TN CLASS 12 GURRENT ELEGTRIGITY FORMULAE SHEET

BY SS PRITHVI PRIT-EDUCHTION

lly Send me Your, Key Answer to Our email id. - Padysalvi.net@gmail.Co

www.Padasalai.Net

CURRENT ELECTRICITY

TN CLASS 12

www.Trb Tnpsc.Com

FORMULAE SHEET

Formula	Explanation of the terms involved	SI Units
CURRENT $I = \frac{Q}{t}$	I = letter to denote current Q=charge t=Time Note that in this chapter , lowercase "t" refers time and upperecase "T" refers temperature.	ampere (A)
AVERAGE CURRENT $I_{avg} = \frac{\Delta Q}{\Delta t}$	$\Delta Q = \text{change in current} \qquad (q_2-q_1)$ $\Delta t = t_2-t_1$ $I_{avg} = \frac{Q^2-Q1}{t^2-t_1}$	Ampere (A)
INSTANTANEOUS CURRENT $I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ampere(A)
$\mu = \frac{e\tau}{m}$	<pre>µ=mobility m=mass e=fundamental unit charge (recall from unit 1) τ= mean free time(The average time between two successive collisions)</pre>	$m^{2}V^{-1}s^{-1}$
DRIFT VELOCITY $\vec{v}_d = -\frac{e\tau}{m}\vec{E}$ $\vec{v}_d = -\mu\vec{E}$	$V_{d} = drift \ velocity$ $\mu = mobility \qquad \mu = \frac{e\tau}{m}$ e=fundamental unit charge (recall from unit 1) $\tau = mean \ free \ time($ The average time between two successive collisions)	ms ⁻¹
CURRENTDENSITY (J) $J = \frac{I}{A}$	J= Current density I = current A= area	$\frac{A}{m^2} (or) A m^{-2}$
	J= Current density= CURRENT/AREA E=Electric field $\sigma = \frac{ne^2\tau}{m}$ is called conductivity.	$\frac{A}{m^2} (or) A m^{-2}$

1

<mark>SS PRITHVI</mark>

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

www.Padasalai.Net www.Trb Tnpsc.Com					
CURRENT ELEC	TRICITY	TN CLASS 12 FORM	ULAE SHEET		
$\sigma = \frac{ne^2\tau}{m}$	σ=conduct	vivity (reciprocal of resistivity)	Ohm ⁻¹ m ⁻¹ Or mho/m		
$\mathbf{RESISTIVITY} \\ \rho = \frac{1}{\sigma} = \frac{m}{ne^2\tau}$	ρ=resistivi	Ohm metre			
OHM'S LAW V=IR	V=Voltage I=current R=resistar	nce	V=volt I=ampere R=ohm		
RESISTORS IN SERIES $R_s = R_1 + R_2 + R_3$		ive resistance Rn=individual resistances connected	ОНМ		
RESISTORS IN PARALLEL $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$		ive resistance Rn=individual resistances connected	ОНМ		
TEMPERATURE DEPENDENCE OF RESISTIVITY $\frac{\Delta R}{R} = \propto \Delta T$	Original re	resistance = a (change. In temperature) esistance rature coefficient of resistivity	Unit of α= Per degree Celsius or per degree Kelvin		
ELECTRICAL POWER $P = \frac{dU}{dt} = \frac{(V.dQ)}{dt} = V\frac{dQ}{dt}$	P=power U=potentia Q=charge t=time	al energy= v x q (recall from unit 1)	joule/sec or Watt		
INTERNAL RESISTANCE $r = \left[\frac{\varepsilon - V}{V}\right]R$			ohm		
CLICK TO GET OU	R FREE MAT	ERIALS (2024-25):			

<mark>SS PRITHVI</mark>

2

PRIT-EDUCATION

Kindly Send me Your Key Answer to Our email id - Padasalai.net@gmail.Com

www.Padasalai.Net		www.Trb Tnpsc.Com		Com
CURRENT ELEC	TRICITY	TN CLASS 12	FORM	JLAE SHEET
joule's law of heating H=I ² Rt	H=Heat I=current R=resistan t=time	ice		JOULE

CLICK TO GET OUR FREE MATERIALS (2024-25):

