Basic Mathematics (241) Marking Scheme

Section A	
1) (b) xy^2	
2) (c) 20	
3) (b) ½	
4) (d) No Solution	
5) (d) 0,8	
6) (c) 5 Unit	
7) (a) $\Delta PQR \sim \Delta CAB$	
8) (d) RHS	
9) (b) 70°	
10) (b) ¾	
11) (b) 45°	
12) (a) sin ² A	
13) $(c) \pi : 2$	
14) (a) 7 <i>cm</i>	
15) (d) $\frac{1}{6}$	
16) (a) 15	
17) (a) 3.5 cm	
18) (b) 12-18	
19) (a) Both assertion and reason are true and reason is the correct explanation of assertion.	
20) (d) Assertion (A) is false but reason(R) is true.	

SECTION B

21) 3x+2y=8

$$6x - 4y = 9$$

$$a_1$$
=3, b_1 =2, c_1 = 8

$$a_2$$
=6, b_2 =-4, c_2 = 9

$$\frac{a_1}{a_2} = \frac{3}{6} = \frac{1}{2} \qquad \frac{b_1}{b_2} = \frac{2}{-4} = \frac{-1}{2} \qquad \frac{c_1}{c_2} = \frac{8}{9}$$
 1/2

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

The given pair of linear equations are consistent. 1/2

22) Given:-AB II CD II EF

To prove:
$$-\frac{AE}{ED} = \frac{BF}{FC}$$

Construction:- Join BD to

intersect EF at G.

Proof:- in ∆ ABD

EG II AB (EF II AB)

$$\frac{AE}{ED} = \frac{BG}{GD}$$
 (by BPT)_____(1)

In ΔDBC

GFIICD (EFIICD)

$$\frac{BF}{FC} = \frac{BG}{GD} \qquad \text{(by BPT)}$$
 (2)

from (1) & (2)

$$\frac{AE}{ED} = \frac{BF}{FC}$$
 1/2

OR

Given AD=6cm, DB=9cm

AE=8cm, EC=12cm, ∠ADE=48

To find:- ∠ABC=?

Proof:

In ΔABC

$$\frac{AD}{DB} = \frac{6}{9} = \frac{2}{3}$$
(1)

$$\frac{AE}{EC} = \frac{8}{12} = \frac{2}{3}$$
(2)

From (1) & (2)

$$\frac{AD}{DB} = \frac{AE}{EC}$$

DE II BC (Converse of BPT)

∠ADE=∠ABC (Corresponding angles)

⇒ ∠ABC=48°

1

1

1/2

23) In ∆ OTA, ∠OTA = 90°

By Pythagoras theorem

$$OA^2 = OT^2 + AT^2$$

$$(5)^2 = OT^2 + (4)^2$$

$$9 = OT^{2}$$

OT=3cm

5cm A

1/2

1

radius of circle = 3cm.

24) $\sin^2 60^\circ + 2 \tan 45^\circ - \cos^2 30^\circ$

$$= \left(\frac{\sqrt{3}}{2}\right)^2 + 2(1) - \left(\frac{\sqrt{3}}{2}\right)^2$$

$$= \frac{3}{4} + 2 - \frac{3}{4}$$

= 2

25) Area of the circle= sum of areas of 2 circles

$$\pi R^2 = \pi (40)^2 + \pi (9)^2$$

$$\pi R^2 = \pi \times (40^2 + 9^2)$$

$$R^2 = 1600 + 81$$

$$R^2 = 1681$$

$$R = 41 cm.$$

Diameter of given circle =
$$41 \times 2 = 82cm$$
 1/2

OR

radius of circle = 10cm, $\theta = 90^{\circ}$

Area of minor segment = $\frac{\theta}{360^{\circ}}\pi r^2$ - Area of Δ

$$= \frac{\theta}{360^{\circ}} \times \pi r^{2} - \frac{1}{2} \times b \times h$$
 1/2

$$= \frac{90^{\circ}}{360^{\circ}} \times 3.14 \times 10 \times 10 - \frac{1}{2} \times 10 \times 10$$

$$= \frac{314}{4} - 50$$

$$= 78.5-50 = 28.5 \text{ cm}^2$$

Area of minor segment = 28.5 cm^2

Section C 26) Let us assume that $\sqrt{3}$ be a rational number $\sqrt{3} = \frac{a}{b}$ where a and b are co-prime. 1 squaring both the sides $\left(\sqrt{3}\right)^2 = \left(\frac{a}{b}\right)^2$ 1/2 $3=\frac{a^2}{h^2} \Rightarrow a^2=3b^2$ a^2 is divisible by 3 so a is also divisible by 3 _____(1) *let a=3c* for any integer *c*. $(3c)^2 = 3b^2$ 1/2 $9c^2=3b^2$ $b^2 = 3c^2$ since b^2 is divisible by 3 so, b is also divisible by 3 ____(2) From (1) & (2) we can say that 3 in a factor of a and b 1/2 which is contradicting the fact that a and b are co-prime. Thus, our assumption that $\sqrt{3}$ is a rational number is wrong. Hence, $\sqrt{3}$ is an irrational number. 1/2 27) P(S)= 4S²-4S+1 $4S^2-2S-2S+1=0$ 2S(2S-1)-1(2S-1)=0 (2S-1)(2S-1)=0S = ½ S = ½ 1 a = 4 b = -4 c = 1 $\alpha = \frac{1}{2}$ $\beta = \frac{1}{2}$ $\propto +\beta = \frac{-b}{a}, \qquad \propto \beta = \frac{c}{a}$ $\frac{1}{2} + \frac{1}{2} = \frac{-4}{4}, \qquad \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{1}{4}$ 1 $\frac{1+1}{2} = \frac{+4}{4}$, $\frac{1}{4} = \frac{1}{4}$ 1 28) Let cost of one bat be Rs x Let cost of one ball be Rs y 1/2 ATQ 4x + 1y = 2050 (1) 3x + 2y = 1600 (2) 1/2 from (1)4x + 1y = 2050y = 2050 - 4x

Substite value of y in (2)	
3x + 2(2050 - 4x) = 1600	
3x + 2(2030 - 4x) = 1000 3x + 4100 - 8x = 1600	
-5x = -2500	
x = 500	1/2
	1/2
Substiture value of x in (1) $4x + 1y = 2050$	
4x + 1y = 2050 $4(500) + y = 2050$	
2000 + y = 2050	
y = 50	1/2
y = 30 Hence	1/2
	1/2
Cost of one bat = Rs. 500	1/2
Cost of one ball = Rs. 50	
OR	
Let the fixed charge for first 3 days= Rs. x	
And additional charge after 3 days= Rs. y	1/2
ATQ	
x + 4y = 27(1)	
x + 2y = 21(2)	1/2
Subtract eq ⁿ (2) from (1)	
2y = 6	
y = 3	1
Substitute value of y in (2)	
x + 2(3) = 21	
x = 21 - 6	
x = 15	1
Fixed charge= Rs. 15	
Additional charge per day = Rs. 3	
А Р В	
29) Given circle touching sides of ABCD at P,Q,R and S	
To prove- AB+CD=AD+BC	
Proof- s s O	1
AP=AS(1) tangents from an external point	
PB=BQ(2) to a circle are equal in length	
DR=DS(3)	
CR=CQ(4)	1
Adding eq ⁿ (1),(2),(3) & (4)	
AP+BP+DR+CR=AS+DS+BQ+CQ	
AB+DC=AD+BC	1
30) $(\cos ec\theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$	
$\frac{1+\cos\theta}{1+\cos\theta}$	
$LHS=(cosec\theta-cot\theta)^2$	
$=\left(\frac{1}{\sin\theta}-\frac{\cos\theta}{\sin\theta}\right)^2$	1/2
$=\left(\frac{1-\cos\theta}{\sin\theta}\right)^2$	1/2

(x+5)(360-x) = 360x			
$-x^2 - 5x + 1800 = 0$			
$x^2 + 5x - 1800 = 0$			1
$x^2 + 45x - 40x - 1800 = 0$			-
x(x+45) - 40(x+45) = 0			
(x+45)(x-40)=0			1
x + 45 = 0 , x - 40 = 0			
$x = -45 \qquad , \qquad x = 40$			
Speed cannot be negative			
Speed of train =40km/hr			1
	OR		
Let the speed of the stream= xkm/hr			1/2
Speed of boat= $18 km/hr$			
Upstream speed= $(18 - x)km/hr$			
Downstream speed= $(18 + x)km/hr$			1/2
Time taken (upstream)= $\frac{24}{(18-x)}$			
Time taken (downstream)= $\frac{24}{(18+x)}$			
ATQ			
$\frac{24}{(18-x)} = \frac{24}{(18+x)} + 1$			1
(18-x) $(18+x)$ -			_
$\frac{24}{(18-x)} - \frac{24}{(18+x)} = 1$			
24(18+x) - 24(18-x) = (18-x)(18+x)			
$24(18 + x - 18 + x) = (18)^2 - x^2$			
$24(2x) = 324 - x^2$			
$48x - 324 + x^2 = 0$			
$x^2 + 48x - 324 = 0$			1
$x^2 - 6x + 54x - 324 = 0$			
x(x-6) + 54(x-6) = 0			
(x-6)(x+54) = 0			1
$x - 6 = 0 , \qquad x + 54 = 0$			
x = 6 , $x = -54$			1
Speed cannot be negative			1
 Speed of stream= $6km/hr$ 33) Given \triangle <i>ABC</i> , DE BC			
To prove $\frac{AD}{DB} = \frac{AE}{EC}$			
Construction: join BE and CD			1/2
Draw DM \perp AC and EN \perp AB		Α	
Proof: Area of $\triangle ADE = \frac{1}{2} \times b \times h$		N M	
$=\frac{1}{2}x AD x EN(1)$			
Area $(\Delta DBE) = \frac{1}{2} x DB x EN(2)$		E	
		/	

1

Divide $eq^{n}(1)$ by (2)

 $\frac{\operatorname{ar} \Delta ADE}{\operatorname{ar} \Delta DBE} = \frac{\frac{1}{2} X \ AD \ X \ EN}{\frac{1}{2} X \ DB \ X \ EN} = \frac{AD}{DB} - - - - - (3)$

area $\triangle ADE = \frac{1}{2} \times AE \times DM$ -----(4)

area $\Delta DEC = \frac{1}{2} \times EC \times DM$ -----(5)

Divide $eq^{n}(4)$ by (5)

 ΔBDE and ΔDEC are on the same base DE and between same parallel lines BC and DE

 \therefore area ($\triangle DBE$) = ar (DEC)

hence

$$\frac{ar(\Delta ADE)}{ar(\Delta DBE)} = \frac{ar(\Delta ADE)}{ar(\Delta DEC)}$$
 [LHS of (3) =RHS of (6)]

$$\frac{AD}{DB} = \frac{AE}{EC}$$
 [RHS of (3) = RHS of (6)

Since $\frac{PS}{SQ} = \frac{PT}{TR} : ST \parallel QR \ (by \ converse \ of \ BPT)$

 $\angle PST = \angle PQR$ (Corresponding angles)

But $\angle PST = \angle PRQ$ (given)

 $\angle PQR = \angle PRQ$

PR = PQ (sides opposite to equal angles are equal

Hence ΔPQR is isosceles.

1

1

1

34) Diameter of cylinder and hemisphere = 5mm radius, (r) = $\frac{5}{2}$

Total length = 14mm

CSA of cylinder = 2⊼rh

$$= 2 \times \frac{22}{7} \times \frac{5}{2} \times 9$$

$$=\frac{990}{7} \,\mathrm{mm^2}$$

CSA of hemispheres = $2 \times r^2$

$$=2x\frac{22}{7}x\left(\frac{5}{2}\right)^2$$

$$=\frac{275}{7}\,\mathrm{mm^2}$$

CSA of 2 hemispheres = $2 \times \frac{275}{7}$

$$=\frac{550}{7}$$
 mm²

Total area of capsule = $\frac{990}{7} + \frac{550}{7}$

$$=\frac{1540}{7}$$

 $= 220 \text{ mm}^2$

OR

Diameter of cylinder = 2.8 cm

radius of cylinder = $\frac{2.8}{2}$ = 1.4 cm

radius of cylinder = radius of hemisphere = 1.4 cm

Height of cylinder = 5-2.8

= 2.2 cm

Volume of 1 Gulab jamun = vol. of cylinder + 2 x vol. of hemisphere

$$= \overline{\wedge} \, r^2 \mathsf{h} + 2 \, \mathsf{x} \, \frac{2}{3} \, \overline{\wedge} \, r^3$$

$$\frac{22}{7}$$
 x (1.4)² x 2.2 + 2 x $\frac{2}{3}$ x $\frac{22}{7}$ x (1.4)³

$$= 13.55 + 11.50$$

$$= 25.05 cm^3$$

volume of 45 Gulab jamun = 45×25.05

 $syrup\ in\ 45\ Gulab\ jamun=30\%\ x\ 45\ x\ 25.05$

$$= \frac{30}{100} \times 45 \times 25.05$$

$$= 338.175 \text{ cm}^3$$

 $\approx 338 \text{ cm}^3$

35)

Life time (in hours)	Number of lamps(f)	Mid x	d	fd
1500-2000	14	1750	-1500	-21000
2000-2500	56	2250	-1000	-56000
2500-3000	60	2750	-500	-30000
3000-3500	86	3250	0	0
3500-4000	74	3750	500	37000
4000-4500	62	4250	1000	62000
4500-5000	48	4750	1500	72000
_	400			64000

$$Mean = a + \frac{\Sigma f d}{\Sigma f}$$

a = 3250

1/2

2

1

1

1/2

Mean =
$$3250 + \frac{64000}{400}$$
= $3250 + 160$
= 3410

Average life of lamp is 3410 hr

Section E

$$\begin{array}{lll} = \frac{3}{2}[2(5000) + (3 - 1) 2200] \\ S_3 = \frac{3}{2}(10000 + 2 \times 2200) & 1/2 \\ = \frac{2}{2}(10000 + 2400) & 1/2 \\ = \frac{3}{2}(10000 + 4400) & 1/2 \\ = 3 \times 7200 & 1/2 \\ \text{The production during first 3 year is 21600} & 1/2 \\ \text{The production during first 3 year is 21600} & 1/2 \\ \text{The production during first 3 year is 21600} & 1/2 \\ = 5000 + 3 (2200) & 5000 + 3 (2200) \\ = 5000 + 6600 & 1/2 \\ = 11600 & 1/2 \\ = 5000 + 6 \times 2200 \\ = 5000 + 13200 & 1/2 \\ = 18200 & 1/2 \\ = 18200 & 1/2 \\ \end{array}$$

$$\begin{array}{lll} 37) \operatorname{coordinates of A (2, 3) & Alia's house} \\ \operatorname{coordinates of B (2, 1) & Shagun's house} \\ \operatorname{coordinates of B (2, 1) & Shagun's house} \\ \operatorname{coordinates of C (4, 1) } & \operatorname{Library} \\ \text{(i) } AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \\ = \sqrt{(0^2 + (-2)^2} & 1/2 \\ = \sqrt{(0^2 + (-2)^2} \\ AB = \sqrt{0 + 4} & = \sqrt{4} = 2 \text{ units} \\ Alta's house from shagun's house is 2 units} \\ \text{(ii) } C(4,1), B(2,1) & 1/2 \\ = \sqrt{(-2)^2 + 0^2} & 1/2 \\ = \sqrt{(-2)^2 + 0^2} & 1/2 \\ = \sqrt{(-2)^2 + 0^2} & 1/2 \\ = \sqrt{(-2)^2 + 1^2} & \sqrt{4 + 1} & \sqrt{5} \text{ units} \\ \text{(iii) } O(0,0), B(2,1) & 0 \\ DB = \sqrt{(2 - 0)^2 + (1 - 0)^2} & 1/2 \\ = \sqrt{2^2 + 1^2} & \sqrt{4 + 1} & 1 & \sqrt{5} \text{ units} \\ \text{Distance between Alia's house and Shagun's house, CB = 2 units} \\ Distance between Library and Shagun's house, CB = 2 units} \\ Distance between Library and Shagun's house, CB = 2 units} \\ Distance between Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units} \\ Distance hother Library and Shagun's house, CB = 2 units}$$

OR

$$CA = \sqrt{(2-4)^2 + (3-1)^2}$$

$$=\sqrt{(-2)^2+2^2}+ = \sqrt{4+4} = \sqrt{8}$$

$$= 2\sqrt{2} \text{ units} \qquad AC^2 = 8$$

Distance between Alia's house and Shagun's house, AB = 2 units

Distance between Library and Shagun's house, CB = 2 units

1

1/2

1/2

Therefore A, B and C form an isosceles right triangle.

38)

(i) XY ∥PQ and AP is transversal.

 $AB^2 + BC^2 = 2^2 + 2^2 = 4 + 4 = 8 = AC^2$

∠APD=45°

1/2

(ii) Since XY || PQ and AQ is a transversal so alternate interior angles are equal

hence
$$\angle YAQ = \angle AQD=30^{\circ}$$

100m 1/2

(iii) In $\triangle ADP$, $\theta = 45^{\circ}$

$$\tan\theta = \frac{P}{B}$$

$$\tan 45^{\circ} = \frac{100}{PD}$$

1/2

1/2

Boat P is 100 m from the light house

1

OR

In ΔADQ , $\theta = 30^{\circ}$

$$an \theta = \frac{P}{B}$$

 $\tan 30 = \frac{100}{DQ}$

$$\frac{1}{\sqrt{3}} = \frac{100}{DQ}$$
 1/2

$$DQ = 100\sqrt{3} \text{ m}$$