T.Vediyappan.,M.Sc.,B.Ed.,M.Phil., Department of Physics Jayam Vidhyalaya Matric Hr Sec School, HARUR

Unit-6 Optics

PHYSICS

Creative One Mark Questions and Answers

1. In image formation from spherical mirrors, only paraxial rays are considered because they
(a) are easy to handle geometrically
(b) contain most of the intensity of the i cident light
(c) form nearly a point image of a point source
(d) show minimum dispersion effect
2. Critical angle of light passing fromglass to water is minimum for
(a) red colour
(b) green colour
(c) yellow colour (d) violet colour
3. The angular dispersion produced by a prism
(a) increases if the average ref active index increases
(b) increases if the average refractive index decreases
(c) remains constant whether theaverage refractive index increases or decneases
(d) has no relation with ayerage rerractive index.
4. If the focal length of objective lens is increased then magnifying power of :
(a) microscope will in rease but that of te escope decrease.
(b) microscope and elescope both wi increas
(c) microscope and telescope both will decrease
(d) mieroscop wili decrease but that of telescope increase.
5. A ray of ligh passes through fourtransparent media with refractive indices $\mu_{1}, \mu_{2}, \mu_{3}$ and μ_{4} as shown in the figure. The surfaces of all media are parallel. If the emergent ay CD is parallel to the incident ray AB , we must have
(a) $\mu_{1}=\mu_{2}$
(b) $\mu_{2}=\mu_{3}$
(c) $\mu_{3}=\mu_{4}$
(d) $\mu_{4}=\mu_{1}$

6. A ray of light from a denser medium strike a rarer medium at an angle of incidence i (see Fig). The reflected and refracted rays make an angle of 90° with each other. The angles of reflection and refraction are r and r^{\prime}. The critical angle is
(a) $\sin -1(\tan r)$
(b) $\sin -1(\tan i)$
(c) $\sin -1(\tan r)$
(d) $\tan -1(\tan i)$
7. A rod of length 10 cm lies along the rincipal axis of a concave mirror of focal length 10 cm in such a wa that its end closer to the pole is 20 cm away from the mirror. The le gtn of the image is
(a) 10 cm
(b) 15 cm
(c) 2.5 cm
(d) 5 cm
8. A ray of light trave ling in the direction $\frac{1}{2}(\hat{\imath}+\sqrt{3} \hat{\jmath})$ is incident on a plane mirror. After relection, it travels along the direction $\frac{1}{2}(\hat{\imath}-\sqrt{3})$. The angle of incidence
(a) 30°
(b) 45°
(d) 75°
9. The index of refraction of siamond is 2.0 . The veiog ty of light in diamond is approximately
(a) $1.5 \times 10^{\circ} \mathrm{cm} / \mathrm{sec}$
(b) $2 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
(c) $3.0 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
(d) $6 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
10. A beam of monoc romatic b ae inght wavelength 420 nm in air travels in water $(\mu=4 / 3)$. Its wavelength i water will be
(a) 280 nm
(b) 560 nm
(c) 315 nm
(d) 400 nm
11. The frequency of a light wave in a material is $2 \times 101^{4} \mathrm{~Hz}$ and wavelength is $5000 \AA$. The refractive index of material will be
(a) 1.50
(b) 3.00
(c) 1.33
(d) 1.40
12. Light travels in two media A and B with speeds $1.8 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ and $2.4 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ respectively. Then the critical angle between them is T.Vediyappan.,M.Sc.,M.Phil.,B.Ed.,
(a) $\sin ^{-1}\left(\frac{3}{4}\right)$
(b) $\tan ^{-1}\left(\frac{3}{4}\right)$
(c) $\tan ^{-1}\left(\frac{2}{3}\right)$
(d) $\sin ^{-1}\left(\frac{3}{4}\right)$
13. A ray of light travelling in a transparent medium of refractive index μ, falls on a surface separating the medium from air at an angle of incidence of 45°. For which of the following value of μ the ray can undergo total internal reflection?
(a) $\mu=1.33$
(b) $\mu=1,40$
(c) $\mu=1.50$
(d) $\mu=25$
14. A thin glass (refractive index 1.5) lens has opticel power of -5 D in air. Its optical power in a liquid medium wit ref ctive index 1.6 will be
(a) -1 D
(b) D
(c) -25 D
(d) 25 D
15. A double convex lens of fecal ngt 6 cm is made of glass of refractive index 1.5. The radius of qurvature of one surface is double that of other surface. The value of nall mins of curvature is
(a) 6 cm
(b) 4.5 cm
(c) 9 cm
(a) cm
16. An a hromatic convergent doublet ftyo lenses in contact has a power of +2 D . The convex lens porer +5D. What is the ratio of dispersive powers of corvergent and divergent lenses
(2) $2: 5$
(b) 3 :
(c) $5: 2$
(d) 5 :
17. The dispersiv pow of material of alens of ocal length 20 cm is 0.08 . What is the longit dinal chromatio aberration of the lens?
(a) 0.08 cm
(b) $0.08 / 20 \mathrm{~cm}$
(c) 1.6 cm
d) 0.16 cm
18. A prism has a refracting angle or 60°. When placed in the position of minimum deviation, it aroduces a deviation of 30°. The angle of incidence is
(a) 30°
(b) $45{ }^{\circ}$
(c) $15{ }^{\circ}$
(d) $60{ }^{\circ}$
19. A ray of light passes through an equilateral prism such that the angle of incidence is equal to the angle of emergence and the latter is equal to $3 / 4$ th of the angle of prism. The angle of deviation is
(a) 450
(b) 390
T.Vediyappan.,M.Sc.,M.Phil.,B.Ed.,
(c) 20°
(d) 30°
20. A telescope has an objective lens of 10 cm diameter and is situated at a distance of one kilometer from two objects. The minimum distance between these two objects, which can be resolved by the telescope, when the mean wavelength of light is $5000 \AA$, is of the order of
(a) 5 cm
(b) 0.5 m
(c) 5 m
(d) 5 mm
21. Wavelength of light used in an optical instrment are $\lambda_{1}=4000 \AA$ and $\lambda_{2}=5000 \AA$, then ratio of their respective resovng powers (corresponding to λ_{1} and λ_{2}) is
(a) $16: 25$
(c) $4: 5$
(b) 9
(d) $5: 4$.
22. The magnifying power of a te escope is 9 . When it is adjusted for parallel rays, the distance between the bjective and the eye piece is found to be 20 cm . The focal lengt on lenses are
(a) 18 cm ,
(b) $11 \mathrm{~cm}, 9 \mathrm{~cm}$
(c) $10 \mathrm{~cm}, 10 \mathrm{~cm}$
(d) $15 \mathrm{~cm}, 5 \mathrm{~cm}$
23. The focal length f the objective of a telescope is 60 cm . To obtain a magn icat on of 20 , the focal length fthe eye piece should be
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm
24. Th rocal lengths of objec ive and eye lens of an astronomical telelscope are respectively 2 meter and 5 cm . Final mage s formed at (i) least distance of distinct vision (ii) infintey Magnifyng power in two cases will be
(a) $-48,-40$
b) $-40,-48$
(c) $-40,+48$
d) $-48,+40$
25. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focussed on a distant object in such a way that parallel rays emerge from the eye lens. If the object subtends an angle of 2° at the objective, the angular width of the image is
(a) 10°
(b) 24°
(c) 50 응
(d) $(1 / 6)^{\circ}$
26. A double slit is illuminated by light of wave length 6000 Å. The slit are 0.1 cm apart and the screen is placed one mete away calculate
[a] $6 \times 10^{-3} \mathrm{rad}$
[b] $6 \times 10^{3} \mathrm{rad}$
[c] $5 \times 10^{-3} \mathrm{rad}$
[d] $6 \times 10^{3} \mathrm{rad}$
27. In Young's double slit experiment the fringes are formed at a distance of 1 m from double slit of separation 0.12 . The distance of 3 rd dark band from the centre of the screen given $\lambda=6000 \AA$
[a] 0.12 mm
[c] 0.12 m
[b]0.12c
[d]0.12k
28. In Young's double slit experimet the fringesare formed at a distance of 1 m from double slit of separation 0.12 . The distance of 3 rd bright band from the centre of the screen gi en $\lambda=6000 \AA$
[a] 1.5 cm
[b] 1.5 m
[c] $1.5 \times 10^{-2} \mathrm{~cm}$
[d] $1.5 \times 10^{-3} \mathrm{~cm}$
29. In young's double s/ experime the two slits are illuminated by light of wavelength $5890 \AA$ and the distance between the fringes obtained on the screen is 02 . he whole ap aratus is immersed in water then find out an gular fringe width (refract e ind x of water $=\frac{4}{3}$)
[a] 0.15
[b] 1.5
[c] 15
[d] 0.0015
30. The path difference between two interfopingways at a point on screen is 171.5 times he wavelength. the path difference is 0.01029 cm . Find the wavele gth .
[a] 6000Â
[c] $5000 \AA$
b] $6 \times 10^{-7} \AA$
[d] $5 \times 10^{-7} \AA$
31. A whose biperiment ceper men is immersed in water. if the fringe width in air is β and efracti e in lex of biprism material and water are 1.5 and 1.33 respectiv ly find the value of the fringe width
[a] $3 \beta_{a}$
[b] $4 \beta_{a}$ [c] $1.5 \beta_{a}$
[d] $1.33 \beta_{a}$
32. Light of wavelength $6000 \AA$ is incident on a thin glass plate of refractive index 1.5 such angle of refraction into the plate is 60 . Calculate the smallest thickness of plate which will make it appear dark by reflection
[a] $4 \times 10^{-7} \mathrm{~m}$
[b] 400 mm
T.Vediyappan.,M.Sc.,M.Phil.,B.Ed.,
[c] $400 \AA$
[d] $0.4 \times 10^{-7} \mathrm{~m}$
33. An extended object is placed perpendicular to the principal axis of a concave mirror of radius of curvature 20 cm at a distance of 15 cm from the pole. Find the lateral magnification produced.
[a]-2
[b] -4
[c] - 2
[d] 4
34. A point object is placed 60 cm from the pole of a concave mirror of focal length 10 cm on the principal axis.
[a] -12 cm [c] -12 mm
[b] 12 mm
[d] 12 mm
35. A person looks into a spherical min or. the size of image his face is twice the actual size of his face. it the face is at a distance of 20 cm , then find the radius of curvature of the m rror.
[a] 80 cm
[b] 80 mm
[c] 80 m
[d] 0.8 m
36. The distance etween a real obect and its image in a convex mirror of focal length 12 cm s 32 mm . Fin the size of image if the object size is 1 cm

37. Find the max mum ngle that can be nade glass medium $(\mu=1.5)$ if a light ray is refra ted from glass to vacumom
[a] $\sin ^{-1}\left(\frac{2}{3}\right)$
b] $\sin ^{-1}\left(\frac{3}{2}\right)$
[c] $\cos ^{-1}\left(\frac{2}{3}\right)$
[d] $\cos ^{-1}\left(\frac{3}{2}\right)$
38. Find the angle of refraction in a medium $(u=2)$ if light is incident in vacuum, making an angle equal to twice the critical angle
[a] $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
[b] $\cos ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
[c] $\sin ^{-1}\left(\frac{4}{\sqrt{3}}\right)$
[d] $\cos ^{-1}\left(\frac{4}{\sqrt{3}}\right)$
39. Find apparent height of the bird
[a] 48 m
[b] 48 mm
[c] 48 cm
[d] 0.48 m
40. Find apparent depth of the fish
[a]27 m
[b] 27 mm
[c] 27 cm
[d] 0.27 m
41. At what distance will the bird appear to the fish ?
[a] 84
[b] 84 mm
[c] 84 cm
[d] 0.84 m
42. At what distance will the fish appear to the bird?
[a] 66 m
[b] 84 mp
[c] 0.66 m
[d] 0.63
43. Find the apparent depth of are objec seen below surface $A B$.
[a] 36 m
[00.36 m
[c] 36 mm
[d] 0.36 mm
44. In determine the apparent siftin the position of the coin. Also find the effective refractive index of the combination of the glass and water slab [a] 1.39
[b] 1.40
[c] 1.3
[d] 1.49
45. Calculate the dispersivepower for crown glass from the given data [a] 0.1639
[b] 0.0139
[c] 1.639
[a] 6139
46. A point object is placed on the principal axis of a thin with parallel curved bounaries i.e having same radii of curvature. Discuss about the position of the image formed
[a] $V=4$
[c] $V=0$
[b] $V \neq 4$
[a] $u=0$
47. Find foca length of the lens shown in
[a] +10 cm
b] -10 cm
[c] +20 cm
] -20 cm
48. A glass or glycerin convex ens efractive index $3 / 2$ has got a focal length of the lens if it in immersed in ethyl alcohol of refractive index 1.36
[a] 243.75 cm
[b] 342.75 cm
[c] 136.75 cm
[d] 263.50 cm
49. To increase the angular magnification of a simple microscope one should increase
[a] the focal length of the lens
[b] the power of the lens
[c]the aperture of the lens
[d] the object size
50. Two thin lenses are in contact and the focal length of the combination is 80 cm . If the focal length of one lens is 20 cm then the power of the other lens will be
[a] 1.66 D
[b] 4.00 D
[c] -100 D
[d] -3.75 D

6	(a) $\frac{1}{2} \mu=\frac{\sin 90^{\circ}}{\sin \mathrm{C}}=\frac{1}{\sin \mathrm{C}}$ [For critical angle] $\begin{equation*} \therefore \quad C=\sin ^{-1}\left(\frac{1}{{ }_{2}^{1} \mu}\right) \tag{i} \end{equation*}$ Applying Snell's law at P , we get $\begin{align*} & { }_{2}^{1} \mu=\frac{\sin r^{\prime}}{\sin \mathrm{i}}=\frac{\sin (90-\mathrm{r})}{\sin r} \quad\left[\because \mathrm{i}=\mathrm{r} ; \mathrm{r}^{\prime}+\mathrm{r}=90^{\circ}\right] \\ & \frac{1}{2} \mu=\frac{\cos r}{\sin r} \end{align*}$ From (i) and (ii) $\mathrm{C}=\sin ^{-1}(\tan \mathrm{r})$
7	(d)
8	(a) Option (a) is correct.
9	(a) $1.5 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
10	(c) $\quad \mathrm{v}=\frac{\mathrm{c}}{\mu}$ or $\lambda_{\mathrm{m}}=\frac{\lambda_{0}}{\mu} \quad \therefore \lambda_{\mathrm{m}}=\frac{420}{(4 / 3)}=315 \mathrm{~nm}$

11	
12	$\begin{aligned} & \text { (d) Here, } v_{A}=1.8 \times 10^{8} \mathrm{~m}^{-1} \\ & v_{B}=2.4 \times 10^{8} \mathrm{~m} \mathrm{~s} \mathrm{~s}^{-1} \end{aligned} \begin{aligned} & \text { Light travels slower in denser medium. Hence medium } A \text { is a denser medium and medium } B \text { is a } \\ & \text { rarer medium. Here, Light travels from medium } A \text { to medium } B \text {. Let } C \text { be the critical angle between them. } \\ & \therefore \sin C={ }^{A} \mu_{B}=\frac{1}{{ }^{B} \mu_{A}} \quad \begin{array}{l} \text { Refractive index of medium } B \text { w.r.t. to medium } A \text { is } \end{array} \\ & \quad \therefore \sin C=\frac{v_{A}}{v_{B}}=\frac{\text { Velocity of lightin medium } A}{\text { Velocity of lightin medium } B}=\frac{v_{A}}{v_{B}} \\ & 2.4 \times 10^{8} \\ & =\frac{3}{4} \end{aligned}$
13	(c) For total internal reflection, $\mu \geq \frac{1}{\sin C} \geq \sqrt{2} \geq 1.414=\mu=150$
14	$\begin{aligned} & \text { (b) } \left.\frac{1}{\mathrm{f}_{\mathrm{a}}}=\left(\frac{1.5}{1}-1\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right) \frac{1}{\mathrm{I}_{\mathrm{m}}}=\frac{\left(\frac{1}{\mu_{\mathrm{m}}}\right)}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right) \frac{1}{\mathrm{f}_{\mathrm{m}}}=\left(\frac{1.5}{1.6}-1\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right) \\ & \text { Dividing (i) by (ii), } \frac{\mathrm{m}}{\mathrm{I}_{\mathrm{a}}}=\frac{5-1}{\frac{5}{1.6}-1} \Rightarrow 8 \quad \mathrm{P}_{\mathrm{a}}=-5=\frac{1}{\mathrm{~m}} \Rightarrow \mathrm{f}_{\mathrm{a}}=-\frac{1}{5} \Rightarrow \mathrm{f}_{\mathrm{m}}=-8 \times \mathrm{f}_{\mathrm{a}}=-8 \times-\frac{1}{5}=\frac{8}{5} \\ & \mathrm{P}_{\mathrm{m}}=\frac{\mu}{\mathrm{f}_{\mathrm{m}}} \frac{1.6}{8} \times 5=1 \mathrm{D} \end{aligned}$
15	(b) $\quad=\mathrm{R}, \mathrm{R}_{2}=-2 \mathrm{R}, \frac{1}{a}=\left(\mu-\left(\frac{1}{\mathrm{R}_{1}} \frac{-1}{\mathrm{R}_{2}}\right), \frac{1}{6}=(1-1)\left(\frac{1}{\mathrm{R}}+\frac{1}{2}\right), \frac{0.5 \times 3}{2 \mathrm{R}}, \mathrm{R}=4.5 \mathrm{~cm}\right.$
16	(b) Here, $P_{1}=D$ $\begin{aligned} & P_{2}=P-P_{1}=-5=3 D \\ & \frac{\omega_{1}}{\omega_{2}}=-\frac{f_{1}}{f_{2}}=\frac{-1}{1}=\frac{3}{5} \end{aligned}$
17	(c) Longitudinal ch omatic abonation $=\omega \mathrm{f}$ $=0.08 \times 20=6 \mathrm{~cm}$
18	(b) $\mathrm{i}=\frac{\mathrm{A}+\delta_{\mathrm{m}}}{2}=\frac{60+30}{2}=45^{\circ}$
19	$\begin{aligned} & \text { (d) } \quad \mathrm{i}_{1}=\mathrm{i}_{2}=\frac{3}{4} \mathrm{~A} \\ & \text { As } \mathrm{A}+\delta=\mathrm{i}_{1}+\mathrm{i}_{2} \\ & \therefore \delta=\mathrm{i}_{1}+\mathrm{i}_{2}-\mathrm{A}=\frac{3}{4} \mathrm{~A}+\frac{3}{4} \mathrm{~A}-\mathrm{A}=\frac{\mathrm{A}}{2}=\frac{60^{\circ}}{2}=30^{\circ} \end{aligned}$

T.Vediyappan.,M.Sc.,M.Phil.,B.Ed.,

20	(d) Here $\frac{\mathrm{x}}{1000}=\frac{1.22 \lambda}{\mathrm{D}}$ or $\mathrm{x}=\frac{1.22 \times 5 \times 10^{3} \times 10^{-10} \times 10^{3}}{10 \times 10^{-2}}$ or $\mathrm{x}=1.22 \times 5 \times 10^{-3} \mathrm{~m}=6.1 \mathrm{~m}$ x is of the order of 5 mm .
21	(d) Resolving power $\alpha(1 / \lambda)$. Hence, $\frac{(\text { R.P })_{1}}{(\text { R.P })_{2}}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{5}{4}$
22	(a) $\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}=9, \therefore \mathrm{f}_{0}=9 \mathrm{f}_{\mathrm{e}}$ Also $\mathrm{f}_{0}+\mathrm{f}_{\mathrm{e}}=20(\because$ final image is at infinn $)$ $9 \mathrm{f}_{\mathrm{e}}+\mathrm{f}_{\mathrm{e}}=20, \mathrm{f}_{\mathrm{e}}=2 \mathrm{~cm}, \quad \therefore \mathrm{f}_{0}=18$
23	(b) In normal adjustment, $\mathrm{M}=\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}=20, \mathrm{f}_{\mathrm{e}}=\frac{\mathrm{f}}{20} \frac{0}{2}=3 \mathrm{~cm}$
24	(a) (i) $\mathrm{M}=-\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{e}}}\left(1+\frac{\mathrm{d}}{\mathrm{d}}\right)=\frac{200}{5}\left(1+\frac{5}{25}\right)=-48$ (since least d stance $\mathrm{d}=25 \mathrm{~cm}$) (ii) $\mathrm{M}=-\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}}=-\frac{200}{5}=-40$.
25	(b) $\begin{aligned} & \quad=\frac{\beta}{\propto}=\frac{f_{0}}{\mathrm{f}_{\mathrm{e}}} \\ & \therefore \quad \beta=\frac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}} \quad=\frac{\sigma u}{5} \quad 2^{\circ}=24^{\circ} \end{aligned}$
26	(i) $\lambda=600 \AA=5 \quad 10^{-7} \mathrm{n} \quad \mathrm{a} \quad \mathrm{m}=1 \quad 10^{-3} \mathrm{~m}, \mathrm{D}=1 \mathrm{~m}, \mathrm{n}=10$ Angular position $=\frac{\mathrm{d}}{\mathrm{d}}=\frac{106 \times 10^{-7}}{10^{-3}}=6 \times 10^{-3} \mathrm{rad}$.
27	(i) For $\mathrm{m}^{\text {th }}$ dark fringe $\mathrm{x}_{\mathrm{m}}^{\prime}=\left(2 \mathrm{~m}=\frac{1 \mathrm{~d}}{2 \mathrm{~d}}\right.$ given, $\mathrm{D}=1 \mathrm{~m}=100 \mathrm{~cm}, \mathrm{~d}=0.12 \mathrm{~mm}=0.012 \mathrm{~cm}$ $\mathrm{x}_{3}^{\prime}=\frac{(2 \times 3-1) \times 100 \times 6 \times 10^{-7}}{2 \times 0.012}=1.25 \mathrm{~cm}\left[\because \mathrm{~m}=3\right.$ and $\left.\lambda=6 \quad 10^{-7} \mathrm{~m}\right]$
28	(ii) For $\mathrm{n}^{\text {th }}$ bright fringe $\mathrm{x}_{\mathrm{n}}=\frac{\mathrm{nD} \lambda}{\mathrm{d}} \Rightarrow \mathrm{x}_{3}=\frac{3 \times 100 \times 6 \times 10^{-7}}{0.012}=1.5 \quad 10^{-2} \mathrm{~m}=1.5 \mathrm{~cm} \quad[\because \mathrm{n}=3]$

29	$\alpha_{\text {air }}=\frac{\lambda}{\mathrm{d}} \Rightarrow \alpha_{\text {air }}=0.2 \Rightarrow \alpha \propto \lambda \Rightarrow \frac{\alpha_{w}}{\alpha_{\text {air }}}=\frac{\lambda_{\mathrm{w}}}{\lambda_{\text {air }}} \Rightarrow \lambda_{\mathrm{w}}=\frac{\lambda_{\text {air }}}{\mu} \Rightarrow \alpha_{\mathrm{w}}=\frac{\alpha_{\text {air }} \lambda}{\mu . \lambda}=\frac{0.2 \times 3}{4}=0.15$
30	Path difference $=171.5 \lambda=\frac{343}{2} \lambda=$ odd multiple of half wavelength. It means dark finge is observed According to question $0.01029=\frac{343}{2} \lambda \Rightarrow \lambda=\frac{0.01029 \times 2}{343}=6 \times 10^{-5} \mathrm{~cm} \Rightarrow \lambda=6000 \AA$
31	$\beta_{\mathrm{w}}=\frac{\mu_{\mathrm{g}}-1}{\mu_{\mathrm{g}}-\mu_{\mathrm{w}}} \beta_{\mathrm{a}}=\frac{\frac{3}{2}-1}{\frac{3}{2}-\frac{4}{2}}=3 \beta_{\mathrm{a}}$
32	$2 \mu t \cos r=n \lambda \Rightarrow t=\frac{\mathrm{n} \lambda}{2 \mu \cos t}=\frac{1 \cdot 6 \times 10^{-7}}{2 \times 1.5 \times \cos 60}=\frac{6 \times 10^{-7}}{1.5}=4 \times 10^{-7} \mathrm{~m}$
33	
34	a.
35	Sol. The person will se his face only when the image is virtual. Virtual image of a real object is erect Therefore, $m=\frac{f}{f-u}$
36	Sol. Let x and y be the magnitude or object and mage ilistances. And also, $\begin{align*} u & =-x, v=+y \\ \frac{1}{-x}+\frac{1}{y} & =\frac{1}{+12} \tag{ii} \end{align*}$ Solving (i) and (ii) simultaneously, we can get u and v. The relevant answers are $u=-24 \mathrm{~cm}, v=+8 \mathrm{~cm}$ Fig. 1.53 Using $I=-1\left(\frac{+8}{-24}\right)=+\frac{1}{3}$ So, the image size is $1 / 3 \mathrm{~cm}$. $\begin{array}{lc} \Rightarrow & A O+A^{\prime} O=32 \mathrm{~cm} \\ \Rightarrow & (x+y)=32 \tag{i} \end{array}$

37	Sol. Maximum angle of refraction from denser medium to rarer medium is the critical angle. Hence, $\begin{aligned} 1.5 \sin C & =1 \sin 90^{\circ} \text {, where } C=\text { critical angle. } \\ \sin C & =2 / 3 \\ C & =\sin ^{-1} 2 / 3 \end{aligned}$
38	Sol. Since the incident light is in rarer medium, total internal reflection cannot take place. $\begin{aligned} & \qquad C=\sin ^{-1} \frac{1}{\mu}=30^{\circ} \\ & \therefore \quad \begin{array}{l} i=2 C=60^{\circ} \end{array} \\ & \therefore \quad \operatorname{spplying} \text { Snell's law, } \quad 1 \sin 60^{\circ}=2 \sin r \\ & \qquad \sin r=\frac{\sqrt{3}}{4} \Rightarrow r=\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right) \end{aligned}$
39	(i) Here, bird is an object and fish is an observer. Hence, apparent height observed by the fish $\left.d_{B}^{\prime}=\frac{d}{n_{\text {rel }}}=\frac{d}{\left(\frac{n_{\text {air }}}{n_{\text {wate }}}\right)} \Rightarrow d_{s}^{\prime}=\frac{36}{\frac{1}{\left.\frac{1}{3}\right)}}\right)^{36} \frac{1}{4}=48 \mathrm{~m}$
40	(ii) Here, the fish is object and the bird is abserver. Hence, apparent height obs rved by the bird $d_{F}^{\prime}=\frac{d}{n_{\text {rel }}} \frac{d}{\left(\frac{l_{\text {water }}}{n_{\text {sir }}}\right)} \Rightarrow \quad=\frac{36}{4 / 3}=27 \mathrm{~m}$
41	(iii) For the fish, the bird ill be bserved at a dintance from the fish: $d_{B}=30+48=84 \mathrm{~m}$
42	(iv) For the ird, the $\mathrm{f} \frac{1}{}$ wille observed a distano ' d_{F} ' from the bird: $a_{4}=27+3=63 \mathrm{~m}$
43	Sol. $D_{\text {app }}=\sum \frac{d}{\mu}=\frac{20}{\left(\frac{2}{1.8}\right)}+\frac{15}{\left(\frac{1.5}{1.8}\right)}-18+18=6 \mathrm{~cm}$

44	Sol. Total apparent shift is or $\begin{aligned} & s=t_{1}\left(1-\frac{1}{\mu_{1}}\right)+t_{2}\left(1-\frac{1}{\mu_{2}}\right) \\ & s=8\left(1-\frac{1}{\frac{4}{3}}\right)+4.5\left(1-\frac{1}{\frac{3}{2}}\right) \end{aligned}$ or $s=2+1.5=3.5 \mathrm{~cm}$ The apparent depth of the coin from the top is $t=(8+4.5)$ $-3.5=9 \mathrm{~cm}$ and, the real depth of the coin is $t_{1}+t_{2}=8+4.5=12.5$ Therefore, the effective refractive index is $\mu_{\text {eff }}=\frac{\text { Real depth }}{\text { Apparent dept }}$ $\begin{aligned} & =\frac{t_{1}+t_{2}}{t}=1 / \frac{\rho}{9} \\ & =1.39 \end{aligned}$
45	Sol. Here, $\mu_{v}=1.523$ and $\mu_{r}=1.5145$ Mean refractive index, $\mu=\frac{1.523+1.5145}{2}=1.5875$ Dispersive power is giventy, $-\frac{\mu_{v}-y^{2}}{(y-1)}=\frac{1.52 .-1.514 s}{(1.51875-1)}=0.1639$
46	Sol. $\frac{1}{f}$ $\frac{1}{f}=$ $\left(\frac{1}{R_{1}}-\frac{}{R_{2}}\right)=0$ $\left.R_{1}=1\right]$ $\frac{1}{u}-\frac{1}{u}=0$ or $=u$ ile., rays pass with ut appreciable bending.
47	$\begin{array}{ll} \text { Sol. } & \begin{array}{ll} \frac{1}{f} & =\left(n_{\mathrm{ret}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{2}\right) \\ \frac{1}{2} & =(3 / 2-1)\left(\frac{1}{10} \frac{1}{(-10)}\right) \\ \Rightarrow & \frac{1}{f} \end{array}=\frac{2}{2}-10 \Rightarrow f=10 \mathrm{~cm} . \end{array}$

48	Sol. According to lensmakers formula $\begin{align*} & \frac{1}{f} \end{align*}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ In ethyl alcohol, $\frac{1}{f_{\text {liquid }}}=\left(\frac{1.5}{1.36}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ Dividing (i) and (ii), we get $\begin{aligned} \quad \frac{f_{\text {liquid }}}{f} & =\frac{(1.5-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)}{\left(\frac{1.5}{1.36}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)} \\ \Rightarrow \quad f_{\text {liquid }} & =242.75 \mathrm{~cm} \end{aligned}$
49	(b) One should increase the power of lens i. decre se the focal length of a lens.
50	(d) $\mathrm{P}_{2}=\mathrm{P}-\mathrm{P}_{1}=\frac{100}{80} \frac{100}{20}=-3.75 \mathrm{D}$

