


| FORMULAE                                                                                                                                                               | EXPLANATION OF THE TERMS INVOLVED                                                                                                                                                                                                     | SI UNIT                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| $\frac{\text{ANGLE OF DIP}}{\text{tan I} = \frac{Bh}{Bv}}$                                                                                                             | $B_H$ =Horizontal component of magnetic field $B_V$ =Vertical component of magnetic field tan I =angle of dip                                                                                                                         | Magnetic field<br>B = Tesla (T)<br>1 GAUSS=10 <sup>-4</sup><br>TESLA |
| $\vec{p}_{m} = q_{m}\vec{d}$                                                                                                                                           | Pm= magnetic dipole moment qm= pole strength of the magnetic pole d= distance between south pole to north pole = 21                                                                                                                   | Ampere per<br>metre<br>square<br>Am <sup>2</sup>                     |
| $\overrightarrow{B} = \frac{1}{q_m} \overrightarrow{F}$                                                                                                                | B=magnetic field q <sub>m</sub> =pole strength F= force experienced by the bar magnet                                                                                                                                                 | NA <sup>-1</sup> m <sup>-1</sup>                                     |
| RATIO OF MAGNETIC LENGTH AND GEOMETRICAL LENGTH $ \frac{Magnetic \ length}{Geometrical \ length} = \frac{5}{6} = 0.833 $                                               | $\frac{Magnetic\ length}{Geometrical\ length} = \frac{5}{6} = 0.833$                                                                                                                                                                  | no unit                                                              |
| MAGNETIC FLUX 1) FOR UNIFORM FIELD $\Phi_{B} = \vec{B}.\vec{A} = BA\cos\theta = B_{\perp}A$                                                                            | $φ_B$ = magnetic flux B=magnetic field A=area vector ; $θ$ = angle between $ρ$ B and A II) FOR NON UNIFORM FIELD $Φ_B = \int \vec{B}.d\vec{A}$                                                                                        | si:weber<br>(Wb)<br>cgs:Maxwe<br>ll<br>1 weber = 108 maxwell         |
| COULOMB'S INVERSE SQUARE LAW OF MAGNETISM $F = k \frac{q_{m_A} q_{m_B}}{r^2}$                                                                                          | F= force between two magnetic poles $r = distance \ between \ two \ magnetic \ poles$ $k = \frac{\mu_{\circ}}{4\pi} \approx 10^{-7} \ H \ m^{-1}$ ; $\mu_{\circ} = absolute \ permeability \ of$ free space ; $q_m = pole \ strength$ | force:<br>newton (N)<br>k: Henry<br>per metre<br>Hm <sup>-1</sup>    |
| MAGNETIC FIELD AT A POINT ALONG THE AXIAL LINE OF THE MAGNETIC DIPOLE (BAR MAGNET) $\vec{B}_{axial} = \frac{\mu_{\circ}}{4\pi} \frac{2}{r^{3}} \vec{P}_{m}$            | Pm= magnetic dipole moment r=distance from the centre of the magnet to the point C. B=magnetic field                                                                                                                                  | Magnetic<br>field B =<br>Tesla (T)                                   |
| MAGNETIC FIELD AT A POINT ALONG THE EQUATORIAL LINE DUE TO A MAGNETIC DIPOLE (BAR MAGNET) $\vec{B}_{equatorial} = -\frac{\mu_{\circ}}{4\pi} \frac{\vec{p}_{m}}{r^{3}}$ | Pm= magnetic dipole moment r=distance from the centre of the magnet to the point C. B=magnetic field                                                                                                                                  | Magnetic<br>field B =<br>Tesla (T)                                   |

SS PRITHVI-XII STD

PRIT-EDUCATION

Page 1

| 2 Chaps: Magnetism                                                                                                                                                         | & Current <b>Formulae &gt; neet</b> IN                                                                                                                                                                                                                                                        | Class 12                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| TORQUE ON A BAR MAGNET IN UNIFORM MAGNETIC FIELD $\tau = p_m B \sin \theta$ POTENTIAL ENERGY IN BAR MAGNET                                                                 | Pm= magnetic dipole moment B=magnetic field  U=potential energy Pm= magnetic dipole moment                                                                                                                                                                                                    | torque:<br>newton<br>metre<br>Nm<br>JOULE                                   |
| $U = -\vec{p}_m \cdot \vec{B}$                                                                                                                                             | B=magnetic field                                                                                                                                                                                                                                                                              | (J)                                                                         |
| MAGNETISING FIELD                                                                                                                                                          | $\vec{H}$ = magnetising field                                                                                                                                                                                                                                                                 | Am <sup>-1</sup>                                                            |
| $\overrightarrow{M} = \frac{\text{Magnetic moment}}{\text{Volume}} = \frac{\overrightarrow{p}_m}{V}$                                                                       | M= intensity of magnetization Pm= magnetic dipole moment v=volume                                                                                                                                                                                                                             | Am <sup>-1</sup>                                                            |
| MAGNETIC INDUCTION OR TOTAL MAGNETIC FIELD $\vec{B} = \vec{B}_o + \vec{B}_m = \mu_o \vec{H} + \mu_o \vec{M}$ $\vec{B} = \vec{B}_o + \vec{B}_m = \mu_o (\vec{H} + \vec{M})$ | definition & explanation of the terms involved:- The magnetic induction (total magnetic pfield) inside the specimen B is equal to pthe sum of the magnetic field Bo produced in vacuum due to the magnetising field pand the magnetic field Bm due to the induced magnetism of the substance. | tesla                                                                       |
| $\chi_m = \frac{\left  \vec{M} \right }{\left  \vec{H} \right }$                                                                                                           | X <sub>M</sub> =magnetic susceptibility M= intensity of magnetization H=magnetising field                                                                                                                                                                                                     | X <sub>m</sub> = no<br>unit<br>M = Am <sup>-1</sup><br>H = Am <sup>-1</sup> |
| $\chi_m \propto \frac{1}{T} \text{ or } \chi_m = \frac{C}{T}$                                                                                                              | $C$ = Curie constant $T$ =temperature $X_M$ =magnetic susceptibility                                                                                                                                                                                                                          | X <sub>m</sub> = no unit                                                    |
| $\chi_m = \frac{C}{T - T_C}$                                                                                                                                               | $X_{M}$ =magnetic susceptibility<br>C = Curie constant<br>$T_{C}$ = Curie temperature<br>T=temperature                                                                                                                                                                                        | X <sub>m</sub> = no unit                                                    |
| $d\vec{B} = \frac{\mu_{\circ}}{4\pi} \frac{I d\vec{l} \times \hat{r}}{r^2}$                                                                                                | r=distance between the point P and dl dl =magnitude of the length element I=current; B=magnetic field                                                                                                                                                                                         | Magnetic<br>field B =<br>Tesla (T)                                          |
| MAGNETIC FIELD DUE TO LONG STRAIGHT CONDUCTOR CARRYING CURRENT $\vec{B} = \frac{\mu_0 I}{2\pi a}  \hat{n}$                                                                 | μ <sub>0</sub> = absolute permeability of free space<br>B=magnetic field<br>I=current; a=dist. b/w straight conductor & the<br>chosen point 'P'                                                                                                                                               | Magnetic<br>field B =<br>Tesla (T)                                          |

SS PRITHVI-XII STD

| MAGNETIC FIELD PRODUCED<br>ALONG THE AXIS OF THE<br>CURRENT-CARRYING CIRCULAR<br>COIL<br>$\vec{B} = \frac{\mu_0 I}{2} \frac{R^2}{\left(R^2 + z^2\right)^{\frac{3}{2}}} \hat{k}$ | $\mu_0$ = absolute permeability of free space B=magnetic field i=current r and z= refer from diagram            | Magnetic<br>field B =<br>Tesla (T)               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| $B_{H} = \frac{\mu_{\circ} N}{2R} \frac{I}{\tan \theta}$                                                                                                                        | N=no of turns R=radius of the coil I=current tan00=angle of deflection produced                                 | Magnetic<br>field B =<br>Tesla (T)               |
| MAGNETIC DIPOLE MOMENT IN CURRENT LOOP AS A MAGNETIC DIPOLE $\vec{p}_m = I \ \vec{A}$                                                                                           | pm =magnetic dipole moment<br>$A$ = area of the circular loop $A$ = $\pi r^2$<br>I=current                      | Ampere<br>per metre<br>square<br>Am <sup>2</sup> |
| MAGNETIC DIPOLE MOMENT OF REVOLVING ELECTRON $\mu_L = n \times 9.27 \times 10^{-24}  \mathrm{A  m}^2$                                                                           | $\mu_L$ =Magnetic dipole moment n=principal quantum no. (no of the orbit)                                       | Am <sup>2</sup>                                  |
| AMPÈRE'S CIRCUITAL LAW $ \oint_{C} \vec{B} \cdot \vec{dl} = \mu_{\circ} I_{enclosed} $                                                                                          | B=magnetic field μ <sub>0</sub> = absolute permeability of free space dl=closed loop I=current in enclosed area | N/A <sup>2</sup> = NA <sup>-2</sup>              |
| MAGNETIC FIELD DUE TO THE CURRENT CARRYING WIRE OF INFINITE LENGTH USING AMPÈRE'S LAW $\vec{B} = \frac{\mu_{\circ} I}{2\pi r} \hat{n}$                                          | B=magnetic field μ <sub>0</sub> = absolute permeability of free space I=current r= Radius of the Ampèrian loop  | Magnetic<br>field B =<br>Tesla (T)               |
| MAGNETIC FIELD DUE TO A LONG CURRENT CARRYING SOLENOID $B = \mu_0 \frac{nLI}{L} = \mu_0 nI$                                                                                     | B=Magnetic field n=no of turns per unit length=N/L L=length of the solenoid I=current                           | Magnetic<br>field B =<br>Tesla (T)               |

| 4 Chaps: Magnetism                                                                                                                                              | & Current Formulae Sheet                                                                                                                        | IN class 12                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| MAGNETIC FIELD IN TOROID OPEN SPACE INTERIOR TO THE TOROID $\vec{B}_P = 0$ OPEN SPACE EXTERIOR TO THE TOROID $\vec{B}_Q = 0$ INSIDE THE TOROID $B_S = \mu_0 nI$ | $\mu_0$ = absolute permeability of free space n=no of turns per unit length $n=\frac{N}{2\pi r_2}$ , N=total no of turns in the toroid          | Magnetic<br>field B =<br>Tesla (T)                                                    |
| LORENTZ FORCE $\vec{F} = q \left( \vec{v} \times \vec{B} \right)$                                                                                               | F=Lorentz force q=charge v=velocity of the charge in the magnetic field B B= magnetic filed                                                     | newton                                                                                |
| $\frac{\text{TESLA}}{1 \text{ T} = \frac{1 \text{ N s}}{\text{C m}} = 1 \frac{\text{N}}{\text{A m}} = 1 \text{N A}^{-1} \text{m}^{-1}$                          | The strength of the magnetic field is one tesla if a unit charge moving normal to the magnetic field with unit velocity experiences unit force. | NA <sup>-1</sup> m <sup>-1</sup>                                                      |
| MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD TIME PERIOD: $T = \frac{2\pi m}{qB}$ ANGULAR FREQUENCY $\omega = 2\pi f = \frac{q}{m}B$                | m=mass q=charge B=Magnetic field T=Time period f=frequency w=angular frequency $f=\frac{qB}{2\pi m}$                                            | time: seconds (s) frequency: hertz(Hz) Angular frequency radian per seconds(ra d s-1) |
| MOTION OF A CHARGED PARTICLE UNDER CROSSED ELECTRIC AND MAGNETIC FIELD (VELOCITY SELECTOR) $v_{\circ} = \frac{E}{B}$                                            | v=velocity E=electric field B=magnetic field                                                                                                    | ms <sup>-1</sup>                                                                      |
|                                                                                                                                                                 |                                                                                                                                                 |                                                                                       |

**CLICK TO GET OUR FREE MATERIALS (2024-25):** 





| 5 Chap3: Magnetism & Current Formulae Sheet TN class 12                                                                                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| CYCLOTRON $f_{osc} = \frac{qB}{2\pi m}$ $T = \frac{2\pi m}{qB}$ $KE = \frac{1}{2}mv^{2} = \boxed{\frac{q^{2}B^{2}r^{2}}{2m}}$                                                                                                                                                                           | f=frequency T=Time period KE=kinetic energy q=charge B=magnetic field m=mass r=radius                                                                                                   | time:<br>seconds<br>(s)<br>frequency:<br>hertz(Hz)<br>KE=<br>joule(J) |
| FORCE ON A CURRENT CARRYING CONDUCTOR PLACED IN A MAGNETIC FIELD $\vec{F}_{total} = (\vec{I} \vec{I} \times \vec{B})$ In magnitude, $F_{total} = BIl \sin \theta$                                                                                                                                       | I=current l=length of straight currnt carrying conductor B=magnetic field                                                                                                               | newton (N)                                                            |
| FORCE BETWEEN TWO LONG PARALLEL CURRENT CARRYING CONDUCTORS $d\vec{F} = \left(I_1 d\vec{l} \times \vec{B}_2\right) = I_1 dl \frac{\mu_{\circ} I_2}{2\pi r} (\hat{k} \times \hat{i})$ $= \frac{\mu_{\circ} I_1 I_2 dl}{2\pi r} \hat{j}$ $\frac{\vec{F}}{l} = \frac{\mu_{\circ} I_1 I_2}{2\pi r} \hat{j}$ | $I_1$ and $I_2$ = electric currents passing through the conductors A and B in same direction $r$ = conductors separated by a distance $r$ $\mu_0$ = absolute permeability of free space | force = newton(N)                                                     |
| TORQUE ON A CURRENT LOOP PLACED IN A MAGNETIC FIELD $\tau = NIAB\sin\theta$ CURRENT IN A MOVING COIL                                                                                                                                                                                                    | N=no of turns I=Current flowing in the loop A=Area B=magnetic field  I=Current                                                                                                          | torque:<br>newton<br>metre<br>Nm<br>current=a                         |
| GALVANOMETER<br>/= G 0                                                                                                                                                                                                                                                                                  | G=galvanometer constant $G = \frac{K}{NAB}$                                                                                                                                             | mpere (A)                                                             |

**CLICK TO GET OUR FREE MATERIALS (2024-25):** 





 $\vartheta$  =amount of twist

## **VOLTAGE SENSITIVITY**

$$V_{s} = \frac{\theta}{V}$$

$$V_{S} = \frac{\theta}{IR_{g}} = \frac{NAB}{KR_{g}}$$
$$V_{S} = \frac{1}{GR_{g}} = \frac{I_{S}}{R_{g}}$$

The deflection produced per unit voltage applied across galvanometer.

rad V<sup>-1</sup>

## **GALVANOMETER TO AN AMMETER**

$$: \frac{R_g S}{R_g + S} = R_a$$

R<sub>a</sub>=resistance of ammeter

R<sub>g</sub>=galvanometer's resistance

S=shunt resistance through the path

In order to increase the range of an ammeter n times, the value of shunt resistance to be connected in parallel is

$$S = \frac{R_g}{n-1}$$

## **GALVANOMETER TO A VOLTMETER**

$$R_h = \frac{V}{I_g} - R_g$$

R<sub>H</sub>=Resistance value connected in series with the galvanometer

I<sub>G</sub>=Current(galvanometer)

R<sub>g</sub>=galvanometer's resistance

In order to increase the range of voltmeter *n* times the value of resistance to be

connected in series with galvanometer is

$$R_h = (n\text{-}1) \; R_g$$

With Regards,

\$\$ PRITHVI, XII \$TD,

**PRIT-EDUCATION.** 



**CLICK TO GET OUR FREE MATERIALS (2024-25):**