambda}{4}$ c) $\frac{\lambda}{2}$ a) λ In thin films, the condition for getting bright fringe due to inteference of the 69. reflected light is a) $2\mu t \cos r = (2n - 1)\lambda/2$ b) $2\mu t = n\lambda$ d) $2\mu t = (2n + 1)\lambda/2$ c) $2t = n\lambda$ In Newton's ring experiment, the radius of the n^{th} dark ring is proportional to 70. c) \sqrt{n} d) $\frac{1}{\sqrt{n}}$ b) n^2 a) n Bending of light waves around the edges of an obstacle is known as 71. c) refraction d) polarisation a) reflection b) diffraction In case of Fraunhofer diffraction, the incident wavefront is 72. b) cylindrical c) elliptical d) plane a) spherical 73. In Fresnel's diffraction, the shape of the incident wavefront is a) spherical c) plane b) cylindrical d) (a) or (b) The points on the successive slits separated by a distance equal to grating 74. element are called as b) grating points a) identical points d) equal points c) corresponding points Transverse nature of electromagnetic waves was confirmed by the 75. phenomenon of c) polarisation b) diffraction a) interference d) reflection In the propagation of light waves, the angle between the plane of vibration 76. and plane of polarisation is a) 0 b) 90° c) 45° d) 180° In the propagation of light waves, the angle between the direction of 77. propagation and plane of polarisation is c) 45° b) 90° a) 0 d) 180° In case of partially polarised light, when the analyser is rotated through 78. 90°, the intensity of light beam varies from a) maximum to zero b) zero to maximum c) maximum to minimum d) remains same The polarising angle for glass is 79. a) 57.5° b) 52.5° d) 37.5° c) 32.5° 80. According to Brewster's law b) $i_v = tan \mu$ c) $\mu = cot i_v$ d) $i_v = 1/tan \mu$ a) $\mu = tani_{n}$

81.	In the arrangeme angle of	ent of pile of plate with the axis of the	es, the glass plates tube	are inclined at an
	a) 57.5°	b) 52.5°	c) 32.5°	d) 37.5°
82.	is an exan	nple for uniaxial cr	vstal	,
	a) Mica	b) Topaz	c) Selenite	d) Quartz
83.	Of the following o	ptically active mat	erial is	
	a) sodium chlorid	e	b) Calcium chloric	le 🔥 🍼
	c) sodium		d) chlorine	
84.	Instrument used	to determine th	e optical rotatior	n produced by the
	substance is			
	a) interfero meter		b) Jamin's photom	ieter
	c) polariscope		d) polarimeter	
85.	Atomic spectrum s	should be a		
	a) pure line spect	um	b) emission band s	pectrum
	c) line absorption s	spectrum	d) band absorption	nspectrum
86.	In Raman effect, R	aman shift in frequ	iency is always	
	a) positive		b) negative	
	c) negative for stol	ke's line and positiv	ve for Antistoke's lii	nes
	d) positive for sto	ke's line and nega	tive for Anti-stoke	's lines
87.	In Raman effect,	if frequencies of	incident radiation	n and stoke's lines
	are respectively	$6.198 \times 10^{15} \text{ Hz}$ and	d 6.1602 × 10^{15} Hz t	hen the value of
	Raman shift is			
	a) $-0.038 \times 10^{15} Hz$	b) 0.038×10 ¹⁵ Hz	c) $3.8 \times 10^{15} Hz$	d) $-3.8 \times 10^{15} Hz$
88.	If the wavelength	of light is reduced	to one-fourth of its i	initial value then the
	amount of scatteri	ng is		
	a) increased by 16	times	b) decreased by 16	times
	c) increased by 25	6 times	d) decreased by 25	56 times
89.	The ratio of scatter	ring powers of two	wavelengths 400 n	m and 6000Å is
	a) 81 : 16	b) 16 : 81	c) 81 : 64	d) 64 : 81
90.	If A denotes the ar	nount of scattering	, the wavelength of	light is proportional
	a) inversely to A^4	b) directly to A^4	c) inversely to $A^{1/2}$	⁴ d) directly to $A^{1/4}$
91.	A beam of mono	chromatic light en	nters from vacuum	n into a medium of
	refractive index	μ . The ratio of t	he wavelengths o	t the incident and
1	refracted waves is	1 \ `_		1) 2
	a) µ:1	b) 1:µ	c) $\mu^2 : 1$	d) $1:\mu^2$
92.	It the velocity of li	ght in a medium i	s $2.25 \times 10^{\circ} m/s$ then	the retractive index
	of the medium wil	I be) 1.00	1) 1 70
	a) 1.5	b) 0.5	c) 1.33	a) 1.73

If the wavelength of light wave in vacuum is $6.4 \times 10^{-7} m$. Then wavelength 93. of light wave in water of refractive index of the medium will be b) $4.8 \times 10^{-7} m$ **C)** 2.64 \times 10⁻⁷ m d) $5 \times 10^{-7} m$ a) $4 \times 10^{-7} m$ 94. The refractive indices for glass and water respectively is 1.5 and 1.33, then the ratio of velocity of light in glass and water is a) 4 : 3 b) 3 : 4 c) 8:9 d) 9:8The time taken by the light to travel a distance of 200 m in a medium of 95. refractive index 1.5 is c) $10^{-8}s$ a) $2 \times 10^{-8} s$ b) 10^{-6} s d) $3 \times 10^8 s$ If the path difference between two monochromatic light waves of wavelength 96. 4000Å is $2 \times 10^{-7} m$ the phase difference b/w them will be c) $\frac{3\pi}{2}$ d) $\frac{\pi}{2}$ a) π b) 2π In Young's double slit experiment, the third order bright band for wave length 97. of light 6000Å coincides with fourth order bright fringe for another source in the same arrangement. The wavelength of the another source will be b) 6000Å a) 4500Å c) 5000Å d) 4000Å In Young's double slit experiment, lights of wavelength $5.48 \times 10^{-7} m$ and 98. $6.85 \times 10^{-8} m$ are used, in turn keeping D and d constant. The ratio of respective bandwidths in the two cases will be c) 8:1 a) 1 : 4 b) 1:8 d) 4 : 1 In Youngs double slit experiment, if the distance between the coherent sources 99. is increased twice that of initial value then the new bandwidth will be a) increased 4 times b) increased 2 times c) decreased 4 times d) decreased 2 times In Youngs double slit experiment, if the distance between the slits is halved 100. and the distance between the slits and the screen is doubled, the new fringe width will be a) remains same b) halved c) doubled d) quadrupled In Youngs double slit experiment, sodium light is employed and inter ference 101. fringes are obtained in which the bandwidth of 3rd bright fringe is 2.2 mm. What will be the bandwidth of 2nd dark fringe? a) 2.2 mm b) 1.1 mm c) 4.4 mm d) 3.3 mm Newton's rings were obtained with a light of wavelength 5460Å. The 102. thickness of the air film where 2nd dark ring formed is a) 5.46×10^{-7} m b) 3.276×10⁻⁶ m c) $32.76 \times 10^{-6} m$ d) $54.6 \times 10^{-7} m$ 103. In Newton's ring experiment, the ratio of the radii of 4^{th} ring and 9^{th} ring is a) 4 : 9 b) 2:3 c) 16 : 81 d) $\sqrt{2}:\sqrt{3}$

104. In Newton's ring experiment, if the radii of m^{th} and $(m+4)^{th}$ dark rings are $\sqrt{5}$ mm and $\sqrt{7}$ mm respectively, then the value of 'm' is b) 4 a) 2 c) 8 d) 10 If a light of wavelength 6000Å is incident normally on a grating 0.005 m wide 105. with 2500 lines then the maximum order of diffraction must be b) 2 d) 4 a) 3 c) 1 106. A diffraction pattern is obtained using a beam of red light, what happens if the red light is replaced by blue light? a) bands disappear b) no change is noticed c) diffraction pattern becomes narrower and crowded together d) diffraction pattern becomes broader and farther apart 107. Refractive index of glass is 1.5. The time taken by the light to travel a distance 10 cm in a glass is c) 2×10^{-8} s a) 5×10^{-8} s b) 5×10^{-10} s d) 2×10^{-10} s 108. In a plane transmission grating experiment, the wavelength of light is $1/\sqrt{2}$ times of grating element used. The angle of diffraction for the first order maximum will be a) 30° b) 45° c) 60° d) 90° The distance between the two corresponding points in a grating is $2 \times 10^4 cm$. 109. The number of lines per meter width of the grating will be b) 2000 c) 500000 a) 20000 d) 50000 The refractive index of the medium for the polarizing angle 60° is 110. b) 1.414 c) 1.5 a) 1.732 d) 1.468

Meltil

Three Mark Questions: Book Back Questions :

- 1. What are electromagnetic waves?
- 2. What is fluorescence and phosphorescence?
- 3. Distinguish between corpuscle and photon.
- 4. What is Tyndal scattering? (**P Y**)
- 5. How are Stoke's and Anti-stoke's line formed?
- 6. Why the sky appears blue in colour? (**P**Y)
- 7. State Huygen's principle. (PY)
- 8. What is principle of superposition of waves?
- 9. Give the conditions for sustained interference.
- 10. What are Newton's ring?
- 11. Why the centre of the Newton's rings is dark? (**P** Y)
- 12. Distinguish between Fresnel and Fraunhofer diffraction. (PY)
- 13. Distinguish between polarised and unpolarised light.
- 14. State Brewster's law
- 15. Bring out the differences between ordinary and extra ordinary light.
- 16. What is meant by optical rotation? On what factors does it depend? (**P**Y)

Pervious Year Questions :

- 17. Write any three uses of infrared radiations.
- 18. What is band emission spectrum? Give an example.
- 19. What are emission and absorption spectra?
- 20. Write the conditions for total internal reflection to take place.
- 21. Define optic axis of a crystal.
- 22. Define specific rotation.
- 23. An LC resonant circuit contains a capacitor 400 pF and an inductor 100 μ H. It is sent into oscillations coupled to an antenna. Calculate the wavelength of the radiated electromagnetic wave. **(Ex)**
- 24. In Young's experiment, the width of the fringe obtained with light of wavelength 6000 Å is 2mm. Calculate the fringe width if the entire apparatus is immersed in a liquid of refractive index 1.33. **(Eg)**
- 25. Two slits 0.3 mm apart are illuminated by light of wavelength 4500 Å. The screen is placed at 1 m distance from the slits. Find the separation between the second bright fringe on both sides of the central maximum.
- 26. In Newton's rings experiment the diameter of certain order of dark ring is measured to be double that of second ring. What is the order of the ring? **(Eg)**

- 27. A 300 mm long tube containing 60 cc of sugar solution produces a rotation of 9° when placed in a polarimeter. If the specific rotation is 60°, Calculate the quantity of sugar contained in the solution. **(Eg)**
- 28. A light of wavelength 6000Å falls normally on a thin air film, 6 dark fringes are seen between two points. Calculate the thickness of the air film. **(Ex)**
- 29. A plano-convex lens of radius 3 m is placed on an optically flat glass plate and is illuminated by monochromatic light. The radius of the 8th dark ring 3.6 mm. Calculate the wavelength of light used. **(Eg)**
- 30. The refractive index of a medium is $\sqrt{3}$. Calculate the angle of refraction if the unploarised light is incident on it at the polarising angle of the medium. **(Ex)**
- 31. List out the uses of U-V radiation.
- 32. What are Fraunhofer lines?
- 33. What are uniaxial and biaxial crystals? Give an example

Five Mark Questions: Book Back Questions :

- 1. Mention the characteristics of electromagnetic waves.
- 2. Give the source and uses of electromagnetic waves.
- 3. Describe an experiment to demonstrate transverse nature of light.
- 4. State and explain Brewster's law (PY)
- 5. Write a notes on: (i) Nicol prism (ii) Polaroid (**P**Y)

Previous Year Questions :

- 6. In Newton's Ring experiment the diameter of certain order of dark ring is measured to be double that of second ring. What is the order of the ring?
- 7. Distinguish between interference and Diffraction.
- 8. Write a note on pile of plates.
- 9. A monochromatic light of wavelength 589 nm is incident on a water surface having refractive index 1.33. Find the velocity, frequency and wavelength of light in water.
- 10. In Young's experiment a light of frequency 6 x 10¹⁴ Hz is used. Distance between the centres of adjacent fringes is 0.75 mm. Calculate the distance between the slits, if the screen is 1.5 m away. (Ex)
- 11. In a Newton's rings experiment the diameter of the 20th dark ring was found to be 5.82 mm and that of the 10th ring 3.36 mm. If the radius of the Plano-convex lens is 1 m, calculate the wavelength of light used. **(Ex)**

- 12. A soap film of refractive index 1.34, is illuminated by white light incident at an angle 30°. The reflected light is examined by a spectroscope in which dark band corresponding to the wavelength 5893 Å is found. Calculate the smallest thickness of the film. **(Eg)**
- 13. A soap film of refractive index 1.33 is illuminated by white light incident at an angle 30°. The reflected light is examined by spectroscope in which dark band corresponding to the wavelength 6000 Å is found. Calculate the smallest thickness of the film.
- 14. A parallel beam of monochromatic light is allowed to incident normally on a plane transmission grating having 5000 lines per centimeter. A second order spectral line is found to be diffracted at an angle 30°. Find the wavelength of the light. **(Eg)**
- 15. A plane transmission grating has 5000 lines / cm. Calculate the angular separation in second order speectrum of red line 7070Å and blue line 5000Å (ex).
- 16. A 300 mm long tube containing 60 cc of sugar solution produces a rotation of 9^o when placed in a polarimeter. If the specific rotation is 60^o, Calculate the quanity of sugar contained in the solution.
- 17. In young's double slit experiment, the intensity ratio of two coherent sources is 81 : 1. Calculate the ratio between maximum and minimum intensites.
- 18. Write a notes on Polaroid and uses.

Ten Mark Questions: Book Back Questions :

- 1. Explain emission and absorption spectra. (PY)
- 2. Explain the Raman scattering of light with the help of energy level diagram. (**P**Y)
- 3. What is Raman effect? Explain Raman spectrum with diagram. (PY)
- 4. On the basis of wave theory, explain total internal reflection. Write the conditions for the total internal reflection to takes place. (**P Y**)
- 5. Derive an expression for bandwidth of interference fringes in Young's double slit experiment. (**P** Y)
- 6. Discuss the theory of interference in thin transparent film due to reflected light and obtain condition for the intensity to be maximum and minimum. (**P Y**)
 - 7. Discuss the theory of plane transmission grating.

Previous Year Questions :

8. State Huygens's principle. On the basis of wave theory, prove the laws of reflection.

VI. ATOMIC PHYSICS

	One Mark Questions
	Book Back Questions :
1.	The cathode rays are (PY)
	a) a stream of electrons b) a stream of positive ions
	c) a stream of uncharged particles d) the same as canal rays
2.	A narrow electron beam passes undeviated through an electric field
	$E = 3 \times 10^4 \text{ V/m}$ and an overlapping magnetic field $B = 2 \times 10^3 \text{ Wb/m}^2$.
	The electron motion, the electric field and magnetic field are mutually
	perpendicular. The speed of the electron is (PY)
	a) 60 ms ⁻¹ b) 10.3 x 10 ⁷ ms ⁻¹ c) 1.5 x 10 ⁷ ms ⁻¹ d) 0.67 x 10 ⁻⁷ ms ⁻¹
3.	According to Bohr's postulates, which of the following quantities take discrete
	values? (PY)
	a) kinetic energy b) potential energy c) angular momentum d) momentum
4.	The ratio of the radii of the first three Bohr orbit is (P Y)
	a) 1:1/2:1/3 b) 1:2:3 c) 1:4:9 d) 1:8:27
5.	The first excitation potential energy or the minimum energy required to excite
	the atom from ground state of hydrogen atom is (P Y)
	a) 13.6 eV b) 10.2 eV c) 3.4 eV d) 1.89 eV
6.	According to Rutherford atom model, the spectral lines emitted by an atom
	is (PY)
	a) line spectrum b) continuous spectrum
	c) continuous absorption spectrum d) band spectrum
7.	Energy levels A,B,C of a certain atom correspond to increasing values of energy
	(i.e.,) $E_A < E_B < E_C$ If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to
	the transitions C to B, B to A, and C to A respectively, which of the following
	statements are correct.
	h h i
\checkmark	
/	λ_2 λ_3
	a) $\lambda_3 = \lambda_1 + \lambda_2$ b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ c) $\lambda_1 = \lambda_2 + \lambda_3 = 0$ d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
	- 80 -

- 8. The elliptical orbits of electron in the atom were proposed by **(P Y)**
 - a) J.J. Thomson b) Bohr c) Sommerfeld d) De Broglie
- 9. X- rays is **(P Y)**
 - a) phenomenon of conversion of kinetic energy into radiation
 - b) conversion of momentum
 - c) conversion of energy into mass
 - d) principle of conservation of charge
- 10. In an X-ray tube, the intensity of the emitted X-ray beam is increased by (P Y)
 a) increasing the filament current
 b) decreasing the filament current
 c) increasing the target potential
 d) an atomic transition in the target
- 11. The energy of a photon of characteristic X –ray from a Coolidge tube comes from (**P Y**)
 - a) the kinetic energy of a free electrons of the target
 - b) the kinetic energy of ions of the target
 - c) the kinetic energy of the striking electron
 - d) an atomic transition in the target
- 12. A Coolidge tube operates at 24800 V. The maximum frequency of X radiation emitted from Coolidge tube is (P Y)

a) 6×10^{18} Hz b) 3×10^{18} Hz c) 6×10^{8} Hz d) 3×10^{8} Hz

- 13. In hydrogen atom, which of the following transitions produce a spectral line of maximum wavelength (**P**Y)
 - a) $2 \rightarrow 1$ b) $4 \rightarrow 1$ c) $6 \rightarrow 5$ d) $5 \rightarrow 2$
- 14. In hydrogen atom, which of the following transition produce a spectral line of maximum frequency (**P**Y)

a) $2 \rightarrow 1$ b) $6 \rightarrow 2$ c) $4 \rightarrow 3$ d) $5 \rightarrow 2$

- 15. After pumping process in laser,
 - a) the number of atoms in the ground state is greater than the number of atoms in the excited state
 - b) the number of atoms in the excited state is greater than the number of atoms in the ground state
 - c) the number of atoms in the ground state is equal to the number of atoms in the excited state
 - d) no atoms are available in the excited state
- 16. The chromium ions doped in the ruby rod **(P Y)**
 - a) absorbs red light **b) absorbs green light**
 - c) absorbs blue light d) emits green light

Previous Year Questions :

In a discharge tube, the source of positive rays (canal rays) is 17. a) cathode b) anode c) gas present in the discharge tube d) fluorescent screen $\frac{e}{m}$ of cathode ray particle 18. a) depends upon the nature of the cathode b) depends upon the nature of the anode c) depends upon the nature of the gas atoms present inside the discharge tube d) is independent of all these In Thomson's experiment, cathode rays moving with a velocity 'v' enter 19. perpendicular to an electric field of intensity 'E'. The deflection produced by the cathode rays is directly proportional to a) v b) v ⁻¹ c) v² d) v -2 The direction of viscous force in Millikan's oil drop experiment is 20. a) always downwards b) always upwards c) opposite to the direction of motion of the oil drop d) either upwards or downwards. In Millikan's oil drop experiment, charged oil drop is balanced between the 21. two plates. Now the viscous force a) acts downwards b) acts upwards d) acts either upwards or downwards c) is Zero In Millikan's experiment, the plates are kept at a distance of 16 mm and are 22. maintained at a potential difference of 10000V. The electric intensity is c) $6.25 \times 10^3 \text{ V/m}$ d) $1.6 \times 10^5 \text{ V/m}$ a) 62.5 V/m b) 6.25 x 10⁵V/m In Millikan's experiment, an oil drop of mass 4.9x10⁻¹⁴ Kg is balanced by 23. applying a potential difference of 2kV between two plates which are 2mm apart. The charge of the drop is equal to -a) 1.96 x 10⁻¹⁸ C b) 1.602 x 10⁻¹⁹ C c) 12 C d) 4.9 x 10⁻¹⁹ C The ratio of areas enclosed by first three Bohr orbits of hydrogen atom is 24. b) 1:8:27 c) 1:4:9 a) 1 : 2 : 3 d) 1:16:81 Wave number is defined as the number of waves 25. a) Produced in one second b) in a distance of 1 metre d) in a distance of λ metre c) in a distance of 3×10^8 metre 26. Number of waves per unit length is known as **b) wave number** c) bandwidth a) wavelength d) frequency

If R is Rydberg's constant, the minimum wavelength of hydrogen spectrum is 27. b) $\frac{R}{4}$ a) $\frac{1}{R}$ c) $\frac{4}{R}$ d) *R* The unit of Rydberg's constant is 28. d) m⁻¹ c) m⁻² b) no unit a) m 29. The value of Rydberg's constant is d) 1.097 x 10⁻⁶ m⁻¹ a) 1.097 x 10⁻⁷ m¹ b) 1.097 x 10⁻⁷ m⁻¹ c) 1.097 x 10⁷ m⁻¹ The spectral series of hydrogen in UV region are called 30. **b)** Lyman series c) Paschen series a) Balmer series d) Pfund series If R is Rydberg constant, the shortest wavelength of Paschen series is 31. c) $\frac{16}{R}$ d) $\frac{25}{R}$ a) $\frac{R}{9}$ b) $\frac{9}{R}$ The wave number of a spectral line of hydrogen atom is equal to Rydberg's 32. constant. The line is b) series limit of Lyman series a) first line of Lyman series c) first line of Pfund series d) series limit of Pfund series 33. Arrange the spectral lines $H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\delta}$ in the increasing order of their wavelength: - - **b)** H_{δ} , H_{γ} , H_{β} , H_{α} c) H_{β} , H_{α} , H_{δ} , H_{γ} d) H_{α} , H_{β} , H_{δ} , H_{γ} a) $H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\delta}$ In hydrogen atom , which of the following transition produce a spectral 34. line of minimum wavelength b) $6 \rightarrow 2$ c) $4 \rightarrow 3$ a) $2 \rightarrow 1$ d) $5 \rightarrow 2$ In hydrogen atom, which of the following transitions produces a spectral line 35. of minimum wavelength b) $4 \rightarrow 1$ c) $6 \rightarrow 5$ a) $2 \rightarrow 1$ d) $5 \rightarrow 2$ The wavelength of D_1 and D_2 lines emitted by sodium vapour lamp is 36. a) 589.6 nm, 589 nm b) 589 nm, 589.6 nm c) 589.3 nm, 589 nm d) 589 nm, 589.3 nm The energy of the electron in the first orbit of hydrogen atom is -13.6 eV. Its 37. potential energy is a) -13.6 eV b) 13.6 eV c) -27.2 eV d) 27.2 eV The ionization potential of hydrogen atom is 38. a) 13.6 eV b) -13.6 eV c) 13.6 V d) -13.6 V When an electric field is applied to an atom each of the spectral lines split into 39. several lines. This effect is known as a) Zeeman effect **b) Stark effect** b) Raman effect d) Seebeck effect

If 'a' and 'b' are semi-major and semi-minor axes of the ellipse respectively 40. and 'l' is the orbital quantum number, then the expression to find the possible elliptical orbits is **a)** $\frac{b}{a} = \frac{l+1}{n}$ **b)** $\frac{b}{a} = \frac{l-1}{n}$ **c)** $\frac{a}{b} = \frac{l+1}{n}$ **d)** $\frac{a}{b} = \frac{l-1}{n}$ In Sommerfeld atom model, for a given value of n, the number of values can 41. taken as a) n b) n + 1 c) n – 1 d) 2n + 1 In Sommerfeld atom model, for principal quantum number n = 3 which of the 42. following sub shells represents circular orbit? d) None of these a) 3 s b) 3 p c) 3 d 43. For the first order X-ray diffraction, the wavelength of the X-ray is equal to the lattice spacing at a glancing angle of d) 30° a) 15° b) 60° c) 45° A crystal diffracts monochromatic X-rays. If the angle of diffraction for the 44. second order is 90°, then that for the first order will be a) 60° b) 45° c) 30° d) 15° If the minimum wavelength of X-rays produced from a Coolidge tube is 45. 0.062 nm, then the potential difference between the cathode and target material is b) 20,000 V c) $2 \times 10^5 \text{ V}$ a) 2000 V d) $6.2 \times 10^3 V$ A Coolidge tube operates at 18600V. The maximum frequency of X - ray 46. radiation emitted from it is 9 a) 4.5 x 10¹⁸ Hz b) 45×10^{18} Hz c) 4.05 x 10¹⁸ Hz d) 45.5 x 10¹⁸ Hz The minimum wavelength of X-rays produced is an X-ray tube at 1000 kV is 47. b) 0.124 Å c) 1.24 Å d) 0.00124 Å a) 0.0124 Å A coolidge tube operates at 24800V. The minimum Wavelength of X – ray 48. radiation emitted from coolidge tube is a) $6 \times 10^{18} \text{m}$ b) 3 x 10¹⁸ m c) 0.6 x 10⁻¹⁰ m d) 0.5 x 10⁻¹⁰ m If the potential difference between cathode and the target of Coolidge tube is 49. 🗸 1.24 x 10⁵ V, then the minimum wavelength of continuous X-rays is _____ a) 10 Å b) 1 Å c) 0.1 Å d) 0.01 Å When an electron jumps from M shell to K shell it gives _____ d) L_{β} a) K b) K_β c) L_{α} If v is frequency of characteristic X – ray line emited by a target element of 51. atomic number Z, then Mosley's law is _____ a) ν α Ζ d) $v \alpha Z^3$ b) v αZ^2 c) v $\alpha \sqrt{Z}$

52.	A three dimensional image of an object can be formed by			
	a) atomic spectro	scopy	b) holography	
	c) molecular spec	ctroscopy	d) MASER	
53.	In holography, w	hich of the followir	ng are recorded on	a photographic film?
	a) Amplitude and	d frequency	b) Phase and free	Juency
	c) phase and am	olitude	d) Amplitude, pl	nase and frequency
54.	Maser material a	re		
	a) diamagnetic ic	ons	b) paramagnetic	ions
	c) ferromagnetic	ions	d) non-magnetic	ions
55.	The direction of t	he electric field in N	Millikan's oil drop	experiment acts :
	a) downwards		b) upwards	
	c) first upwards t	hen downwards	d) first downwa	rds, then upwards
56.	The longest wave	elength that can be	analysed by a rock	salt crystal of
	spacing $d = 2.82$	Å in the first order i	is:	
	a) 2.82 Å	b) 5.64 Å	c) 11.28 Å	d) 21.76 Å
57.	A beam of cathoo	le rays moves from	left to right in a pla	ane of the paper and it
	enters into a unif	orm magnetic field	acting perpendicu	ılar to the plane of the
	paper and inwar	ds. Now the cathod	e rays are deflected	1.
	a) downwards	b) u	pwards	
	c) in a direction p	perpendicular to the	plane of the paper	r and inwards
	d) in a direction j	perpendicular to the	e plane of the pape	r and outwards
58.	The colour of ligh	nt emitted by ruby l	aser	1\ 1., 1.1.
50	a) green light	b) red ligh	t c) yellow light	d) white light
59.	r v hat is the value	of bour s radius?		
	a) 5.3 A	D) 0.53 A	C) 53 A	a) 5.03 A
	<u>PTA Objective Q</u>	Questions :		
1.	In hydrogen ator	n, which of the follo	owing transition pr	roduce spectral line of
	maximum wave	length		
	a) $2 \rightarrow 1$	b) $4 \rightarrow 1$	c) $6 \rightarrow 5$	d) $5 \rightarrow 2$
2.	The chromium ic	ons doped in ruby r	od	
\checkmark γ	a) absorbs red lig	ht	b) absorbs greer	n light
Y	c) absorbs blue li	ght	c) emits green lig	ght
3.	The value of Ryd	berg's constant is _		
	a) $1.094 \times 10^7 \mathrm{m}^1$	b) $1.094 \times 10^{-7} m$	c) 1.094×10 ⁷ m ⁻¹	d) $1.094 \times 10^{-7} m^{-1}$
4.	The quantity whic	ch takes discrete valu	les, according to Boh	nr's postulates is
	a) kinetic energy b) potential energy c) angular momentum d) momentum			

5.	The first excitation potential energy or the minimum energy required to				
	excite the atom fro	om ground state of	hydrogen atom 1s		
	a) 13.6 eV	b) 10.2 eV	c) 3.4 eV	d) 1.89 eV	
6.	The life time of at	$\frac{1}{1}$	cited state is	1)	
_	a) $10^{-5}s$	b) 10 ⁻³ s	c) $10^{-5}s$	d) $10^3 s$	
7.	When an electric contributes	ron jumps from 	M shell to the	vacant K shell, it	
	a) K _β	b) K_{α}	c) L_{α}	d) L_{β}	
8.	Positive column in	n a discharge tube i	s produced at a pro	essure of	
	a) 110 mm of Hg	b) 100 mm of Hg	c) 10 mm Hg	d) 0.1 mm of Hg	
9.	The wavelength	of radiations abso	rbed by chromiu	m ions in Ruby laser	
	is		•		
	a) 5800Å	b) 5400Å	c) 5400Å	d) 5500Å	
10.	Sommerfeld mod	el explains the	—		
	a) Zeeman effect				
	b) distribution an	d arrangement of e	lectrons in atom		
	c) intensities of sp	vectral lines	C		
	d) back ground o	f fine structure of	spectral waveleng	th	
11.	For a given operat	ing voltage the min	imum wavelength	of X - rays is	
	a) the same for a	ll metals	b) not same for a	ll metals	
	c) zero for some n	netals	d) high for certai	n metals	
12.	The elliptical orbi	ts of electron was e	explained by		
	a) J.J. Thomson	b) Sommerfeld	c) de Broglie	d) Bohr	
13.	The ratio of radii	of the first three Bo	ohr orbit is		
	a)1:2:3	b)1:1/2:1/3	c) 1 : 8 : 27	d) 1:4:9	
14.	In hydrogen atom	n, which of the follo	owing transition pr	oduce spectral line of	
	maximum freque	ncy?			
	a) 2→1	b) $6 \rightarrow 2$	c) $4 \rightarrow 3$	d) $5 \rightarrow 2$	
15.	The cathode rays	are			
	a stream of ele	ectrons	b) a stream of po	sitive ions	
× •	c) a stream of unc	harged particles	d) the same as ca	inal rays	
16.	Based on Thomse	on atom model, th	e wavelength of s	spectral line obtained	
	from Hydrogen a	tomis	0	9	
	a) 1300Å	b) 4861Å	c) 6363Å	d) 1500Å	
17.	Laue used	crystals t	o demonstrate the	diffraction of X - rays.	
	a) rock salt	b) ZnS	c) quartz	d) Caco ₃	

18.	Bohr's quantisation condition is				
	a) $mvr = h/4\pi$	b) $mv = h/2\pi$	c) $mvr = nh / \pi$	d) $mvr=nh/2\pi$	
19.	Moseley's law lee	d to the discovery o	of chemical element		
	a) Helium	b) Iodine	c) Rhenium	d) Radon	
20.	The life time of n	netastable state is $_$			
	a) $10^{-5}s$	b) 10^{-3} s	c) $10^{-4} s$	d) $10^{-8}s$	
21.	When X - rays fa	all on certain metal	s, they liberate		
	a) positrons	b) electrons	c) photons	d) photoelectrons	
22.	In an X - ray tube	, the intensity of em	nitted X - ray beam i	is increased by	
	a) increasing the	filament current	b) decreasing the	filament current	
	c) increasing the	target potential	d) decreasing the	e target potential	
23.	In He-Ne laser, th	he ratio of helium a	nd neon is		
	a) 4 : 1	b) 1 : 4	c) 1 : 2	d) 2 : 1	
24.	When an electro	on jumps from any	y outer orbits to th	e first orbit, then	
	the emitted spec	ctral line is	-		
	a) Lyman series	b) Balmer series	c) Paschen series	d) Pfund series	
25.	X - rays is				
	a) phenomenon	of conversion of ki	inetic energy into ra	adiation	
	b) conversion of r	nomentum			
•	c) conversion of e	energy into mass	d) principle of cons	ervation of charge	
26.	After pumping p	rocess in laser,			
	a) the number of	t atoms in the grou	and state is greater	than the number of	
	atoms in the e	excited state			
	b) the number of atoms in the g	t atoms in the exci	ted state 1s greater	than the number of	
	c) the number of	atoms in the ground	d state is equal		
	d) no atoms are a	vailable in excited	state		
27.	According to Rut	therford atom mode	el, the spectral line e	emitted by an atom is	
	spectru	ım			
	a) line b) co	ntinuous spectrun	n c) continuous ab	psorption d) band	
28.	The energy of pl	noton of characteris	stic X - rays from a	Coolidge tube come	
	from		5	0	
	a) the kinetic ene	rgy of the free elect	rons of the target		
	b) the kinetic ene	rgy of the ions of th	e target		
	c) the kinetic ener	rgy of the striking e	lectrons		
	d) an atomic trar	nsition in the targe	t		
		5			

29.	The spacing be	The spacing between the atoms arranged in three dimensional space in				
	crystal is of the	order				
	a) 10^{-10} m	b) 10^{-10} cm	c) $10^{-8} m$	d) 10^{-8} mm		
30.	The continuous	X - rays spectra co	nsists of radiation	s of		
	a) well defined	wavelengths	b) very low wa	velengths		
	c) very high wa	velengths	d) all possible	wavelengths		
31.	The size of an a	tom from Rutherfo	rd experiment is _	· ```````````````````````````````		
	a) 10^{-10} m	b) $10^{-16} m$	c) $10^{-14} m$	d) $10^{-12}m$		
32.	The energy of r	neta stable state of I	Ne in He - Ne lase	r is		
	a) 20.66 eV	b) 1.89 eV	c) 10.2 eV	d) 3.4 eV		
33.	Achieving more	e atoms in the excite	d state than in the	ground state is		
	a) population in	nversion	b) normal pop	ulation		
	c) stimulated er	nission	d) spontaneou	s emission		
34.	Bohr's model fa	ails because it expla	in 🖌			
	a) only the cont	inuous spectrum	b) only the line	spectrum		
	c) spectral lines	s of hydrogen atom	and hydrogen lil	ke atom		
	d) the spectral l	ines of all atoms.				
35.	The light from a	LASER source is m	onochromatic beca	ause all the photons		
	a) are in phase		b) have same e	energy		
	c) have same ar	nplitude 🔨	d) are in the sa	me direction		
36.	Einstein's phot	oelectric effect and	Bohr's theory of	hydrogen spectral lines		
	confirmed	x				
	a) energy of ma	tter	b) dual nature	e of radiant energy		
	c) radiant energ	5 y	d) matter wav	es		
37.	In Bohr atom n	odel the energy of	electron in the n th	orbit is		
	a) $\frac{13.6}{2} eV$	b) $\frac{-13.6}{2}$ eV	c) –13.6eV	d) $-1.36eV$		
28	n In an hudragan	' n⁻	r radius is	,		
38.	a) 0.52 10-8	b) 53 Å	$a) 0.53 \text{\AA}$	d) 530 nm		
30	The spectral lin	es of hydrogen in I	V region are calle	d) 550 mm		
57.	a) Balmer series	b) I vman sorio	\mathbf{s} () Paschen seri	ies		
40	A Coolidge tub	pe operates at 2480	OV The maximum	m frequency of $X - ray$		
7	radiation emitte	ed from Coolidge ti	ibe is	in nequency of X huy		
	a) $16 \times 10^{18} H_7$	b) 6×10 ¹⁸ H ₇	c) $3 \times 10^{18} H_7$	d) $16 \times 10^8 H_7$		
41	A crystal diffra	cts monochromatic	X-rays If the and	$\frac{10}{10}$ $\frac{112}{10}$		
11,	order is 30° the	on that for second o	rder will be			
	a) 90°	b) 15°	c) 60°	d) 45°		
	••, >0	~, 10	C) 00	a) 10		

- 42.
 For the principal quantum number 3, the possible *l* values are ______

 a) 3, 2, 1
 b) 2, 1, 0
 c) 1, 0, -1
 d) 0, -1, -2
- 43. The energy levels of A, B, C of a certain atom correspond to increasing values of energy i.e., $E_A < E_B < E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelength of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statement is correct?

	a) $\lambda_3 = \lambda_1 + \lambda_2$	b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$	c) $\lambda_1 = \lambda_2 + \lambda_3 = 0$	d) $\lambda^2_3 = \lambda^2_1 + \lambda^2_2$
44.	The glancing angl	e of monochromat	ic X - ray of wavel	ength 1Å is 30°. The
	lattice space betwe	een the second ord	er reflection is	
	a) 2×10^{-10} m	b) $2 \times 10^{-9} m$	c) $2 \times 10^{-10} cm$	d) $2 \times 10^{-9} cm$
45.	In a Bragg's spectr	ometer the glancin	g angle for the four	rth order spectrum of
	X - ray is found to	be 30°. What will l	be the glancing ang	le for the occurrence
	of first order spect	rum?		
	a) $\sin^{-1} 0.25$	b) $\sin^{-1} 0.217$	c) $\sin^{-1} 0.5$	d) sin ⁻¹ 0.125
46.	The radius of seco	nd orbit of hydrog	en atom is	
	a) 0.53 Å	b) 2.12 Å	c) 1.06 Å	d) 4.24Å
47.	The ionization po	tential of the hydro	ogen atom is 13.6eV	V. The energy of the
	atom in n = 2 state	9 is		
	a) -13 .6 eV	b) -3.4 eV	c) 3.4 eV	d) 13.6 eV
48.	The ratio of the sp	ecific charge of an	electron to that of a	a positron is
	a) 1:2	b) 1 : 1	c) 2 : 1	d) 1 : 4
49.	An electron moves	s through an electri	c field of intensity	$9 \times 10^3 v/m$. If the mass
	of the electron is 9	1×10^{-31} kg , then the	e acceleration of ele	ectron is
	a) $1.71 \times 10^{-15} m s^{-2}$		b) $1.6 \times 10^{-15} m s^{-2}$	
\checkmark	c) $1.6 \times 10^{15} \text{ m s}^{-2}$		d) $1.58 \times 10^{-14} m s^{-2}$	
50.	An electron with s	peed of $2.5 \times 10^7 m/$	s suffers a deflection	on in a magnetic field
	of induction 2×1	$0^{-3}T$ then the elements	ctric field that we	ould give the same
	deflection is			

a) $5 \times 10^{-3} v / m$	b) $1.25 \times 10^3 v/m$
c) $12.5 \times 10^2 v/m$	d) $5 \times 10^4 \text{ v/m}$

51. The potential difference between the cathode and the target of Coolidge tube is $1.24 \times 10^5 V$, then the minimum wavelength of continuous X - ray is _____ a) 10 Å d) 0.01Å b) 1Å c) 0.1Å 52. A narrow beam of electrons passes undeviated through an electric field $E = 3 \times 10^4 V$ and an overlapping magnetic field $B = 2 \times 10^{-3} \frac{Wb}{m^2}$. The electron motion electric field and magnetic field are mutually perpendicular. The speed of electron is d) $0.67 \times 10^{-7} m$ c) 1.5×10^{7} m/s a) 60 m/sb) 10.3 m/sFor a first order X - ray diffraction, the wavelength of X - ray equal to the 53. interplanar distance at a glancing angle of _ a) 45° b) 30° c) 60° d) 15° Radius of first orbit of hydrogen atom is 0.53Å then the radius of third orbit is 54. a) 59Å c) 1.06Å d) 2.12Å b) 4.774Å The minimum wavelength an X - ray coming out of X - ray tube under a 55. potential difference of 1000 volt is _ c) 1240 Å a) 12.4 Å b) 12400 Å d) 0.0124 Å Given that the charge on an electron is $1.6 \times 10^{-10} C$, What is the energy gained 56. by the cathode ray particles when a voltage of 800 volts is applied between the electrodes of a cathode ray tube a) $2 \times 10^{-21} J$ c) $1.28 \times 10^{-18} J$ b) $8 \times 10^{-17} J$ **d)** 1.28 \times 10⁻¹⁶ J 57. The charge on an oil drop is $12.82 \times 10^{-19} C$, then the number of elementary charges are _ a) 6 b)2c) 7 d) 8 In Millikan's oil drop experiment, two plates separated by 5 cm in air are at 58. a potential of 5 V) then the electric field is _____ a) 1 V/m b) 10 V/mc) 100 V/m d) 2 V/m1 MeV = 59. b) $1.602 \times 10^{-16} J$ a) $1.602 \times 10^{-19} J$ **c)** 1.602 \times 10⁻¹³ J d) $1.602 \times 10^{-31} J$

Three Mark Questions: Book Back Questions :

- 1. What are cathode rays?
- 2. What is the principle of Millikan's method for determining the charge of an electron? (**P Y**)
- 3. What are the draw backs of the Rutherford atom model. (PY)
- 4. What is meant by energy level diagram?
- 5. What are the draw backs of Sommerfeld atom model? (**P**Y)
- 6. Define excitation potential and ionization potential energy. (PY)
- 7. What are X-rays?
- 8. What are hard X-rays and soft X-rays?
- 9. State Moseley's law. (PY)
- 10. Write the differences between spontaneous emission and stimulated emission.
- 11. What is meant normal population?
- 12. What are important characteristics of laser? (PY)
- 13. How does the laser light differ from ordinary light?
- 14. What are the various applications of laser in medical field? (PY)

Previous Year Questions :

- 15. Explain any one of the drawbacks of the Rutherford atom model.
- 16. Define ionization potential.
- 17. What are the two important facts established by Laue experiment?
- 18. Write the applications of Mosley's law.
- 19. What are the conditions to achieve laser action?
- 20. Write any three applications of laser in industry.
- 21. What is hologram?
- 22. A beam of electrons moving with a speed of $4 \times 10^7 \text{ ms}^{-1}$ is projected normal to the uniform magnetic field where $B = 10^{-3} \text{ Wb/m}^2$. What is the path of the beam in magnetic field?
- 23. Rydberg constant for hydrogen atom is 1.097 x 10⁷ m^{-1.} Calculate the shortest wavelength of the spectral line of its Lyman series. **(Eg)**
 - 24. Calculate the short wavelength of limit of Lyman series. (R=1.097x10⁷ m⁻¹) (Eg)
- 25. Calculate the longest wavelength that can be analysed by a rock salt crystal of spacing d=2.82 Å in the first order. **(Eg)**

- 26. An X-ray diffraction of a crystal gave the first line at a glancing angle of 6°27'. If the wavelength of X-ray is 0.58Å, find the distance between the two cleavage planes. **(Ex)**
- 27. In Bragg's spectrometer, the glancing angle for first order spectrum was observed to be 8°. Calculate the crystal lattice spacing, if the wavelength of the X ray is 0.7849 Å.
- 28. How much should be the voltage of an X-ray tube so that the electrons emitted from the cathode may give an X-ray of wavelength 1Å after striking the target? (Ex)
- 29. Find the minimum wavelength of X-rays produced by an X-ray tube operating 1000 kV. (Ex)
- 30. The minimum wavelength of X rays produced by Coolidge tube is 0.05nm. Find operating voltage of Coolidge tube.
- 31. In millikan's experiment an oildrop of mass 4.9×10^{-14} kg is balanced by applying a potential difference of 9.8 kV between the two plates which are 12.8 mm apart calculate the number of elementary charges on the drop (Take g = 10 ms⁻²)
- 32. A coolidge tube operates at 24,800 V. What is the maximum frequency of X radiation emitted from coolidge tube?

Five Mark Questions: Book Back Questions :

- 1. Write the properties of cathode rays. **(P Y)**
- 2. Explain the results of Rutherford α -particle scattering experiment.
- 3. State the postulates of Bohr atom model. (**P Y**)
- 4. Prove that the energy of an electron for hydrogen atom in nth orbit is,

$$E_n = \frac{-me^4}{8\varepsilon_0^2 n^2 h^2} \cdot (\mathbf{P} \mathbf{Y})$$

8.

- 5. Explain the spectral series of hydrogen atom. (PY)
- 6. Write the properties of X-rays? (PY)
- 7. State and obtain Bragg's law. (PY)

Explain the origin of characteristic X-rays. (**P Y**)

Previous Year Questions :

- 9. Write the properties of canal rays.
- 10. Describe Laue experiment. What are the facts established by it?

- 11. An electron beam passes through a transverse magnetic field of 2×10^{-3} tesla and an electric field E of 3.4×10^4 V/m acting simultaneously. If the path of the electrons remains undeviated, what will be the radius of the electron path?
- 12. An α -particle is projected with an energy of 4 MeV directly towards a gold nucleus. Calculate the distance of its closest approach. Given atomic number of gold = 79, Atomic number of α -particle = 2. (Eg)
- 13. Wavelength of Balmer Second line is 4861 Å. Calculate the wavelength of the first line. **(Eg)**
- In Bragg's spectrometer the glancing angle for first order spectrum was observed to be 8°. Calculate the wavelength of X-rays, if d=2.82 x 10⁻¹⁰ m. At what angle will the second maximum occur? (Eg)

Ten Mark Questions: Book Back Questions :

- 1. Describe J.J.Thomson method for determining the specific charge of electron. (P Y)
- 2. Describe Millikan's oil drop experiment to determine the charge of an electron. (**P Y**)
- 3. State the postulates of Bohr atom model. Obtain the expression for the radius of the nth orbit of an electron based on Bohr's theory. **(P Y)**
- 4. State and obtain Bragg's law. Explain how a Bragg's spectrometer can be used to determine the wavelength of X-rays. (**P Y**)
- 5. Explain the working of Ruby laser with neat sketch. **(PY)**
- 6. With the help of energy level diagram, explain the working of He-Ne laser. (**P Y**)

Previous Year Questions :

Fxplain how Bragg's spectrometer can be used to determine the wavelength of X – rays? Write any five properties of X – rays.

VII. DUAL NATURE OF RADIATION AND MATTER AND RELATIVITY

One Mark Questions Book Back Questions : A photon of frequency v is incident on a metal surface of threshold 1. frequency v_0 The kinetic energy of the emitted photoelectron is (**P**Y) a) $h(v - v_0)$ b) hvc) hv_0 d) $h(v + v_0)$ The work function of a photoelectric material is 3.3 eV. The threshold 2. frequency will be equal to (**P Y**) d) 4 x 10¹⁴ Hz a) 8 x 10¹⁴ Hz b) 8 x 10¹⁰ Hz c) 5 x 10²⁰ Hz The stopping potential of a metal surface is independent of (**PY**) 3. a) frequency of incident radiation b) intensity of incident radiation c) the nature of the metal surface d) velocity of the electrons emitted At the threshold frequency, the velocity of the electron is (**P**Y) 4. b) maximum 🔺 🕻) minimum a) zero d) infinite The photoelectric effect can be explained on the basis of (PY) 5. b) wave theory of light a) corpuscular theory of light c) electromagnetic theory of light d) quantum theory of light The wavelength of the matter wave is independent of (PY) 6. b) velocity c) momentum a) mass d) charge If the kinetic energy of the moving particle is E, then the de Broglie 7. wavelength is (PY) a) $\lambda = \frac{h}{\sqrt{2mE}}$ b) $\lambda = \frac{\sqrt{2mE}}{h}$ c) $\lambda = h\sqrt{2mE}$ d) $\lambda = \frac{h}{E\sqrt{2m}}$ The momentum of the electron having wavelength 2Å is (PY) 8. a) 3.3×10^{24} kg m s⁻¹ b) 6.6 x 10²⁴ kg m s⁻¹ c) 3.3x 10⁻²⁴ kg m s⁻¹ d) 6.6 x 10⁻²⁴ kg m s⁻¹ According to relativity, the length of a rod in motion (PY) a) is same as its rest length b) is more than its rest length c) is less than its rest length d) may be more or less than or equal to rest length depending on the speed of the rod

If 1 kg of a substance is fully converted in to energy, then the energy 10. produced is (PY) a) 9 x 10¹⁶ J b) 9 x 10²⁴ J d) 3×10^{8} J c) 1 J **Previous Year Questions :** 11. The value of stopping potential when the frequency of light is equal to the threshold frequency is a) maximum b) zero c) minimum d) infinity In photoelectric effect, a graph is drawn taking the frequency of 12. incident radiation along X- axis and the corresponding stopping potential along the Y – axis. The nature of the graph is a) a straight line passing through origin b) a straight line having positive Y – intercept c) a straight line having negative Y – intercept d) a parabola A graph is drawn taking frequency of incident radiation (v) along the X-axis 13. and its stopping potential (V_{0}) along the y-axis. The nature of the graph is a) a straight line b) a parabola c) an ellipse d) a circle In the photoelectric phenomenon if the ratio of the frequency of 14. incident radiation incident on a photosensitive surface is 1 : 2 : 3, the ratio of the photoelectric current is c) 1:4:9 b) $\sqrt{1}:\sqrt{2}:\sqrt{3}$ a) 1 : 2 : 3 d) 1:1:1 Two photons, each of energy 2.5 eV are simultaneously incident on the 15. metal surface. If the work function of the metal is 4.5 eV, then from the surface of the metal a) one electron will be emitted b) two electrons will be emitted c) more than two electrons will be emitted d) not a single electron will be emitted Einsten's photoelectric equation is 16. a) $w + hv = \frac{1}{2}mv^2_{\text{max}}$ b) $\frac{1}{2}mv^2_{\text{max}} = w$ c) $hv = \frac{1}{2}mv^2_{\text{max}} - w$ d) $W + \frac{1}{2}mv^2_{\text{max}} = hv$ 17. A photon of energy 2E is incident on a photosensitive surface of photoelectric work function E. The maximum KE of photoelectron emitted is ____ a) E b) 2E c) 3E d) 4E The work function of a metal is 6.626×10^{-19} J. The threshold frequency is 18. a) 1 x 10¹⁵ Hz b) 10 x 10⁻¹⁹ Hz c) 1 x 10⁻¹⁵ Hz d) 10 x 10¹⁹ Hz

If c is the velocity, γ the frequency and λ the wavelength of a radiation, then 19. its frequency is defined as --a) the number of waves in a distance of one metre b) the number of waves in a distance of λ c) the number of waves in a distance of c d) the number of waves produced in a period of T second When the momentum of a particle increases, its de – Broglie wavelength -20. c) does not change a) increases b) decreases d) infinity An electron of a mass m and charge e accelerated from rest through a potential 21. of V volt, then its final velocity is a) $\sqrt{\frac{\text{Ve}}{\text{m}}}$ b) $\sqrt{\frac{\text{Ve}}{2\text{m}}}$ c) $\sqrt{\frac{2\text{Ve}}{\text{m}}}$ d) $\frac{2\text{Ve}}{2\text{m}}$ The de Broglie wavelength of electron accelerated with a potential V is 22. a) $\lambda = \frac{h}{\sqrt{Vem}}$ b) $\lambda = \frac{h}{\sqrt{2Vem}}$ c) $\lambda = \frac{h}{m\sqrt{2Vem}}$ d) $\lambda = \frac{h}{m\sqrt{Ve/m}}$ When an electron is accelerated with potential difference V, its 23. de - Broglie wavelength is directly proportional to _____ d) v^{-1/2} c) $\sqrt{1/2}$ b) V⁻¹ a) V If the radius of third orbit of hydrogen atom is r, then the de Broglie wave 24. length of electron in this orbit is c) $\frac{2\pi r}{3}$ a) $\frac{r}{3}$ b) 3 r d) $3(2\pi r)$ Electron microscope works on the principle of 25. a) photoelectric effect b) particle nature of electron c) wave nature of moving electron d) dual nature of matter. According to special theory of relativity the only constant in all 26. frames of reference is a) mass c) time b) length d) velocity of light When a material particle of rest mass m_0' attains the velocity of light, 27. its mass becomes a) 0 b) $2 m_0$ c) $4 m_0$ **d**) ∞ Which one of the particle having zero mass and energy 28. a) electron b) photon c) proton d) neutron 29. Photons has b) mass but zero energy a) energy but zero mass c) zero mass and zero energy d) infinite mass and energy

The length of the rod placed inside a rocket is measured as 1m by an 30. observer inside the rocket which is at rest. When the rocket moves with a speed of 36 x 10^6 km / hr. The length of the rod as measured by the same observer is a) 0.997 m b) 1.003 m c) 1 m d) 1.006 m The number of de - broglie waves of an electron in the nth orbit of an atom is 31. c) n + 1 b) n - 1 d) 2n a) n **PTA Objective Questions:** Photoelectric effect can be explained on the basis of 1. a) corpuscular theory b) wave theory d) quantum theory c) Electromagnetic theory 2. At threshold frequency, the velocity of electrons is d) infinity a) zero b) maximum c) minimum 3. The wavelength of matter waves is independent of c) momentum b) velocity d) charge a) mass A photon of frequency v is incident on a metal surface of threshold frequency 4. v_0 . The kinetic energy of emitted photo electron is d) $h(\nu + \nu_0)$ **a)** $h(v - v_0)$ c) hv_0 b) $h\nu$ According to relativity the length of rod in motion ____ 5. a) is same as its rest length b) is more than its rest length c) is less than its rest length d) may be more or less than or equal to rest length depends on the speed of the rod Focal length of the electromagnetic lens used in an electron microscope 6. depends on a) the velocity of electrons b) the magnitude of the current passing through energizing coils c) the medium between the energizing coils d) all the above photoelectric current depends upon_ a) intensity of incident light b) frequency of incident light c) the potential difference between two plates d) all the above Electron microscope is operated in _____ 8. a) high pressure b) high vacuum d) none of the above c) normal pressure

19. When the intensity of light incident on a photoelectric surface is doubled, a) the frequency of emitted photons will be doubled b) the number of photoelectrons will be doubled c) the number photoelectrons will become 4 times d) there is no effect at all 20. The potential which is just sufficient to bring the photoelectric current to ____ potential zero is called _ c) stopping a) photoelectric b) threshold d) minimum The electron microscope is based on the principle of _ 21. b) dual nature of electron a) photoelectric effect c) particle nature of electron d) wave nature of moving electrons The rest mass of photon is 22. b) $h\nu/C$ c) C/h ν d) zero a) hv de Broglie wavelength λ of a particle is related to its kinetic energy E by 23. the relation a) λαE b) $\lambda \alpha 1/E$ c) $\lambda \alpha \sqrt{E}$ d) $\lambda \alpha 1/\sqrt{E}$ The energy required to bring the electrons of maximum velocity to 24. rest is $\frac{1}{2}mv^2$ b) eV_0 a) eV d) mv^2 The Phenomenon of photoelectric effect is 25. a) spontaneous process b) instantaneous process c) continuous process d) stimulated process The cathode of a photo emissive cell is coated with 26. b) high work function material a) low work function material c) light sensitive material d) reflecting material 27. Newton's laws are not valid in a) inertial frames b) non-inertial frames c) all frames d) reference frames 28. In the photo emissive cell, the anode is made up of a) copper b) gold c) platinum d) zinc 29. Photoelectric cells are used in a) reproducing sound in cinematography b) controlling the temperature of the furnace c) automatic switching on & off of street lights d) all the above In Newton's mechanics which of the following is treated as absolute? 30. b) time c) length & space **d) all the above** a) mass

31.	According to the space is	special theory of	relativity, the velo	ocity of light in free
	a) dependent on th	ne motion of the sou	Irce	
	b) dependent on th	ne motion of the obs	erver	
	c) independent of	the motion of the ob	server	
	d) a constant in al	Il frames of referen		
32	The clock in movi	ng space will appea	r to	
02.	a) go slower than	the clock on the ea	rth	
	b) go faster than th	he clock on the earth	h c) be the same	as on the earth
	d) come to rest cor	npared to the clock	on the earth	
33	demonstr	ated photoelectric	effect experimental	llvfirst
00.	a) II Thomson	b) Hallwachs	c) Richardson	d) de Broglie
34	The relationship h	etween stonning no	tential V & KF	electrons is given as
54.				1
	a) $eV_o = mv_{max}^2$	b) $eV_0 = \frac{1}{2} mv_{max}$	$\mathbf{C} \mathbf{eV}_{0} = \frac{1}{2} \mathbf{mV}_{\max}^{2}$	d) $V_0 = \frac{1}{2} m v_{max}^2$
35.	The momentum of	f electron having wa	avelength 2Å	
	a) 3.3 x 10 ²⁴ kgms ⁻¹	-	b) 6.6 x 10 ²⁴ kgms	-1
	c) 3.3 x10 ⁻²⁴ kgms ⁻¹	<u> </u>	d) 6.6 x 10 ⁻²⁴ kgms	5-1
36.	If 1 kg of a subs	tance is fully conv	verted into energ	gy, then the energy
	produced is			
	a) 9 x 10 ¹⁶ J	b) 9 x 10 ²⁴ J	c) 1 J	d) 3 x 10 ²⁴ J
37.	When a material p	article of rest mass	m ₀ attains a speed	C, its mass becomes
	a) 0	b) $2 m_0$	c) $4 m_0$	d) ∞
38.	Light of frequen	cy 1.5 times the t	hreshold frequen	cy is incident on a
	photo sensitive	material. If the fr	equency is halve	ed and intensity is
	doubled, the photo	electric current beco	omes	
	a) quadrupled	b) doubled	c) halved	d) zero
39.	The work function	on of a photoelect	ric material is 3.3	eV. The threshold
4	frequency will be	equal to		
	a) 8 x 10 ¹⁴ Hz	b) $8 \ge 10^{10} \text{Hz}$	c) 5 x 10 ²⁰ Hz	d) $4 \times 10^{14} \text{Hz}$
40.	If the electron is a	moving with a velo	ocity of 500 km/s	then the de Broglie
۲ ۰	wave length is	٥	0	٥
1	a) 500 m	b) 9.11 Å	c) 14.5 Å	d) 66.2 Å
41.	An electron of m	ass 'm' and charg	e 'e' accelerated f	rom rest through a
	potential of V volt.	then its final veloci	ty	
	a) $\sqrt{Ve/m}$	b) $\sqrt{Ve/2m}$	c) $\sqrt{2Ve/m}$	d) 2Ve/m

42.	The de Broglie velocity 20 m/s	wavelength of an	object of mass 0.0	3 kg moving with a
	a) 2.1 x 10 ⁻³⁴ m	b) 1.1 x 10 ⁻³³ m	c) 6.6 x 10 ⁻³⁴ m	d) 3.3 x10 ⁻³³ m
43.	The frequency of	photon having an e	energy of 413 eV is	
	a) 10 ¹⁸ Hz	b) 10 ¹⁷ Hz	c) 10 ¹⁶ Hz	d) 10 ¹⁵ Hz
44.	The wave numbe	er of light of radiation	on of wavelength 5	000 Å is
	a) 2 x 10 ⁻⁷ m ⁻¹	b) 2 x 10 ⁻⁶ m ⁻¹	c) 5 x 10 ⁻⁷ m ⁻¹	d) 2 x 10 ⁶ m ⁻¹
45.	Threshold freque	ency of a metal is 3 >	$ m k10^{13}Hz$, then its w	ork function
	a) 4 x 10 ⁻¹⁹ J	b) 3 x 10 ⁻¹⁹ J	c) 2 x 10 ⁻²⁰ J	d) 5 x 10 ⁻¹⁹ J
46.	If the momentu	m of a radiating	photon is 3.3 x 1	0 ⁻²⁹ kg ms ⁻¹ then its
	wavelength is			
	a) 6 x 10 ⁻³ m	b) 3 x 10 ⁻³ m	c) 2 x 10 ⁻³ m	d) 2 x 10 ⁻⁵ m
47.	de Broglie wavel	ength of a proton m	oving with 1/15 th	of velocity of light is
	a) 3 x 10 ⁻¹⁴ m	b) 2 x 10 ⁻¹⁵ m	c) 2 x 10 ⁻¹⁴ m	d) 3 x 10 ⁻¹⁶ m
48.	The de Brolie wa	velength of an elect	ron having KE of 2	0 eV is
	a) 0.275 nm	b) 2.75 Å	c) 27.5 nm	d) 0.275 Å
49.	A particle of ma	ass 10 ⁻³⁴ kg is movi	ng with a speed o	of $1.8 \times 10^8 \text{m/s}$. The
	mass of the partie	cle when it is in mo	tion is	
	a) 12.5x10 ⁻²⁴ kg	b) 1.25 x 10 ⁻²⁴ kg	c) 0.125x10 ⁻²⁴ kg	d) 12.5 x 10 ⁻²² kg
50.	On a metal surfa	ce two photons of e	nergy 1eV and 2.5e	V falls consecutively.
	The work functi	on of the metal is	0.5 eV. What is th	ne ratio of maximum
	velocity of two p	hotons?		
	a) 1 : 4	b) 1:1	c) 2 : 1	d) 1 : 2
51.	The wavelength	of X-rays is about th	an that of visible li	ght
	a) 2000 to 3000 ti	imes greater	b) 3000 to 4000 t	imes lesser
	c) 2000 to 3000 ti	mes lesser	d) 3000 to 4000 t	imes greater
52.	The wavelength	of electrons accelera	ated by a potential	difference of 60,000 V
	is about			
	a) 3 x 10 ⁻¹² m	b) 5 x 10 ⁻¹² m	c) 5 x 10 ⁻¹⁰ m	d) 4 x 10 ⁻¹⁰ m
53.	Proton when ac	celerated through	a potential differ	ence of V volt has a
	wavelength λ as	sociated with it. An	alpha particle in o	rder to have the same
V/	wave length mus	st be accelerated thr	ough the voltage	
/	a) V	b) V	c) V/8	d) 2V
54.	If an electron is	accelerated by a p	potential of 54 kV	, then its de Broglie
	wave length is			
	a) 3.34 Å	b) 1.67 Å	c) 16.7 Å	d) 0.84 Å

55.	If the wavelength	of an electron is 7.2	18 Å then its veloc	city is
	a) 10^3m/s	b) 10° m/s	c) $10^{12} \mathrm{m/s}$	d) 10 ⁹ m/s
56.	If the waveleng	gth of electron i	s 50 x 10 ⁻¹³ m,	then the potential
	difference applied	l is		
	a) 12,000 V	b) 60,000 V	c) 6,000 V	d) 120,000 V
57.	The momentum of	t photon of waveler	ngth 6600 A	
-	a) 10 ²⁷ kgms ⁻¹	b) 10 ⁻²⁷ kgms ⁻¹	c) 10 ¹⁹ kgms ⁻¹	d) 10^{-19} kgms ⁻¹
58.	The wavelength o	f electron having m	omentum 3.3×10^{-1}	²⁴ m/s is
	a) 10A	b) 2A	c) 20A	d)1A
59.	The wavelength o	f proton having free	quency 1.5×10^{13} H	lz is
	a) $2 \times 10^{-10} \text{ m}$	b) 2 x 10 ⁻⁵ m	c) 0.2A	d) 20A
60.	The de Broglie wa	velength of proton	accelerated throug	h a p.d. of 823 V is
	a) 10 ⁻¹² m	b) 10 ⁻¹⁰ m	c) 10 ⁻⁸ m	d) 2.417 A
61.	The momentum of	of a proton and an	alpha particle are	equal. The mass of
	alpha particle is	four times the mas	ss of proton. The	ratio of wavelength
	associated with th	em		
	a) 1 : 4	b) 4 : 1	c) 1 : 1	d) 1 : 2
62.	An alpha partic	le and a proton	are accelerated	through the same
	potential. The rat	io of their de Brogli	e wavelength is	
	a) 1 : 1	b) 1 : 2	c) 1 : 3	d) $1:2\sqrt{2}$
63.	The frequency of p	photon of energy 65	eV is	
	a) 1.57 x 10 ¹⁶ Hz		b) 1.57 x 10 ¹⁵ Hz	
	c) 1.04 x 10 ¹⁵ Hz		d) 1.04 x 10 ¹⁶ Hz	
64.	The energy requir	ed for the transition	$n n = 2 \text{ to } n = \infty$	
	a) 3.4 eV	b) 1.7 eV	c) 6.8 eV	d) -13.6 eV
65.	Threshold freque	ncy of metal is 10 ¹⁵	⁵ Hz, the frequenc	y of incident light is
	2×10^{15} Hz then th	e energy of photo e	lectron emitted is	
	a) 6.6 J	b) 6.625 x 10 ⁻¹⁹ J	c) 12.25 x 10 ¹⁹ J	d) 2.25 x 10 ⁻¹⁹ J
66. 🗸	If threshold wave	length of sodium is	6800 Å, what is its	work function?
	a) 0.91 eV	b) 13.6 eV	c) 1.82 eV	d) 1.72 eV
67.	The energy of inci	dent UV rays on al	uminium metal of	work function 4.2 eV
\checkmark	is 6.2 eV. Then the	e kinetic energy of e	mitted photoelect	ronis
/	a) 3 x 10 ⁻¹⁷ J	b) 3 x 10 ⁻¹⁹ J	c) 3×10^{29} J	d) 6 x 10 ⁻¹⁹ J
68.	A light of wavele	ngth 4000Å falls or	n metal surface of	work function 2eV.
	Then the maximu	m kinetic energy of	emitted photon is	
	a) 2 eV	b) 1.1 eV	c) 1.5 eV	d) 0.5 eV
	/	,	,	/

Three Mark Questions: Book Back Questions :

- 1. What is photo electric effect?
- 2. Define stopping potential. (PY)
- 3. Define threshold frequency.
- 4. Define work function.
- 5. What are photo cells and give their types.
- 6. Write any three applications of photo-cells? (**P**Y)
- 7. What are matter waves?
- 8. Mention the applications of electron microscope. (**P**Y)
- 9. Define frame of reference and what are their types?
- 10. State the postulates of special theory of relativity. (PY)
- 11. If a body moves with the velocity of light, what will be its mass?Comment on your result.

Previous Year Questions :

- 12. Write any three applications of Photoelectric cell.
- 13. What are the limitations of electron microscope?
- 14. According to classical mechanics, what is the concept of time?
- 15. What are inertial and non inertial frames?
- 16. Difference between inertial and non intertial frames of reference.
- 17. Calculate the threshold wavelength of certain metal of work function 1.8 eV
- 18. What is the de Broglie wavelength of electron of kinetic energy 120 eV? (h = 6.626×10^{-34} Js; m= 9.1×10^{-31} kg) (Eg)
- 19. Find de Broglie wavelength of electron in the fourth orbit of hydrogen atom.

Five Mark Questions: Book Back Questions :

- 1. Explain the variation of photoelectric current with applied voltage.
- 2. State the laws of photoelectric emission. (**P Y**)
- 3. Explain Einstein's theory of photoelectric effect (or) equation (PY)
- 4. What are the applications of photo-cells? (**P Y**)
- 5. Derive an expression for de Broglie wavelength of matter waves. (PY)
- 6. Draw a neat sketch of an electron microscope. Explain its working. Give its uses and limitations.
- 7. Discuss the concept of space, time and mass.
- 8. Explain length contraction. (**P Y**)

- 9. Explain time dilation. (**P Y**)
- 10. Derive Einstein's mass energy equivalence. (PY)
- 11. A proton is moving at a speed of 0.900 time the velocity of light. Find its kinetic energy in joule and MeV. **(Ex) (P Y)**

Previous Year Questions :

- 12. What is photoelectric effect? State the laws of photo electric emission.
- 13. Define work function. State the laws of photo electric emission.
- 14. Explain the construction and working of a photo emissive cell with diagram.
- 15. Explain the wave mechanical concept of atom.
- 16. Explain FitzGerald Lorentz contraction with an example.
- 17. The metallic surface when illuminated with light of wavelength 3333Å emits electrons with energies upto 0.6 eV. Calculate the work function of the metal. (Eg)
- 18. The work function of iron is 4.7 eV. calculate the cut off frequency and the corresponding cut off wavelength for this metal. (Ex)
- 19. What is de Broglie wavelength of an electron of kinetic energy 120 eV?
- 20. How fast would a rocket have to go relative to an observer for its length to be corrected to 99% of its length at rest? (Eg)
- 21. The time interval measured by an observer at rest is 2.5×10^{-8} s. what is the time interval as measured by an observer moving with a velocity v = 0.73c. (Ex)
- 22. At what speed is a particle moving if the mass is equal to three times its rest mass? (Eg)

VIII. NUCLEAR PHYSICS

	One Mark Questio	ons					
	Book Back Questions :						
1.	The nuclear radiu	s of ₄ Be ⁸ nucleus is	(PY)				
	a) 1.3 x 10 ⁻¹⁵ m	b) 2.6 x 10 ⁻¹⁵ m	c) 1.3 x 10 ⁻¹³ m	d) 2.6 x 10 ⁻¹³ m			
2.	The nuclei ₁₃ Al ²⁷ a	nd ₁₄ Si ²⁸ are examp	ole of (P Y)				
	a) isotopes	b) isobars	c) isotones	d) isomers			
3.	The mass defect of	f a certain nucleus i	s found to be 0.03 an	nu. Its binding energy			
	is (PY)						
	a) 27.93 eV	b) 27.93 KeV	c) 27.93 MeV	d) 27.93 GeV			
4.	Nuclear fission ca	in be explained by	(PY)				
	a) shell model		b) liquid drop mo	odel			
	c) quark model		d) Bohr atom mod	del			
5.	The nucleons in a	nucleus are attract	ed by (PY)				
	a) gravitational fo	orce	b) electrostatics fo	orce			
	c) nuclear force		d) magnetic force				
6.	The ionisation po	wer is maximum fo	or (PY)				
	a) neutrons	b) alpha particle	c) gamma rays	d) beta particle			
7.	The half life period	l of a certain radioa	ctive element with d	lisintegration constant			
	0.0693 per day is	(PY)					
	a) 10 days	b) 14 days	c) 140 days	d) 1.4 days			
8.	The radio isotope	used in agriculture	e is (P Y)				
	a) $_{15}P^{31}$	b) $_{15}P^{32}$	c) $_{11}Na^{23}$	d) $_{11}Na^{24}$			
9.	The average energy	gy released per fiss	ion is				
	a) 200 eV	b) 200 MeV	c) 200 meV	d) 200 GeV			
10.	The explosion of a	atom bomb is based	l on the principle of	(PY)			
	a) uncontrolled f	ission reaction	b) controlled fissi	on reaction			
	c) fusion reaction		d) thermonuclear	reaction			
11.	Anaemia can be d	iagnosied by (P Y)					
	a) $_{15}P^{31}$	b) ₁₅ P ³²	c) ₂₆ Fe ⁵⁹	d) $_{11}Na^{24}$			
12	In the nuclear rea	ction $Ha^{198} + Y$	$\Lambda_{11}^{198} + H^1 Y$ of	tands for (PV)			
	a) proton	h oloctron	\rightarrow_{79} Au $+_{1}$ II, X-St	d) doutron			
12	In β decay (PV)	b) electron	cj neurion	uj ucunon			
10.	a) atomic number	docroscos by one	h) mass number de	croses by one			
	a) proton number	romains the same	d) noutron number	r dograages by one			
	c) proton number	remains the same	uj neutron numbe	er uecreases by one			

14.	Isotopes have (PY)					
	a) same mass number but different atomic number					
	b) same proton number and neutron number					
	c) same proton number but different neutron number					
	d) same neutron number but different proton number					
15.	The time taken by the radioactive element to reduce to 1/e times is (P Y)					
	a) half life	b) mean life	c) half life/2 d) t	wice the mean life		
16.	The half life perio	d of N^{13} is 10.1 min	ute. Its life time is (l	PY)		
	a) 5.05 minutes	b) 20.2 minutes	c) $\frac{10.1}{0.6931}$ minutes	d) infinity		
17.	Positive rays of the same element produce two different traces in a Bainbridge					
	mass spectrometer. The positive ions have					
	a) same mass with different velocity					
	b) same mass with same velocity					
	c) different mass with same velocity					
	d) different mass with different velocity					
18.	The binding energ	gy of ₂₆ Fe ⁵⁶ nucleus i	is (PY)			
	a) 8.8 MeV	b) 88 MeV	c) 493 MeV	d) 41.3 MeV		
19.	The ratio of nuclea	ar density to the de	nsity of mercury is a	about		
	a) 1.3×10^{10}	b) 1.3	c) 1.3 x 10 ¹³	d) 1.3 x 10 ⁴		
	Previous Year (Duestions :				
20.	Which of the follo	wing are isotones?				
	a) $_{\rm op}U^{235}$ and $_{\rm op}U^{235}$	(238 b) O^{16} and $_{-}N^{1}$	14 c) $_{c}C^{14}$ and $_{a}N^{14}$	d) , N^{14} and C^{13}		
21.	If the nuclear radius is 2.6×10^{-15} m, the mass number will be					
	a) 2	b) 4	c) 8	d) 16		
22.	When mass number increases, nuclear density					
	a) increases		b) decreases			
4	c) remains consta	nt	d) may increase of	r decrease		
23.	One amu is equal	to				
	a) 931 eV		b) mass of carbon atom			
\checkmark '	c) 1.66 x 10 ⁻²⁷ kg		d) mass of electron			
24.	The energy equiv	alent of 1 amu is _				
	a) 931 MeV	b) 931 meV	c) 931 eV	d) 913 MeV		
25.	The nuclear force between a proton and another proton inside the nucleus					
	is					
	a) zero	b) short range	c) repulsive	d) long range		

26.	The nuclear force is due to the continuous exchange of particles are called					
	a) leptons	b) mesons	c) hyperons	d) photons		
27.	Arrange α, β and	γ rays in the incre	asing order of their	ionising power		
	a) $\alpha \beta \gamma$	b) $\beta \alpha \gamma$	c) γβα	d) $\gamma \alpha \beta$		
28.	The penetrating po	ower is maximum f	or			
	a) α - particles	b) β - particles	c) gamma rays	d) protons		
29.	An element $_{Z}X^{A}$ su	accessively underg	oes three α - decay	s and four β decays		
	and gets convertee	d to an element Y. T	The mass number ar	nd atomic number of		
	the element Y are a	respectively				
	a) A-12, Z-2	b) A-12, Z+2	c) A-12, Z+4	d) A-8, Z+2		
30.	The number of α	and β particles em	nitted when an isoto	pe ₉₂ U ²³⁸ undergoes		
	and decays to form	$m_{82}^{}Pb^{206}$ are respectively the second se	ctively.			
	a) 6, 8	b) 4, 3	c) 8, 6	d) 3, 2		
31.	The radioactive e	element _z X ^A after	emitting three α	-particles and four		
	β -particles is conv	β -particles is converted into an element Y represented as				
	a) $_{z-6}Y^{A-12}$	b) _{z+2} Y ^{A-12}	c) _{z-2} Y ^{A-12}	d) $_{z-10}Y^{A-12}$		
32.	According to the la	aw of disintegratio	n, the number of ra	dioactive atoms that		
	have been decayed	have been decayed during a time of t is				
	a) N ₀	b) N	c) $N_0 - N$	d) $\frac{N_0}{2}$		
33.	The half-life of a radioactivity element is 300 days. The disintegration constar					
	of the radioactive element is					
	a) 0.00231 day	b) 0.00231/day	c) 0.0231/day	d) 0.0231/day		
34.	The time taken by	a radioactive eler	nent of reduce to e	^{-1/2} times its original		
	amount is its					
		×	half – life perio	bd		
	a) half - life period		b) $\frac{\text{mean} - \text{life period}}{2}$			
	c) mean - life peric	od	d) $\frac{\text{mean} - \text{me per}}{2}$			
35.	The mean life (τ) and half-life (T _{1/2}) of a radio activity element are related as					
<u>K</u> ,	a) $\tau = 2 T_{1/2}$	b) $\tau = \frac{T_{1/2}}{0.6931}$	c) $\tau = 0.6931 T_{1/2}$	d) $\tau = \frac{T_{1/2}}{2}$		
36.	The mean life of radon is 5.5 days. Its half-life is					
	a) 8 days	b) 2.8 days	c) 0.38 days	d) 3.8 days		
37.	The unit of disinte	gration constant is	·	, ,		
	a) no unit	b) second	c) second ⁻¹	d) curie		
	,	/	,	,		

38.	One curie is					
	a) activity of I gm of uranium	b) 1 disintegration / second				
	c) 3.7 x 10 ¹⁰ becquerel	d) 1.6 x 10^{12} disintegration / second				
39.	In the nuclear reaction ${}_4\text{Be}^9 + X \rightarrow e^{-1}$	$2^{12} + {}_0 n^1$, X stands for				
	a) Proton b) <i>a</i> -particle	c) Electron d) Deutron				
40.	Slow neutrons are neutrons having e	energies between 🔥 💊				
	a) 1000 eV to 2000 eV	b) 2000 eV to 0.5 MeV				
	c) 0 eV to 1000 eV	d) 0.5 MeV to 10 MeV				
41.	In the following nuclear reaction, $_{13}$	$Al^{27} + {}_{2}He^{4} \rightarrow X + {}_{0}n^{1}$ the element X is				
	a) $_{15}Si^{30}$ b) $_{15}P^{30}$	c) $_{15}S^{30}$ d) $_{15}Si^{29}$				
42.	Which of the following is used to det	ect the presence of block in blood vessels?				
	a) $_{15}P^{31}$ b) $_{15}P^{32}$	c) $_{26}Fe^{59}$ d) $_{11}Na^{24}$				
43.	In the following nuclear reaction $_7$ N	$^{14}+_{0}n^{1} \rightarrow X+_{1}H^{1}$ the element X is				
	a) $_{6}N^{14}$ b) $_{6}C^{14}$	c) $_{6}O^{14}$ d) $_{7}C^{13}$				
44.	The fuel used in Kamini (Kalpakkam mini reactor) is a) mixture of carbides of uranium and plutonium					
	b) mixture of oxides of plutonium and uranium					
	c) $_{92}U^{233}$	d) $_{92}U^{235}$				
45.	The moderator used in nuclear reactor is					
	a) cadmium b) Boron carbide	a) cadmium b) Boron carbide c) heavy water d) Uranium $({92}U^{235})$				
46.	Which of the following is not a moderator?					
	a) Liquid sodium b) Ordinary wa	ter c) Graphite d) Heavy water				
47.	In a nuclear reactor, cadmium rods	are used to				
	a) speed up neutrons	b) slow down neutrons				
	c) absorb neutrons	d) remove heat				
48.	The coolant used in fast breeder read	The coolant used in fast breeder reactor is				
	a) ordinary water b) heavy water	c) liquid sodium d) boron carbide				
49.	Hydrogen bomb is based on the prir	nciple of				
	a) nuclear fission	b) nuclear fusion				
	c) nuclear force	d) carbon nitrogen cycle				
50.	In proton – proton cycle four proton	s fuse together to give				
/	a) an α - particle, two neutrinos and	a) an α - particle, two neutrinos and energy of 26.7MeV				
	b) an α - particle, two positrons, two	b) an α - particle, two positrons, two neutrinos and energy of 26.7MeV				
	c) a helium atom, two positrons, two neutrinos and energy of 26.7 MeV					
	d) an α - particle, two positrons, two anti – neutrinos and energy of 26.7 MeV					
51.	The cosmic ray intensity is maximum at a latitude of					
-------------------	--	---------------------------------	-------------------------------	---	--	
	a) 0°	b) 45°	c) 90°	d) 60°		
52.	Particle that has r	o charge and no res	st mass but travels	with velocity of light is		
	a) baryon	b) meson	c) lepton	d) photon		
53.	The particle whic	h has zero mass bu	t has energy, is			
	a) electron	b) photon	c) proton	d) neutron		
54.	Which of the follo	owing particles is a	lepton?	• • • • • • • • • • • • • • • • • • • •		
	a) Electron	b) Proton	c) Neutron	d) Meson		
55.	Which of the foll	owing is massless a	and chargeless but	carrier of energy and		
	spin?					
	a) neutrino	b) muon	c) pion	d) kaon		
56.	Which of the follo	owing belongs to Ba	ryon group?			
	a) Photon	b) Electron	c) Pion	d) Proton		
57.	Coolant acts in fa	st breeder reactor i	s 💦			
	a) ordinary water		b) heavy water			
	c) liquid sodium		d) liquid helium			
58.	The radio - isotop	e used in the treatm	nent of skin diseas	es is :		
	a) Co ⁶⁰	b) Na ²⁴	c) Fe ⁵⁹	d) P ³²		
59.	The nature of the	electrostatic force a	nd nuclear force b	etween a proton and a		
	neutron inside a	nucleus are respecti	ively:			
	a) repulsive and	attractive	b) zero and attr	active		
	c) repulsive and r	epulsive	d) attractive and	d attractive		
60.	The binding ener	gy per nucleon of ₂₆	Fe ⁵⁶ nucleus is			
<i>(</i> 1	a) 8.8 Mev	b) 88 Mev	c) 493 Mev	d) 41.3 Mev		
61.	The decay consta	nt of a free neutron	15	$1) 0.0(0) + 1^{-1}$		
	a) 0.013 minute	b) 0.053 minute	¹ c) 3 minutes	d) 0.069 minute ⁻¹		
	DT (Ob)					
1	PIA Objective C	<u>juestions :</u>				
1.	Mass of proton is	$5 \$ times the ma	ass of electron	J) 10(2		
	a) 2	$D_{j} = 1030$	C) 1636	a) 1863		
2.	a) 17	b) 19	c) 25	d) 10		
3	a) 17 Since the stome of	vj 10 Isotopos bavo ida	U JJ ntial alactronic stru	uj 17		
5.	a) equal number	of postrops	h) identical physic	ical properties		
	a) equal number	vial proportion	d) dissimilar sha	mical properties		
	cj identical chen	incar properties	uj uissiininai che	inical properties		

4. Isobars are a) different nucelei of same element b) having similar physical and chemical properties c) identical nuclei of different elements d) having different physical and chemical properties Emprical relation between radius of nucleus (R) and its mass number (A) is 5. given by c) R= $r_0^3 A^{1/3}$ a) R= $r_0 A^4$ b) R= $r_0^3 A^4$ d) $R = r_0 A^{1/3}$ 6. In an emprical relation connecting radius of nucleus (R) and its mass number (A), then value of r_0 is b) 1.3 x 10⁻¹⁵ F a) 1.3 x 10⁻³ F c) 1.3 x 10⁻¹⁵ m d) 13 F If the nuclear density of $_{1}$ H² nuclei is 1.816 x 10¹⁷ kgm⁻³ then the nuclear 7. density of ₂He⁴ nuclei is b) 1.816 / 4 x 10¹⁷ kg m⁻³ a) $2 \times 1.816 \times 10^{17} \text{ kg m}^{-3}$ d) 1.816 x 10¹⁷ kg m⁻³ c) $4 \times 1.816 \times 10^{17} \text{ kg m}^{-3}$ The charge of ₈O¹⁶ nuclei is 8. a) 1.6 x 10⁻¹⁹ C b) -12.8 x 10⁻¹⁹ C c) 1.228 x 10⁻¹⁸ C d) 2.56 x10⁻¹⁸ C 9. Examples of isobars are b) $_{1}$ H² and $_{2}$ He³ (**b**) $_{1}$ H³ and $_{2}$ He³ a) $_{1}H^{1}$ and $_{2}He^{4}$ d) $_{1}$ H¹ and $_{2}$ He⁴ The nuclear radius of Be⁸ is 10. b) 2.6 x 10⁻¹⁵ m c) 1.3 x 10⁻¹³ m d) 2.6 x 10⁻¹³ m a) 1.3 x 10⁻¹⁵ m The nuclei 13 Al²⁷ and 14 Si²⁸ are examples of _ 11. a) isotopes b) isobars c) isotones d) isomers 12. Isotopes have a) same mass number but different atomic number b) same proton number and neutron number c) same proton number but different neutron number d) same neutron number but different proton number The ratio of nuclear density to the density of mercury is about 13. a) 1.3×10^{10} b) 1.3 c) 1.3 x 10¹³ d) 1.3 x 10⁴ The electrons in the atom of an element which determine its chemical and 14. electrical properties are called _____ b) revolving electrons a) active electrons d) valence electrons c) excess electrons The ratio of radii of two nuclei is 1 : 2. The ratio of their mass number is _____ 15. a) 1 : 4 b) 8:1 c) 1:8 d) 1 : 16

1	16.	Energy equivalence	ce of 1 amu is		
		a) 931 eV	b) 913 eV	c) 931 MeV	d) 913 MeV
1	17.	In $\frac{B.E}{A}$ graph, beyo	and $A = 120$, the bir	nding energy per nu	icleon is
		a) decreases rapid	ly	b) increases slowly	7
		c) decreases slow	ly	d) a constant	
1	18.	The binding energ	y of ₂₆ Fe ⁵⁶ nucleus i	.S	
		a) 8.8 MeV	b) 88 MeV	c) 493 MeV	d) 41.3 MeV
1	19.	The energy equiva	alent of 1 amu is = $_{-}$		
		a) 981 MeV	b) 913 MeV	c) 931 MeV	d) 942 MeV
2	20.	The mass defect of	certain nucleus is f	found to be 0.03 am	u. Its binding energy
		is			
		a) 27.93 eV	b) 27.93 KeV	c) 27.93 MeV	d) 27.93 GeV
2	21.	The mass of proto	n is 1.007277 amu a	and that of neutron	is 1.008665 amu. If
		the mass of $_1H^2 = 2$	2.01473 amu. Then	the binding energy	of $_1H^2$ is
		a) 1.128 MeV	b) 0.164	c) 1.52 MeV	d) 2.42 MeV
2	22.	In Bainbridge mas	s spectrometer, the	e velocity selector is	
		a) v = F/q	b) $v = B/q$	c) $\mathbf{v} = \mathbf{E}/\mathbf{B}$	d) $v = Eq/B$
2	23.	In Bainbridge mas	s spectrometer, the	mass of an ion is	
		a) $\frac{BRq}{B'E}$	b) $\frac{B'Rq}{BE}$	c) $\frac{BB'Rq}{E}$	d) BB'Rq
2	24.	In Bainbridge mas	ss spectrometer, th	e distance betweer	n the opening of the
		chamber and the p	osition of the dark	line gives	
		a) the radius b) the diameter	c) half the radius	d) twice the diameter
2	25.	Positive rays of the	e same element pro	duce two different t	races in a Bainbridge
		mass spectrometer	r. The positive ions	have	
		a) same mass with	different velocity	b) same mass with	a same velocity
		c) different mass	with same velocit	ŧy	
		d) different mass	with different velo	ocity	
2	26. 🧹	Ratio of strength c	of nuclear force to t	hat of gravitational	force is
		a) 10 ⁻⁴⁰	b) 10 ⁻²⁰	c) 10^{20}	d) 10 ⁴⁰
\mathbf{x}^2	27.	According to pre	sent view of the r	nuclear force, the f	force that binds the
		protons and neutr	ons is a		
		a) electrostatic for	ce	b) magnetic force	
		c) secondary force	2	d) gravitational fo	orce
2	28.	The nucleons in a	nucleus are attracte	ed by	
		a) gravitational fo	rce	b) electrostatic for	ce
_		c) nuclear force		d) magnetic force	

29.	Nuclear forces we	re explained by		
	a) Chadwick	b) Bohr	c) Curie	d) Yukawa
30.	Nuclear force is ac	cting between		
	a) neutron - neutro	on only	b) proton - proton	only
	c) neutron - protor	n only	d) all the above	
31.	Nuclear force is a			
	a) long range force	2	b) short range for	ce 🔥 🧳
	c) repulsive force		d) charge based fo	orce
32.	During the radioa	ctive disintegratior	n of radium ₈₈ Ra ²²⁶ in	nto Radon ₈₆ Rn ²²² , the
	energy of gamma	ray emited is about	:	
	a) 18.7 MeV	b) 0.187 MeV	c) 1.87 MeV	d) 187 MeV
33.	According to the c	concept of Yukawa	, the particles whic	h exchange between
	the nucleon are read	sponsible for the or	rigin of nuclear forc	ce are
	a) photons	b) Leptons	c) mesons	d) baryons
34.	Nuclear density			
	a) depends on atom	mic number	b) is a constant	
	c) depends on neu	itron number	d) depends on ma	ss number
35.	1 amu is equal to			
	a) 1.494 x 10 ⁻¹⁰ J	b) 14.94 x 10 ⁻¹⁰	c) 931 J	d) 931 eV
36.	Energy released p	er nuclear fusion		
	a) 200 MeV	b) 26.7 eV	c) 2.67 MeV	d) 26.7 MeV
37.	Of the following is	sotonic nuclei are		
	a) $_{11}$ Na ²² , $_{12}$ Mg ²⁴	b) $_{11}Na^{24}$, $_{10}Ne^{23}$	c) $_{12}Mg^{24}$, $_{11}Na^{24}$	d) $_{10}$ Ne ²³ , $_{11}$ Na ²²
38.	Acticity of one gra	im of radium is		
	a) 3.7 x 10 ¹⁰ becqu	erel	b) 3.7 curie	
	c) 3.7 x 10 ¹⁰ curie	×	d) 1 becquerel	
39.	An equation for a	free neutron decay	is	
	a) $_{0}n^{1} \rightarrow _{1}H^{1} + _{-1}e$	$\mathbf{v}^{0} + \overline{\mathbf{v}}$	b) $_{0}n^{1} \rightarrow _{-1}e^{0} +_{1}H$	$(2^{2} + + v)$
	c) $\mathbf{n}^{1} \rightarrow \mathbf{H}^{1} + \mathbf{H}^{0}$) + v	d) $_{0}n^{1} \rightarrow _{1}H^{1} + _{1}e^{0}$	+ v
40.	In pressurised hea	vy water reactors,	the fuel used is	
	a) uranium	5	b) uranium carbid	le
	c) uranium oxide		d) Low enriched u	ıranium
41.	In the reaction $_{00}$	$h^{234} \rightarrow h^{234} + x$, the particle emitte	d is
	a) α	b) β	c) y	d) photon
42	The ionization por	wer is minimum for	r	/ [
	a) alpha particles	b) B - particles	c) gamma ravs	d) electron
	a) arria particles	~/ p purieres	-/ Outilitia Tuyo	

43.	Which one travels	s with velocity of lig	ght ?	
	a) α ray	b) β ray	c) γ ray	d) cathode ray
44.	When a gamma ra	ay is emitted from a	a radioactive atom	
	a) only its mass nu	umber changes		
	b) only its atomic:	number changes		
	c) both mass num	ber and atomic nur	nber changes	
	d) neither mass n	umber nor atomic	number changes	
45.	In beta decay,			
	a) atomic number	decreases by one	b) mass number d	ecreases by one
	c) proton number	remains the same	d) neutron numb	er decreases by one
46.	In which of the fol	llowing decays the	element does not cl	nange
	a) α decay	b) β decay	c) γ decay	d) neutron decay
47.	An alpha particle	has		
	a) a charge +e	b) the mas	s equal to deutron	
	c) a charge -2e	d) charge	to mass ratio equal	to that of a deutron
48.	In beta decay			
	a) atomic number	r increases by one	b) neutron numbe	er increases by one
40	c) mass number d	ecrease by one	d) proton number	remains the same
49.	The relation conn	ecting hair life and	mean life of a radio	bactive sample is
	a) τ=0.6931T	b) $T = \frac{0.6931}{7}$	c) $T = \frac{0.6931}{\tau}$	d) Т=0.6931 т
50.	Activity of one gra	am of radium is equ	ual to	
	a) 1 roentgen	b) 1 curie	c) 1 henry	d) 1 second
51.	Isotope used to lo	cate brain tumour i	S	
	a) Na ²⁴	b) I ¹³¹	c) Fe ⁵⁹	d) P ³²
52.	Isotope used in th	e treatment of skin	disease is	
	a) Na ²⁴	b) I ¹³¹	c) Fe ⁵⁹	d) P ³²
53.	The ratio of C ¹⁴ an	d C ¹² atoms in atom	nsphere is	
1	a) 10º : 1	b) 10 ⁴ : 1	c) 1 : 10 ⁶	d) 1 : 10 ⁴
54.	The exposure of ra	adiation dosage wh	ich causes diseases	like leukemia is
、 •⁄	a) 600 R	b) 100 R	c) 250 mR	d) 25 mR
55.	The half life perio	d of an isolated neu	itron is about	
	a) 31 minutes	b) 13 minutes	c) 13 hours	d) 13 seconds
56.	The natural radio	active gas is		
	a) radon	b) helium	c) oxygen	d) krypton

57.	The radio isotope used in agriculture is				
	a) $_{15}P^{31}$	b) ₁₅ P ³²	c) $_{11}Na^{23}$	d) $_{11}$ Na ²⁴	
58.	Cobalt 60 is used f	for the treatment of	f		
	a) cancer		b) heart attack		
	c) thyroid gland		d) maintaining bl	ood circulation	
59.	Anemia can be dia	igonised by		A . 7	
	a) $_{15}P^{31}$	b) ₁₅ P ³²	c) ₂₆ Fe ⁵⁹	d) $_{11}$ Na ²⁴	
60.	The half life period	d of radio carbon is	3		
	a) 2800 years	b) 5600 years	c) 4200 years	d) 5300 years	
61.	A radioactive sub	stance has a half li	fe period of 30 day	s. The disintegration	
	constant is				
	a) 0.023 / day	b) 0.231 / day	c) 2.31 / day	d) 23.1 / day	
62.	The half life of a co	ertain radioactive o	element with disint	egration constant	
	0.0693 per day is				
	a) 10 days	b) 14 days	c) 140 days	d) 1.4 days	
63.	The half life perio	d of N^{13} is 10.1 min	ute. Its life time is		
	a) 5.05 minutes	b) 20.2 minutes	c) 10.1 / 0.693 mi	nutes d) infinity	
64.	The half life of a ra	idioactive substance	e is 5 minutes. The	amount of substance	
	decayed in 20 min	utes will be			
	a) 93.75 %	b) 75 %	c) 25%	d) 6.25 %	
65.	In nuclear fission (0.1% mass is conve	rted into energy. If	he energy released by	
	the fission of 1kg f	nass will be	-) 0 10 ¹³ I	1) 0 1017 I	
((a) 9×10^{10} J	D = 0	$c_{j} = x + 10^{10} $	$d = 9 \times 10^{10}$	
66.	The percentage of	initial quantity of	a radioactive eleme	ent remaining	
	a) 2%	b) 6.25°	$a) 1^{0/2}$	d) 1 5 0/	
67	Which of the follo	wing statement is $\frac{1}{2}$	Wrong?In nuclear	reaction	
07.	a) the sum of ini	tial atomic numbe	ers is equal to sur	n of the final atomic	
	numbers		1		
~	b) law of conserva	tion of charge is sa	itisfied		
Y	c) conservation of	nucleons is satisfie	ed		
	d) the initial rest	mass is equal to the	he final rest mass		
68.	An example for el	ectrostatic accelera	ator is		
	a) Cockcraft - Wa	iton accelerator	b) linear accelera	tor	
	c) cyclotron		u) betatron		

69.	The class of accelerators which can accelerate articles only upto few million			
	electron volt are	1 \ 1 . 1 .		
	a) Linear accelerators	b) cyclotron accelerator		
70	c) spiral type accelerator	d) electrostatic accelerator		
70.	With spiral type accelerators, the par	ticles are accelerated to an energy in the		
	order of			
	a) few million electron volt	b) 10° eV	1	
	c) 10 ⁹ eV	d) 10 ⁻⁹ eV		
71.	The first instrument to record the visua	al observation of the tracks of the charged		
	particles when they pass through ma	tter 1s		
	a) geiger - muller counter	b) Wilson's cloud chamber		
	c) Vandegraff generator	d) Cyclotron		
72.	Average number of neutrons released	d per fission of uramium is		
	a) 2 b) 3	c) 2.5 d) 3.5		
73.	The instrument used to measure the	intensity of radioactive radiation is		
	a) cyclotron	b) Bainbridge spectrometer		
	c) electron microscope	d) Geiger - Muller counter		
74.	The rest mass of mesons vary betwee	n		
	a) $250 \text{ m}_{e} - 1000 \text{ m}_{p}$	b) $250 \text{ m}_{p} - 1000 \text{ m}_{p}$		
	c) $250 \text{ m}_{e} - 1000 \text{ m}_{e}$	d) 250 m _e - 1000 m _e		
75.	In fast breeder reactors,			
	a) heavy water used as moderator	b) graphite is used as moderator		
	c) ordinary water is used as moderate	or d) no moderator is required		
76.	The average energy released per fissi	onis		
	a) 200 eV b) 200 MeV	c) 200 meV d) 200 GeV		
77.	The explosion of atom bomb is based	on the principle of		
	a) uncontrolled fission reaction	b) controlled fission reaction		
	c) fusion reaction	d) thermonuclear reaction		
78.	Which of the following is not a mode	erator?		
	a) heavy water b) paraffin	c) graphite d) Cadmium		
79.	The principle of an atom bomb is			
Y	a) nuclear fission	b) nuclear fusion		
	c) conservation of momentum	d) collision of simple particles		
80.	The explosion of atom bomb is based	on the principle of		
	a) uncontrolled fission reaction	b) controlled fission reaction		
	c) fusion reaction	d) thermo nuclear reaction		

www.Padasalai.Net

www.Trb Tnpsc.Com

81.	In the following reaction ${}_4\text{Be}^9 + {}_2\text{He}^9$	$e^4 \rightarrow {}_bX^a +_0 n^1$, the v	ralue of 'a' is
00	a) 10 D) 12 The function in body case has $b = b = b$	C) 10	a) 14
82.	The fusion reaction in hydrogen both r_{1}	mD IS	0
	a) $_{1}H^{\circ} + _{1}H^{2} \rightarrow _{2}He^{*} + _{0}n^{2} + Q$	b) $4_1 \text{H}^3 \rightarrow 2_1 \text{He}^4$	$+2_1e^0+Q$
	c) $_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{3} + Q$	d) $_{1}H^{1} + _{1}H^{3} \rightarrow _{2}H^{3}$	$\mathrm{He}^4 + \mathrm{Q}$
83.	Total energy radiated by sun is about	ut	
	a) $3.8 \times 10^{-26} \text{ j/s}$ b) $3.8 \times 10^{26} \text{ j/s}$	c) 8.3 x 10 ⁻²⁶ j/s	d) 8.3 x 10 ⁻²⁶ j/s
84.	In the nuclear reaction $_{80}Hg^{198} + X$ -	$\rightarrow_{79}AU^{198} +_1 H^1, X \text{ s}$	tands
	a) proton b) electron	c) neutron	d) deutron
85.	The neutrons with energy range 0.5	MeV to 10 MeV are	called
	a) slow neutrons	b) Fast neutrons	
	c) thermal neutrons	d) none of the ab	ove
86.	Slow neutrons are neutrons having	energies between	
	a) 1000 eV and 2000 eV	b) 2000 eV and 0.	5 MeV
	c) zero to 1000 eV	d) 0.5 MeV and 1	0 MeV
87.	Between latitudes of 42° and 90°, th	e cosmic ray intensi	ty is
	a) minimum b) maximum	c) a constant d	l) none of the above
88.	is the reason for production	of carbon	
	a) X-rays b) UV rays	c) Cosmic rays	d) gamma rays
89.	The cosmic ray intensity is maxim	im at an altitude	
	a) 10 km b) 20 km	c) 40 km	d) 60 km
90.	The cosmic ray intensity is maximu	im at a place of latiti	ıde
	a) 0 b) 30°	c) 40°	d) 90°
91.	Particles having mass equal to or I	less than about 207	times the mass of an
	electron are		
	a) mesons b) leptons	c) baryons	d) Hyperons
92.	Particles possessing rest mass inte	ermediate between	$250m_e$ to $1000m_e$ are
	known as		
	a) mesons b) leptons	c) baryons	d) Hyperons
93.	Mass of hyperons vary from		
	a) 1000 m _e and 270 m _e	b) 207 times of m	ass of electron to zero
	c) 2180 m _e and 3275 m _e	d) $m_e^{}$ and $m_p^{}$	
94.	Natural uranium consists of		
	a) 99.28 % of U^{235} and 0.72% of U^{238}	b) 99.28 % of U ²³⁵	⁵ and 0.72 % of Pu ²³⁹
	c) 99.28 % of U ²³⁸ and 0.72% of U ²³⁵	d) 99.28 % of U ²³⁸	and 0.72 % of Pu ²³⁹

5/

95.	Energy of the primary cosmic rays is in order of				
	a) 10 ⁸ MeV	b) 10 ⁸ eV	c) 10 ¹⁸ MeV	d) 10 ¹⁸ eV	
96.	Intensity of consm	nic ray is maximum	n at a height of abo [.]	ut	
	a) 20 m	b) 20 km	c) 200 m	d) 45 km	
97.	In a nuclear reaction	on, the mass of proc	duct nuclei is 0.03 a	mu less than the mass	
	of reactant nuclei,	then the energy re	leased in the nucle	ar reaction is	
	a) 2793 eV	b) 2.793 MeV	c) 27.93 MeV	d) 0.2793 MeV	
98.	A radioactive mat	erial of mass 40 m	illigram becomes 5	milligram in 6 hours	
	then the half life p	eriod of the element	nt is		
	a) 1 hour	b) 90 min	c) 2 hours	d) 3 hours	
99.	A radioactive sub	stance is allowed to	o decay for a time e	equal to its mean life.	
	Then the fraction of the element that has decayed is				
	a) $\frac{1}{e}$	b) $\frac{e-1}{e}$	c) e	d) $e^2 - 1$	
100.	The time taken by	the radioactive ele	ement to reduce to	1/e times is	
	a) half life	b) mean life	c) half life / 2 d) twice the mean life	
101.	The safe limit of a	person to receive r	adioactive radiatio	on per week is	
	a) 250 R	b) 25 mR	c) 250 mR	d) 250µR	
102.	Which of the follo	wing is the stronge	est force in nature ?)	
	a) electrostatic for	rce	b) gravitational f	orce	
	c) nuclear force		d) magnetic force	2	
103.	Muons belong to				
	a) photons	b) leptons	c) baryons	d) Mesons	
104.	Nuclear fission ca	n be explained by			
	a) quark model		b) Bohr atom mo	del	
	c) liquid drop mo	del	d) Shell model		
100					

Three Mark Questions:

Book Back Questions :

- 1. Define and calculate the energy equivalence of one atomic mass unit.
- 2. Give any three characteristics of nuclear forces. (PY)
- 3. Define radioactivity.
- 4. Define Curie. (**P Y**)
- 5. What do you meant by artificial radioactivity? (PY)
- 6. How do you classify the neutrons in terms of its kinetic energy? (PY)
- 7. What is artificial transmutation?
- 8. What is meant by breeder reactor? (**P**Y)
- 9. What are thermo nuclear reactions?
- 10. What are cosmic rays? (**P Y**)

Previous Year Questions :

- 11. Select the pairs of isotopes, isobars and isotones from the following nuclei: ${}_{11}Na^{22}$, ${}_{12}Mg^{24}$, ${}_{11}Na^{24}$, ${}_{10}Ne^{23}$.
- 12. Calculate the number of atoms in one gram of ${}_{3}Li^{6}$ (Avagadro number = 6.023 x 10²³)
- 13. What is binding energy of nucleus? (Ex)
- 14. What is mass defect?
- 15. Write any three conclusions obtained for BE curve.
- 16. What is α -decay? Give example.
- 17. The radioactive isotope ${}_{84}$ Po²¹⁴ undergoes a successive disintegration of two α -decays and two β -decays. Find the atomic number and mass number of the resulting isotope. (Ex)
- 18. The isotope ${}_{92}$ U^{238} successively undergoes three α decays and two β decays. What is the resulting isotope?
- 19. State the radioactive law of disintegration.
- 20. Write the methods of production of artificial radio isotopes.
- 21. The half-life of ${}_{84}$ Po²¹⁸ is 3 minute. What percentage of the sample has decayed in 15 minutes? **(Ex)**
- 22. Tritium has a half-life of 12.5 years. What fraction of the sample will be left over after 25 years? **(Ex)**
 - 23. What percentage of a given radioactive substance will be left after 5 half life periods?
 - 24. Tritium has a half-life of 12.5 years. What fraction of the sample will be left over 50 years?

- 25. The half-life of radon is 3.8 days. Calculate its mean life. (Ex)
- 26. Write any three properties of neutron.
- 27. Define roentgen.
- 28. Define critical size and critical mass.
- 29. What is the use of control rod in the reactor? Mention any two control rods.
- 30. What are the uses of nuclear reactors?
- 31. Write the Proton-Proton cycle that takes place in sun and stars.
- 32. What is meant by pair production and annihilation?
- 33. Write a note on Leptons.
- 34. What are the precautions to be taken by the people who are working in radiation laboratories ?
- 35. Write any three properties of β rays.

Five Mark Questions: Book Back Questions :

- 1. With example explain the classification of the nuclei in terms of its proton number and neutron number.
- 2. Explain mass defect and binding energy,
- 3. Show that nuclear density is almost a constant for all the nuclei.
- 4. Explain the variation of binding energy with mass number by a graph and discuss its features.
- 5. Explain the different characteristics of nuclear forces. (**P**Y)
- 6. Explain the Soddy-Fajan's radioactive displacement law. (PY)
- 7. Obtain the relation between half-life period and decay constant. (**P**Y)
- 8. Explain how carbon-nitrogen cycle can account for the production of stellar energy.
- 9. Explain the latitude effect of cosmic rays. (PY)
- 10. Explain how the intensity of the cosmic rays changes with altitude. **(PY)**
- 11. Explain how a cosmic ray shower is formed. (**P Y**)
- 12. A How do you classify the elementary particles into four groups?

Previous Year Questions :

- 13. Explain the variation of binding energy with mass number and discuss its features. (graph is not necessary)
- 14. Write the properties of alpha rays.
- 15. Write a note on the biological hazards of nuclear radiations.
- 16. Explain the principle and working of an atom bomb.
- 17. Write the properties of γ rays

- 18. Calculate the binding energy and binding energy per nucleon of $_{20}$ Ca⁴⁰ nucleus. Given : mass of 1 proton = 1.007825 amu; mass of 1 neutron = 1.008665 amu; mass of $_{20}$ Ca⁴⁰ = 39.96259 amu. (Ex)
- 19. Calculate the energy released in the following equation : ${}_{13}Al^{27} + {}_{1}H^2 \rightarrow {}_{12}Mg^{25} + {}_{2}He^4$. Given the mass of ${}_{13}AI^{27}$ nucleus = 26.981535 amu. Mass of ${}_{1}H^2$ = 2.014102 amu. Mass of ${}_{12}Mg^{25}$ = 24.98584 amu. Mass of ${}_{2}He^4$ nucleus = 4.002604 amu. (Eg)
- 20. Calculate the energy released in the following equation : ${}_{3}Li^{6} + {}_{0}n^{1} \rightarrow {}_{2}He^{4} + {}_{1}H^{3}$. Given the mass of ${}_{3}Li^{6}$ nucleus = 6.015126 amu. Mass of ${}_{0}n^{1}$ = 1.008665 amu. Mass of ${}_{2}He^{4}$ = 4.002604 amu. Mass of ${}_{1}He^{3}$ nucleus = 3.016349 amu. (Ex)
- 21. Find the energy released when two $_1H^2$ nuclei fuse together to form a single $_2He^4$ nucleus. Give the binding energy per nucleon of $_1H^2$ and $_2He^4$ are 1.1 MeV and 7.0 MeV respectively. **(Ex)**
- 22. If the mass defect of the nucleus ${}_{6}C^{12}$ is 0.098 amu, then calculate the binding energy per nucleon.
- 23. The binding energy per nucleon for ${}_{6}C^{12}$ nucleus is 7.68 MeV and that for ${}_{6}C^{13}$ is 7.47 MeV. Calculate the energy required to remove a neutron from ${}_{6}C^{13}$ nucleus. (Eg)
- 24. A piece of bone from an archaeological site is found to give a count rate of 15 counts per minute. A similar sample of fresh bone gives a count rate of 19 counts per minute. Calculate the age of the specimen. (Given T $_{\frac{1}{2}}$ = 5570 years) (Eg)
- 25. Show that the mass of radium ($_{88}$ Ra²²⁶) with an activity of 1 curie is almost a gram. (Given : $T_{_{1/2}}$ = 1600 yrs. Curie = 3.7 x 10¹⁰ disintegrations per second) (Ex)
- 26. The disintegration constant λ of a radioactive element is 0.00231 per day. Calculate its half-life and mean life. **(Ex)**
- 27. Calculate the time required for 60% of a sample of radon to undergo decay. (Given $T_{\frac{1}{2}}$ of radon = 3.8 days) (Eg)
 - 28. A reactor is developing energy at the rate of 32 MW. Calculate the required number of fissions per second of $_{92}U^{235}$. Assume that energy per fission is 200 MeV. (Ex)

- 29. Calculate the energy released when 1 kg of $_{92}U^{235}$ undergoes nuclear fission. Assume, energy per fission is 200 MeV. Avogadro Number is 6.023 x 10²³. Express your answer in Kilowatt hour also. **(Eg)**
- 30. Calculate the mass of coal required to produce the same energy as that produced by the fission of 1 kg of U²³⁵(Heat of combustion of coal = 33.6 x 10⁶ Jkg⁻¹. 1 ton = 1000 kg. Energy per fission of U²³⁵ = 200 MeV. 1eV = 1.6 x 10⁴⁹ J, Avogadro number N = 6.023 x 10²³) (Eg)

Ten Mark Questions: Book Back Questions :

- 1. Discuss the principle and action of a Bainbridge mass spectrometer to determine the isotopic masses. (**P Y**)
- 2. Obtain an expression to deduce the amount of the radioactive substance present at any moment. Obtain the relation between half life period and decay constant. (P Y)
- 3. Explain the construction and working of a Geiger-Muller counter. (**P Y**)
- 4. With a neat sketch, explain the working of a nuclear reactor.
- 5. What are cosmic rays? Explain the latitude and altitude effect. How a cosmic ray shower is formed (**P** Y)

Previous Year Questions

6. What is a nuclear reactor? Explain the functions of i) moderator ii) control rods and iii) neutron reflector. Mention the uses of nuclear reactor.
 (Diagram is not necessary)

IX. SEMICONDUCTOR DEVICES AND THEIR APPLICATIONS

	One Mark Questions	
	Book Back Questions :	
1.	The electron in the atom of an eleme	ent which determine its chemical and
	electrical properties are called	
	a)valence electrons	b) revolving electrons
	c) excess electrons	d) active electrons
2.	In an N – type semiconductor, there a	re
	a) immobile negative ions	b) no minority carriers
	c) immobile positive ions	d) holes as majority carriers
3.	The reverse saturation current in a PN	junction diode is only due to (P Y)
	a) majority carriers	b) minority carriers
	c) acceptor ions	d) donor ions
4.	In the forward bias characteristic curv	re, a diode appears as (P Y)
	a) a high resistance	b) a capacitor
	c) an OFF switch	d) an ON switch
5.	Avalanche breakdown is primarily de	pendent on the phenomenon of (P Y)
	a) collision	b) ionisation
	c) doping	d) recombination
6.	The colour of light emitted by a LED d	epends on (P Y)
	a) its reverse bias	b) the amount of forward current
	c) its forward bias	d) type of semiconductor material
7.	The emitter bias junction of a given trar	nsistor is forward biased and its collector
	base junction is reverse biased. If the b	ase current is increased, then its
	a) V _{CE} will increase	b) I_c will decrease
	c) I _c will increase	d) V_{cc} will increase
8.	Improper biasing of a transistor circui	t produces
	a) heavy loading of emitter current	b) distortion in the output signal
	c) excessive heat at collector terminal	d) faulty location of load line
9.	An oscillator is (P Y)	
Y	a) an amplifier with feedback	b) a convertor of ac to energy
	c) nothing but an amplifier	d) an amplifier without feedback
10.	In a Colpitt's oscillator circuit (P Y)	
	a) capacitive feedback is used	b) tapped coil is used
	c) no tuned LC circuit is used	d) no capacitor is used

- 11. Since the input impedance of an ideal operational amplifier is infinite (P Y)a) its input current is zero
 - b) its output resistance is high
 - c) its output voltage becomes independent of load resistance
 - d) it becomes a current controlled device
- 12. The following arrangements performs the logic function of _____ gate (PY)

A logic gate for which there is 'LOW' output only when both the inputs are 41. 'High' is a) AND b) NAND c) NOR d) EXOR 42. The following arrangement performs the logic function of a) AND b) NAND c) OR d) EXOR A logic gate for which there is an output only when both the inputs are zero is 43. b) NOR c) EXOR a) NAND d) AND What will be the input for the Boolean expressions $\overline{(A+B)}(\overline{AB})=1$ 44. c) 0.0 d) 1.1 b) 1.0 a) 0.1 The following arrangement performs the logic function of: 45. b) EX-OR a) NOT c) OR d) AND In the pin configuration of IC 741, pin 3 represents 46. a) inverting input b) non-inverting input c) - V_{cc} d) output The output of the given operational amplifier is 47. 100 kΩ $10 k\Omega$ $V_{in} = 0.2 \sin \omega t$ a) $-2\sin\omega t$ b) $2\sin\omega t$ c) $-2\sin(\omega t+10^\circ)$ d) $2\sin(\omega t+10^\circ)$ The output voltage of the operational amplifier given below is 48. Vout a) -1V b) +1V c) +5V d) -5V

3. Of the following choose the wrong statement a) Resistivity of semiconductor is approximately 10⁻² - 10⁴ ohm m b) Resistance of semiconductor decreases with increase of temperature c) Resistance of a conductor increases of temperature d) Resistivity of a conductor is 10⁻² - 10⁴ ohm-m is an example for semiconductor 4. a) Fe b) C d) Ge c) Ag Electrons in the atom of an element which determine its chemical and electrical 5. properties are called a) valence electrons b) revolving electrons d) active electrons c) excess electrons For an insulator the forbidden energy gap is 6. a) less than 3 eV b) less than 0.7 eV d) equal to 3 eV c) greater than 3 eV In glass, the energy gap between valence band and conduction band is of the 7. order of a) 3 eV b) 6 eV c) 10 eV d) 0.7 eV Forbidden energy gap for the semiconductors like Ge and Si are respectively 8. a) 1.1 eV & 0.7 eV b) 0.7 eV & 1.1 eV c) 11 eV & 0.7 eV d) 1.1 eV & 7 eV In case of good conductors, forbidden energy gap is 9. a) more than 3eV b) equal to 3eVc) zero d) 0.7 eV 10. Electrons in an intrinsic semiconductor, which move into the conduction band at high temperature are called a) valence electrons b) hole c) intrinsic carrier d) donor 11. In intrinsic semiconductors, a) number of free electrons is equal to number of holes b) number of free electrons is greater than number of holes c) number of free electrons is lesser than number of holes d) number of free electrons is zero 12. Amount of impurity to be added to a intrinsic semiconductor is of the order of a) 50 ppm b) 100 ppm c) 500 ppm d) 1000 ppm Donar atom is a 13. a) tetravalent b) trivalent c) pentavalent d) divalent 14. Of the following, the donor atoms are a) Si and Ge b) aluminium and gallium c) bismuth and arsenic d) boron and indium

15.	Acceptor atom is	a		
	a) tetravalent	b) trivalent	c) pentavalent	d) divalent
16.	is an exam	ple for acceptor ator	n	
	a) Al	b) Bi	c) P	d) As
17.	In an N type sem	i conductor, there ar	e	
	a) immobile nega	tive ions	b) no minority ca	rriers
	c) immobile posi	tive ions	d) holes as major:	ity carriers
18.	In an N-type sem	iconductors,		
	b) both holes and	electrons are the ma	ajority carriers	
	c) electrons are t	he majority carriers	6	
	d) electrons are the	ne minority carriers		
19.	The difference of	potential from one	side of the barrier	to the other side of a
	PN junction is kn	own as		
	a) depletion regio	n	b) potential gradi	ient
	c) potential barr	ier	d) contact potent	ial
20.	Width of the pote	ential barrier in a PN	junction diode dej	pend on
	a) number of elec	trons C	b) potential differ	rence
	c) number of hole	es	d) nature of the i	material
21.	In forward biased	l PN junction diode		
	a) potential barr	ier is reduced		
	b) potential barri	er is increased		
	c) width of the po	otential barrier incre	ases	
22	d) potential barri	er remains same	.1 1 1	• 1 • • • • •
22.	In a Forward bia	sed junction diode,	the voltage at wh	nich current starts to
	increase rapidly i	s known as	1)	·····
	a) leakage voltag	e	b) reverse saturat	tion voltage
D 2 🔺	C) knee-voltage	w of half wave weath	d) cuton voltage	1
23.	r = 100000000000000000000000000000000000	b) 81.2 %	a) 40.6 %	d) 20.2 %
24	The output of an	balf waxo roctifior i	C) 40.0 70	u) 50.2 %
24.	a) unidirectional	and constant	b) alternating and	1 nulsating
/	c) alternating and	l constant	d) unidirectional	l and nulsating
25	Variations of d c	output voltage as a	function of d c load	d current is called
20.	a) rectification	suput tonuge us u	b) filter	
	c) regulation		d) full wave recti	fication

26.	Percentage of regulation is given by					
	a) $\frac{V_{noload} - V_{load}}{V_{noload}} \times 100$	b) $\frac{V_{noload} - V_{load}}{100}$				
	c) $\frac{\mathbf{V}_{noload} - \mathbf{V}_{load}}{\mathbf{V}_{load}} imes 100$	d) $\frac{V_{load} - V_{noload}}{V_{load}} \times 100$				
27.	Zener diodes are used as	× •				
	a) rectifiers b) filters	c) regulators d) amplifier				
28.	Zener current is					
	a) dependent of applied voltage	b) independent of applied voltage				
	c) dependent on material of the diode	d) dependent on knee voltage				
29.	is a reverse biased, heavily dop	ped semiconductor PN junction diode				
	a) LED b) LCD	c) Zener diode d) transistor				
30.	A Zener diode working in the	region can act as voltage regulators				
	a) normal b) saturated	c) breakdown d) constant voltage				
31.	The reverse saturation current in a PN	I Junction diode is only due to				
	a) majority carriers b) minority carrie	ers c) acceptor ions d) donor ions				
32.	A forward biased diode will act as					
	a) a high resistance device	b) a capacitor				
	c) an OFF switch	d) an ON switch				
33.	Avalanche breakdown primarily depe	ends on				
	a) collision b) ionisation	c) doping d) recombination				
34.	Colour of light emitted by a LED depe	ends on				
	a) its reverse bias voltage	b) the amount of forward current				
	c)its forward bias voltage	d) type of semiconducting materials				
35.	When an electron in the conduction b	and recombines with a hole in the				
	valence band then energy is					
	a) stopped b) absorbed	c) released d) needed				
36.	During the normal operation of	a transistor, if its base current is				
	increased then its,					
	a) V_{ce} will increase	b) I _C will decrease				
\checkmark	c) Ic will increase	d) V _{CC} will increase				
37.	Emitter's main function is to supply					
	a) electrons	b) majority charge carriers				
	c) minority charge carriers	d) holes				
38.	The thickness of the base of a transiste	or is of the order of				
	a) 100 µm b) 50 µm	c) 25μm d) 200 μm				

In CE configuration , the IC changes from 2 mA to 4 mA. If $V_{\rm\scriptscriptstyle CE}$ is increased 72. from 5 V to 10 V, output admittance must be a) 8 x 10⁻⁴ mho b) 0.4 x 10⁻³ mho c) 2.5 x 10³ mho d) 1.25 x 10³ mho 73. Three amplifier have gains 10, 50 and 80 respectively, when they are connected in cascade the overall gain is d) 140 a) 4000 b) 400 c) 40000 If an inductor of Inductance $\frac{1}{4\pi^2}$ H and a capacitance 4pF are 74. connected in parallel to form LC tank circuit, then the frequency of oscillations is d) 500 MHz a) 5 MHz b) 0.5 MHz c) 50 MHz

Three Mark Questions: Book Back Questions :

- 1. Define forbidden energy gap.
- 2. What do you understand by intrinsic and extrinsic semi conductor ? (PY)
- 3. What is rectification? (**P Y**)
- 4. What is zener breakdown ? (PY)
- 5. Why is a transistor called as current amplification device?
- 6. Why CE configuration is preferred over CB configuration for operating transistor as an amplifier?
- 7. Define band width of an amplifier? **(P Y)**
- 8. What is meant by feedback? Name the two types of feedback?
- 9. What are the advantages of negative feed back? (PY)
- 10. Give the Barkhausen criteria for oscillations. (PY)
- 11. What are universal gates? Why are they called so? (PY)
- 12. What is an EXOR gate? Give the Boolean expression for the EXOR operation.
- 13. State DeMorgan's theorems. (PY)
- 14. What is integrated circuit? (P Y)
- 15. Identify the analog and digital signals from the following. (i) square wave (ii) sine wave.
- 16. Differentiate between linear IC's and digital IC's.
- 17. Give the important parameters of an operational amplifier. (PY)
- 18. Explain the term virtual ground of an operational amplifier. (PY)
- 19. Draw the circuit diagram for OR gate using diodes. (**P Y**)
- 20. What is a light emitting diode? Give any one of its uses. (**P**Y)
- 21. Mention any three uses of cathode ray oscilloscope (**P**Y) **Previous Year Questions :**
- 22. What is meant by doping?
- ~23. Write the different methods of doping a semiconductor.
- 24. What are extrinsic semiconductors?
- 25. Draw energy band diagrams of N-type semiconductor and P-type semiconductor.
- 26. What is a Zener diode? Draw its symbol?
- 27. Draw the circuit diagram for NPN transistor at Common Emitter (CE) mode.

- 28. Draw the circuit configuration of NPN transistor in common collector (CC) mode.
- 29. Define input impedance of a transistor connected in common emitter mode.
- 30. Define output impedance of a transistor.
- 31. Draw the block diagram of an oscillator and mention the components
- 32. Mention any three advantages of integrated Circuit(IC).
- 33. Distinguish between analog signal and digital signal.
- 34. Draw the circuit diagram of AND gate using diodes and resistor
- 35. Draw NOT gate using transistor.
- 36. Draw the circuit diagram for inverting amplifier using Op-Amp.
- 37. Draw the circuit diagram for summing amplifier.
- 38. Find the voltage at the point B in the figure (Silicon diode is used).

- 39. The base current of a transistor is $50 \mu A$ and collector current is 25 mA. Find the value of current gain β .(Ex)
- 40. In a common base transistor circuit $I_c = 0.97$ mA and $I_B = 30 \mu$ A. Calculate the value of (α) the current gain. (Ex)
- 41. When there is no feedback the gain of the amplifier is 100. if 5% of the output voltage is feedback into the input through a negative feedback network, find out the voltage gain after feedback. **(Ex)**
- 42. When the negative feedback is applied to an amplifier of gain 50, the gain falls to 25. Calculate the feedback ratio. **(Eg)**
- 43. The voltage gain of an amplifier without feedback is 100. If negative feedback is applied with a feedback fraction β =0.1, Calculate the voltage gain after feedback.
- 44. The gain of a amplifier without feedback is 100 and gain with positive feedback is 200. Calculate the feedback fraction.
 - **45**. The output of two NOT gates are NOR gate, as shown in the figure, what is the logic operation performed? **(Eg)**

46. Find out the output Y of the logic circuit given below.

47. Give the Boolean equation for the given logic diagram (Ex)

48. What is the Boolean expression for the logic diagram shown in figure. Evaluate its input if A = 1, B = 1 and C = 1. (Ex)

- 49. Prove the Boolean identity: (A + B) (A + C) = A + BC. (Eg)
- 50. Prove the following logic expression (A + B)(A + B) = B.
- 51. Find the output of the ideal operational amplifier shown in the figure for the input of the V_{in} = 120 mV direct current (Eg)

52. Find the output of the given circuit: (Ex)

Find the output of the amplifier circuit given below:

 $\begin{array}{c}
100 \text{ km} \\
50 \text{ km} \\
\hline
00 \text{ km}$

- 137 -

54. Find the output of the ideal operational amplifier shown in the figure for input of $V_{in} = -2.5 \text{ V d.c.}(\text{Eg})$

- 55. What do you understand by intrinsic semi conductor?
- 56. What is a light emitting diode? Give any one of its uses. Draw its symbol
- 57. For a transistor to work, how is the biasing?
- 58. Give the boolean equation for the given logic diagram

59. What is the boolean expression for the logic diagram shown in figure. Evaluate its output if A = 1, B = 1, C = 1

- 1. Describe the valence band, conduction and forbidden energy gap with the help of energy level diagram.
- 2. Describe the energy band structure of insulator, semiconductor and conductor.
- 3. What do you understand by intrinsic and extrinsic semiconductor?
- 4. Explain the working of a half wave diode rectifier. (**P**Y)
- 5. Explain the working of a bridge rectifier with a neat circuit diagram. (PY)
- 6. Describe the construction of Zener diode.
- 7. Explain with necessary circuit how the zener diode can be used as a voltage regulator. (**P** Y)
- 8. Deduce the relation between α and β of a transistor. **(P Y)**
- 9. Derive an expression for voltage gain of an amplifier with negative feed back.
- 10. Give the function of 'OR' and 'NAND' gates.

- 11. State and prove DeMorgan's theorems. (**P Y**)
- 12. Describe the action of an operational amplifier as difference amplifier.
- 13. Explain how multimeter is used as ohm meter. (PY)

Previous Year Questions :

- 14. Explain the function of a transistor as a switch.
- 15. With the circuit diagram, explain voltage divider biasing of a transistor.
- 16. Draw the frequency response curve of single stage CE amplifier and discuss the results.
- 17. What is an AND gate? Explain the function of AND gate using electrical circuit using diodes.
- 18. Explain the circuit symbol and Pin-out configuration of an operational amplifier.
- 19. A transistor is connected in CE configuration. The voltage drop across the load resistance (R_c) $3_k\Omega$ is 6V. Find the base current. The current gain α of the transistor is 0.97. (Eg)
- 20. What is an OR gate? Explain the function of OR gate using electrical circuit using diodes.
- 21. What is an NOT gate? Explain the function of NOT gate using electrical circuit using transistor.

Ten Mark Questions:

Book Back Questions :

- 1. Explain an experiment to determine the characteristics of a transistor in CE configuration. Explain how the transistor parameters can be evaluated.
- 2. Describe the working of transistor amplifier. (**P**Y)
- 3. Sketch the circuit of Colpitt's oscillator. Explain its working. **(PY)**
- 4. Describe an operational amplifier. Explain its action as (i) inverting amplifier and (ii) non inverting amplifier. **(P Y)**
- 5. Explain how operational amplifier is used as a summer and difference amplifier. (**P** Y)
- 6. What is meant by feed back? Derive an expression for voltage gain of an amplifier with negative feedback. (**P Y**)
- 7. Describe the working of PNP and NPN transistors.

Previous Year Questions :

8.

- What is rectification ? Explain the working of a bridge rectifier with necessary waveforms.
- 9. Explain the output characteristics of an N-P-N transistor connected in common emitter configuration with the help of a neat circuit diagram.
- 10. Explain with neat circuit diagram, the working of single stage CE amplifier.

X. COMMUNICATION SYSTEMS

One Mark Questions Book Back Questions :

- High frequency waves follow (PY)
 a) the ground wave propagation
- b) the line of sight direction
- c) ionospheric propagation
- d) the curvature of the earth
- 2. The main purpose of modulation is to
 - a) combine two waves of different frequencies
 - b) acquire wave shaping of carrier wave
 - c) transmit low frequency information over long distances efficiently
 - d) produce side bands
- 3. In amplitude modulation (**P Y**)
 - a) the amplitude of the carrier wave varies in accordance with the amplitude of the modulating signal
 - b) the amplitude of the carrier wave remains constant
 - c) the amplitude of the carrier wave varies in accordance with the frequency of the modulating signal
 - d) modulating frequency lies in the audio range
- 4. In amplitude modulation, the band width is **(P Y)**
 - a) equal to the signal frequency **b) twice the signal frequency**
 - c) thrice the signal frequency d) four times the signal frequency
- 5. In phase modulation
 - a) only the phase of the carrier wave varies
 - b) only the frequency of the carrier wave varies
 - c) both the phase and the frequency of the carrier wave varies
 - d) there is no change in the frequency and phase of the carrier wave
- 6. The RF channel in a radio transmitter produces (**P Y**)
 - a) audio signals b) high frequency carrier waves
 - c) both audio signal and high frequency carrier waves
 - d) low frequency carrier waves
 - The purpose of dividing each frame into two fields so as to transmit 50 views of the picture per second is **(P Y)**
 - a) to avoid flicker in the picture
 - b) the fact that handling of higher frequencies is easier
 - c) that 50Hz is the power line frequency in India
 - d) to avoid unwanted noises in the signal

8.	Printed documents to be transmitted by fax are converted into electrical signals			l into electrical signals	
	a) reflection	b) scanning	c) modulation	d) light variation	
	Previous Year	Questions :			
9.	The radio wave	es after refraction	from different par	ts of ionosphere on	
	reaching the ear	th are called as		· · · · · · · · · · · · · · · · · · ·	
	a) ground waves	s b) sky waves	c) space waves	d) microwaves	
10.	Skip distance is	the shortest distanc	e between		
	a) the point of t	ransmission and th	e point of receptior	1	
	b) the uplink sta	tion and the downl	ink station		
	c) the transmitte	er and the target	4		
	d) the receiver a	nd the target			
11.	The audio frequ	ency range is			
	a) 20 Hz to 2000	00 Hz	b) 20 Hz to 2000	Hz	
	c) 20 Hz to 2000	000 Hz	d) 20 Hz to 2000) Hz	
12.	An FM signal ha	as a resting frequer	ncy of 105 MHz and	highest frequency of	
	105.03 MH _z , wh	en modulated by a	signal. Then the carı	rier swing is	
	a) 0.03 MHz	b) 0.06 MHz	c) 0.03 kHz	d) 60 MHz	
13.	In A.M receiver,	if 900 kHz station i	s tuned, then the loc	al oscillator will have	
	to produce a free	quency of 💛			
	a) 600 kHz	b) 455 kHz	c) 10.7 MHz	d) 1355 kHZ	
14.	In an AM supe	er heterodyne rec	eiver, the local osc	cillator frequency is	
	1.245 MHz. The tuned station frequency is				
	a) 455 kHz	b) 790 kHz	c) 690 kHz	d) 990 kHz	
15.	In an A.M. recei	ver, the local oscill	ator frequency is 27	50 kHz. The tuned-in	
	station frequence	y is			
	a) 2905 kHz	b) 2295 kHz	c) 3055 kHz	d) 2250 kHz	
16. 🖌	In the AM supe	r heterodyne recei	ver system the valu	e of the intermediate	
	frequency is equ	ual to			
	a) 445 kHz	b) 455 kHz	c) 485 kHz	d) 465 kHz	
17.	For FM receivers	s, the intermediate	frequency is		
1	a) 455 kHz	b) 455MHz	c) 10.7 kHz	d) 10.7 MHz	
18.	Vidicon camera	tube works on the	principle of		
	a) Photo conduc	tivity	b) thermoelectric	effect	
	c) thermionic en	nission	d) seeback effect		

19.	In television, blanking pulse is applied to					
	a) horizontal pla	ates b) vertical plat	es c) control g	rid d) filament		
20.	In interlaced scanning time taken to scan one line is					
	a) 20 ms	b) 64 μ s	c) 50 ms	d) 100 µs		
21.	Digital signals are converted into analog signals using					
	a) Fax	b) modem	c) cable	d) coaxial cable		
22.	22. The principle used for the transmission of light signals through					
	a) refraction b) diffraction c) polarization d) total internal reflection					
23.	The first man-m	ade satellite is				
	a) Aryabhatta	b) Sputnik	c) venera	d) Rohine		
24.	The maximum ca	arrier swing allowe	ed in frequency 1	modulation is		
	a) 455 kHz	b) 10.7 MHz	c) 75 kHz	d) 150 kHz		
	PTA Objective Questions :					
1.	High frequency	waves follow				
	a) the ground w	ave propagation	b) the line of	sight direction		
•	c) ionosphere propagation d) the curvature of the earth					
2.	The main purpose of modulation is to					
	a) combine two waves of different frequencies					
	b) acquire wave shaping of the carrier wave					
	c) transmit low frequency information over long distances effectently					
2	d) produces side	e bands				
3.	In amplitude modulation					
	a) the amplitude of the carrier wave varies in accordance with the					
	b) the amplitude of the corrier wave remains constant					
	c) the amplitude of the carrier wave varies in accordance with the frequency					
	of the modulating signal					
	the former of the second					
1	a) modulating frequency lies in the audio range					
4.						
~ •/	a) equal to the si	ignal frequency	b) twice the	signal frequency		
	c) thrice the sigr	nal frequency	d) four times	s the signal frequency		
6.	In phase modulation					
	a) only the phase of the carrier wave varies					
	b) only the frequency of the carrier wave varies					
	c) both phase and frequency of the carrier wave varies					
	d) there is no change in frequency and phase of the carrier wave					

6.	6. The RF channel in a radio transmitter produces					
	a) audio signals					
	b) high frequency carrier wave					
	c) both audio signal and high frequency carrier waves					
	d) low frequency carrier waves					
7.	nto two fields so as to transmit 50 views					
	of the picture per second is					
	a) to avoid flicker in the picture					
	b) the fact that handling of higher frequencies is easier					
	c) that 50 Hz is the power line freque	ncy in India				
	d) to avoid unwanted noises in the signals					
8.	8. Propagation of electromagnetic wave depends on					
	a) nature of wave b) environment	c) medium 🔨 🔿 d) both (a) & (b)				
9.	Printed documents to be transmitted by fax are converted into electrical					
	signals by the process of					
	a) reflection b) scanning	c) modulation d) light variation				
10.	Communication refers to	CO				
	a) sending information (b) receiving the information					
	c) processing the information					
	d) sending, receiving and processing of information electronically					
11.	 Ground wave propagation takes place a) When the transmitting antenna is close to the ground 					
	b) When the receiving antenna is close to the ground					
	c) when the transmitting and receivir	eiving antennas are far off from the ground				
	d) when the transmitting and receiving antennas are close to the ground					
12.	Ground wave propagation is of prime importance for					
	a) short wave signals only	b) long wave signals only				
	c) medium wave signals only	d) medium and long wave signals				
13.	Space wave propagation is particu	alarly suitable for the waves having				
	frequency					
^ /	a) above 40 MHz b) below 30 MHz	c) below 20 MHz d) above 30 MHz				
14.	The mechanism involved in sky wave	e propogation is				
	a) reflection b) refraction	c) interference d) polarisation				
15.	Long distance radio communication i	s possible through the				
	a) ground wave propagation	b) surface wave propagation				
	c) the sky wave propagation	d) all the above				

16.	The refractive indices of the various layers in the ionosphere varies with							
	respect to a) electron density only b) frequency of the incident wave only							
	c) intensity of the incident wave only							
	d) electron density and the frequency of the incident wave							
17.	As the ionisation density increases for a wave approaching the given !							
	at an angle, the refractive index of the layer is							
	a) increased b) reduced	c) increased or rec	duced d) constant					
18.	The music, speech etc., are converted into audio signals using a							
	a) loud speaker b) photocell	c) diode	d) microphone					
19.								
	a) 20 Hz to 200000 Hz	b) 20 Hz to 2000 Hz						
	c) 20 Hz to 2000000 Hz d) 20 Hz to 20000 Hz							
20.	The radiation of electrical energy is p	racticable only at _						
	a) low frequencies	b) very low frequencies						
	c) moderate frequencies	d) high frequencies						
21.	Which signals can be sent through thousands of kilometers with							
	a) audio signals	b) video signals						
	c) High frequency signals	ligh frequency signals d) low frequency signals						
22.	In amplitude modulation, which is ch	anged in accordan	ice with the intensity					
	a) frequency of the carrier wave	b) phase of the ca	rrier wave					
	c) Amplitude of the carrier wave							
	d) both frequency and Phase of the carrier wave							
23.	actor that determine the strength and quality of the transmitted signal is							
	a) Q - factor	b) frequency of th	ne carrier wave					
1	c) frequency of the modulating wave d) Modulation factor							
24.	For effective modulation, the degree of	of modulation show	uld					
〈 · /	a) exceed 100%	b) exceed 200%						
Y	c) never exceed 50%	100%						
25.	A carrier wave of amplitude 10 mV is n	modulated by a sir	nusoidal audio signal					
	wave of amplitude 6 mV, the modulation factor is							
	a) 0.6 b) 6	c) 60	d) 0.06					
26.	A 5 MHz sinusoidal carrier wave of amplitude 10 mV is modulated							
-------------	--	--	----------------------	--	--	--	--	--
	5 kHz sinusoidal audio signal wave of amplitude 6 mV. Find the lower a							
	a) 4 995 MHz 5 005 MHz	b) 9 995 MHz 10	005 MHz					
	a = 3.555 while, 5.005 while c) 4.5 MHz 5.5 MHz	d) 10 MHz 15 MI						
27	The magnitude of both the upper and	d lower side bands is						
21.	a) 2 times the carrier amplitude F	b) $1/2$ times the carrier amplitude \mathbb{R}						
	c) 'm' times the carrier amplitude E_c	d) $m/2$ times the	carrier amplitude E					
28.	If the modulation factor 'm' is equ	a) in 2 times the carrier implicitle 2_c						
_01	amplitude equal to	plitude equal to						
	a) 2 times the carrier amplitude	b) $\sqrt{2}$ times the ca	arrier amplitude					
	c) $1/\sqrt{2}$ times the carrier amplitude	e d) half of the car	rier amplitude					
29.	The human voice or music contains waves with frequency range of							
	a) 3 - 30 Hz b) 30 - 300 Hz	c) 3000 - 30000 H	z d) 300 - 3000 Hz					
30.	Which modulation facilitates high	ulation facilitates highest transmission speeds on a given						
	bandwidth?							
	a) Amplitude modulation	b) frequency mod	ulation					
	c) phase modulation	d) all the above						
31.	For the purpose of coupling the transmitter and the receiver to the							
	space link, We use	XO						
	a) amplifier b) oscillator	c) antenna	d) FAX					
32.	Transmitting antenna converts the _	utting antenna converts the						
	a) electrical signal into electrical ener	rgy						
	b) electric signal into magnetic energy							
	c) electrical signal into electromagi	netic energy						
22	d) electromagnetic energy into electrical signal							
<i>55</i> .	a) chartrical signal into chartramagne	-						
	a) electrical signal into electromagnetic energy							
. 1	b) electrical signal into electrical energy							
	d) electromagnetic energy into energy	netic signal						
34.	The intermediate frequency used in	the AM radio receiv	veris					
	a) 10.7 MHz b) 475 KHz	c) 455 Hz	d) 455 KHz					
35.	If 900 kHz station is tuned, then the	e local oscillator wi	ll have to produce a					
-	frequency of							
	a) 600 kHz b) 455 kHz	c) 10.7 MHz	d) 1355 kHz					

36.	For superheteroc	lyne FM receivers, tl	ne intermediate frec	juency is	
	a) 455 Hz	b) 45 kHz	c) 10.7 kHz	d) 10.7 MHz	
37.	In FM broadcast,	the frequency devia	ation of sound signa	ll is	
	a) 25 kHz	b) 50 kHz	c) 75 kHz	d) 100 kHz	
38.	In TV transmission	on sound signals are	2		
	a) amplitude moo	dulated	b) frequency mod	lulated	
	c) phase modulat	ted	d) none of the abo	ve •	
39.	Vidicon camera t	tube works on the pr	rinciple of		
	a) photoconduct	ivity	b) thermoelectric	effect	
	c) thermionic em	ission	d) seebeck effect		
40.	When exposed to	light, the resistance	e of the photo condu	ctive material	
	a) decreases b) increases c) increases or decreases d) is not altered				
41.	In Vidicon cam	nera tube the from	it face of the targ	et plate is coated	
	with the				
	a) antimony tri su	ılphide	b) aluminium oxic	le	
	c) zinc sulfide		d) tin oxide		
42.	In Vidicon came	ra tube on the back	k of the target plate	e is coated with the	
	photosensitive m	naterial 🧲			
	a) antimony tri s	ulphide	b) zinc sulphide		
	c) tin oxide		d) aluminium oxid	le	
43.	The frequency of	scanning is			
	a) 20 per second	b) 50 per second	c) 100 per second	d) 25 per second	
44.	How many synch	ronizing pulses are	used for scanning?		
	a) one	b) two	c) three	d) four	
45.	Blanking pulse used for IV scanning is				
	a) High frequenc	y saw tooth potentia	al b) Low frequency	saw tooth potential	
	c) High positive	potential	d) High negative potential		
46.	In TV scanning, b	lanking pulse is app	blied to	1.	
	a) horizontal def	lector plates	b) vertical deflecte	or plates	
	control grid		a) filament		
47.	In interlaced scar	nning, the vertical so	canning frequency	IS	
1 1	a) 10 fields per se	cond	b) 25 fields per sec	cond	
40	c) 50 fields per s	econd	d) 100 fields per se	econd	
48.	In radar receiver, the returning echo pulse appears slightly displaced from				
	the transmitted p	h) -1-	es of the targ	a) recent	
	a) nature	b) snape	c) power	a) range	

49.	A signal which can take any value wi	th in the given range		
	a) digital signal b) analog signal	c) AM signal d) FM signal		
50.	In TV transmission, the picture should	d not be scanned during the return		
	journey of the scanning. This is done	by		
	a) vertical scanning pulse	b) Horizontal scanning pulse		
	c) blanking pulse	d) triggering pulse		
51.	The greatest technical problem is ana	log communication	X	
	a) noice	b) nature of signal		
	c) wider band width	d) power of system		
52.	Any form of information, that has been	en put into digital form is called		
	a) signal b) amplitude	c) power d) data		
53.	In twisted pair cable, wire is twisted t	to		
	a) decreasing external noise	b) speedy data trasfer		
	c) increasing external noise	d) both (a) & (b)		
54.	Fax machine cannot be used for trans	mitting		
	a) sound messages	b) live scenes and motion		
	c) either (a) or (b)	d) both (a) & (b)		
55.	A modem is used for			
	a) modulation only	b) demodulation only		
	c) modulation and demodulation d) printing the information			
56.	Optical fiber works on the principle of	of		
	a) total internal reflection	b) refraction		
	c) reflection	d) polarisation		
57.	Satellite orbiting the earth will be geo	- stationary when it is at a height of		
	a) 36, 000 km from the earth	b) 3600 km from the earth		
	c) 360 km from the earth	d) 36 km from the earth		
58.	For uplink transmission commercial of	communication satellites use		
	a) 5 MHz bandwidth near 6 GHz	b) 50 MKz bandwidth near 6 GHz		
	c) 500 MHz bandwidth near 5 GHz	d) 500 MKz bandwidth near 6 GHz		
59.	For downlink transmission commerci	ial communication satellites use		
~ •⁄	a) 500 MKz bandwidth near 4 GHz	b) 50 MHz bandwidth near 4 GHz		
Y	c) 500 MKz bandwidth near 5 GHz	d) 5 MKz bandwidth near 4 GHz		
60.	In actual practice the band width	used for uplink transmission by the		
	satellite is			
	a) 5.725 - 7.075 GHz	b) 3.4 - 4.8 GHz		
	c) 6.725 - 7.075 GHz	d) 5.725 - 6.075 GHz		

Three Mark Questions: Book Back Questions :

- 1. What are the different types of radio wave propagation? (**P**Y)
- 2. What is meant by skip distance? (**P**Y)
- 3. What is the necessity of modulation? (**P**Y)
- 4. What is meant amplitude modulation? (**P**Y)
- 5. Define modulation factor. (**P**Y)
- 6. Define bandwidth.
- 7. What are the limitations of amplitude modulation?
- 8. What is phase modulation.
- 9. Define directivity.
- 10. What is meant by scanning?
- 11. What is interlaced scanning? (**P** Y)
- 12. What are the different types of wire and cable used for tele communication system?
- 13. What are the advantages of fiber optic communication system? (**P**Y)

Previous Year Questions :

- 14. What is meant by skip zone?
- 15. Mention the advantages of frequency modulation.
- 16. Write any three applications of radar?
- 17. What are the advantages of Digital Communication?
- 18. What is fax? Mention its use.
- 19. Write any three merites of satellite communication.

Five Mark Questions:

Book Back Questions :

- 1. Explain the ground wave propagation.
- 2. Explain the wave propagation in ionosphere.
- 3. Explain amplitude modulation.
- 4. Draw the block diagram of AM radio transmitter. (PY)
- 5. Explain frequency modulation. (**P Y**)
 - 6. Explain the function of FM transmitter with neat block diagram. (PY)
 - 7. Explain the principle of radar. **(P Y)**
 - 8. What are the application of radar.
 - 9. Explain the principle of modem.

Previous Year Questions :

- 10. Explain space wave propagation of radio waves.
- 11. Explain the function of an AM radio transmitter with the help of a block diagram.
- 12. With the help of a neat block diagram, explain the function FM transmitter.
- 13. With the help of black diagram, explain the operation of an FM super heterodyne receiver.
- 14. State the principle of Radar. What are the applications of Radar?
- 15. What are the advantages and disadvantages of digital communication?
- 16. Write a short note on fiber optical communication and mention its advantages.
- 17. Mention the merits and demerits of satellite communication.
- 18. A 10 MHz sinusoidal carrier wave of amplitude 10 mV is modulated by a 5 kHz sinusoidal audio signal wave of amplitude 6 mV. Find the frequency components of the resultant modulated wave and their amplitudes. **(Eg)**
- 19. What are the advantages and disadvantages of frequency modulation?

Ten Mark Questions

Book Back Questions :

- 1. Explain the function of vidicon camera tube. (**P Y**)
- 2. Explain the functions of various units in the monochrome television transmission. (**P Y**)
- 3. With the help of block diagram, explain the function of monochrome TV receiver. (**P Y**)

Previous Year Questions :

- 4. Make an analysis of amplitude modulated wave. Plot the frequency spectrum.
- 5. With the help of a functional block diagram, explain the operation of a super heterodyne AM receiver.
 - With the help of a block diagram, explain the function of a RADAR system.