Class- X Session- 2021-22

TERM II

Q.N.	HINTS/SOLUTION	Marks
1	$\begin{aligned} & 3 x^{2}-7 x-6=0 \\ & \Rightarrow 3 x^{2}-9 x+2 x-6=0 \\ & \Rightarrow 3 x(x-3)+2(x-3)=0 \\ & \Rightarrow(x-3)(3 x+2)=0 \\ & \because x=3,-\frac{2}{3} \end{aligned}$ OR Since the roots are real and equal, $\therefore D=b^{2}-4 a c=0$ $\begin{aligned} & \Rightarrow \mathrm{k}^{2}-4 \times 3 \times 3=0 \quad(\because a=3, b=k, c=3) \\ & \Rightarrow \mathrm{k}^{2}=36 \\ & \Rightarrow \mathrm{k}=6 \text { or }-6 \end{aligned}$	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \\ \\ 1 \\ 1 / 2+1 / 2 \end{gathered}$
2	Let l be the side of the cube and $\mathrm{L}, \mathrm{B}, \mathrm{H}$ be the dimensions of the cuboid Since $l^{3}=64 \mathrm{~cm}^{3} \therefore l=4 \mathrm{~cm}$ Total surface area of cuboid is $2[L B+B H+H L]$, Where $\mathrm{L}=12, \mathrm{~B}=4$ and $\mathrm{H}=4$ $=2(12 \times 4+4 \times 4+4 \times 12) \mathrm{cm}^{2}=224 \mathrm{~cm}^{2}$	$\begin{gathered} 1 / 2 \\ 1 / 2 \\ 1 \end{gathered}$
3	Runs scored Frequency Cumulative Frequency $0-20$ 4 4 $20-40$ 6 10 $40-60$ 5 15 $60-80$ 3 18 $80-100$ 4 22 Total frequency $(\mathrm{N})=22$ $\frac{N}{2}=11$; So $40-60$ is the median class. $\begin{aligned} \text { Median } & =l+\frac{\left(\frac{N}{2}\right)-c f}{f} \times h \\ & =40+\frac{11-10}{5} \times 20 \\ & =44 \text { runs } \end{aligned}$	$1 / 2$ $1 / 2$ 1/2 1/2
4	The common difference is $9-4=5$ If the first term is 6 and common difference is 5 , then new $A P$ is, $\begin{aligned} & 6,6+5,6+10 \ldots \\ & =6,11,16 \ldots \end{aligned}$	1 1
5	\because Mode $=38$. \therefore The modal class is $30-40$. $\text { Mode }=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& =30+\frac{16-12}{32-12-x} \times 10=38 \\
& \frac{4}{20-x} \times 10=8 \\
& 8(20-x)=40 \\
& 20-x=5 \\
& X=15
\end{aligned}
$$ \& \& $1 / 2$

$1 / 2$

\hline 6 \& | $\because \mathrm{XY}$ is the tangent to the circle at the point D $\therefore \mathrm{OD} \perp \mathrm{XY} \Rightarrow \angle \mathrm{ODX}=90^{\circ} \Rightarrow \angle \mathrm{EDX}=90^{\circ}$ |
| :--- |
| Also, MN is the tangent to the circle at E $\begin{aligned} & \therefore \mathrm{OE} \perp \mathrm{MN} \Rightarrow \angle \mathrm{OEN}=90^{\circ} \Rightarrow \angle \mathrm{DEN}=90^{\circ} \\ & \Rightarrow \angle \mathrm{EDX}=\angle \mathrm{DEN}\left(\text { each } 90^{\circ}\right) \end{aligned}$ |
| which are alternate interior angles. $\therefore \mathrm{XY} \\| \mathrm{MN}$ |
| \because Tangent segments drawn from an external point to a circle are equal $\begin{aligned} & \therefore \mathrm{BP}=\mathrm{BQ} \\ & \mathrm{CR}=\mathrm{CQ} \\ & \mathrm{DR}=\mathrm{DS} \\ & \mathrm{AP}=\mathrm{AS} \end{aligned}$ $\begin{aligned} & \Rightarrow B P+C R+D R+A P=B Q+C Q+D S+A S \\ & \Rightarrow A B+D C=B C+A D \\ & \therefore A D=10-7=3 \mathrm{~cm} \end{aligned}$ | \& \& $1 / 2$

$1 / 2$
1
1

1

1
1
1
1

\hline \& Section- \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 9 \& \begin{tabular}{l}
\(\mathrm{PA}=\mathrm{PB}\) (Tangent segments drawn to a circle from an external point are equal)
\[
\therefore \ln \triangle A P B, \angle \mathrm{PAB}=\angle \mathrm{PBA}
\] \\
Also, \(\angle \mathrm{APB}=60^{\circ}\) \\
In \(\triangle A P B\), sum of three angles is \(180^{\circ}\). \\
Therefore, \(\angle \mathrm{PAB}+\angle \mathrm{PBA}=180^{\circ}-\angle \mathrm{APB}=180^{\circ}-60^{\circ}=120^{\circ}\).
\[
\therefore \angle \mathrm{PAB}=\angle \mathrm{PBA}=60^{\circ}(\because \angle \mathrm{PAB}=\angle \mathrm{PBA})
\] \\
\(\because \triangle A P B\) is an equilateral triangle. \\
So, \(A B=6 \mathrm{~cm}\)
\end{tabular} \& 1

1
1

\hline 10 \& | Let the three consecutive multiples of 5 be $5 x, 5 x+5,5 x+10$. |
| :--- |
| Their squares are $(5 x)^{2},(5 x+5)^{2}$ and $(5 x+10)^{2}$. $(5 x)^{2}+(5 x+5)^{2}+(5 x+10)^{2}=725$ $\Rightarrow 25 x^{2}+25 x^{2}+50 x+25+25 x^{2}+100 x+100=725$ $\Rightarrow 75 x^{2}+150 x-600=0$ $\Rightarrow x^{2}+2 x-8=0$ $\Rightarrow(x+4)(x-2)=0$ $\Rightarrow x=-4,2$ |
| $\Rightarrow x=2$ (ignoring -ve value) |
| So the numbers are 10, 15 and 20 | \& 1

1
1
1

\hline \& Section-C \&

\hline
\end{tabular}

11	
Draw two concentric circles with center O and radii 3 cm and 7 cm respectively.	
Join $O P$ and bisect it at O^{\prime}, so $P O^{\prime}=O^{\prime} O$	
Construct circle with center O^{\prime} and radius $O^{\prime} O$	1
Join PA and PB	1

\begin{tabular}{|c|c|c|}
\hline 13 (i) \& \begin{tabular}{l}
The ship is nearer to the lighthouse as its angle of depression is greater. \\
In \(\triangle \mathrm{ACB}, \tan 60^{\circ}=\frac{A B}{B C}\)
\[
\begin{aligned}
\& C \sqrt{3}=\frac{40}{B C} \\
\& \therefore B C=\frac{40}{\sqrt{3}}=\frac{40 \sqrt{3}}{3} m
\end{aligned}
\]
\[
\begin{aligned}
\& \ln \triangle A D B, \tan 30^{\circ}=\frac{A B}{B D} \\
\& \Rightarrow \frac{1}{\sqrt{3}}=\frac{40}{D B} \\
\& \therefore D B=40 \sqrt{3} \mathrm{~m}
\end{aligned}
\] \\
Time taken to cover this distance \(=\left(\frac{60}{2000} \times 40 \sqrt{3}\right)\) minutes
\[
=\frac{60 \sqrt{3}}{100}=2.076 \text { minutes }
\]
\end{tabular} \& 1 \\
\hline 14 (i)

(ii) \& | Let r_{1} and r_{2} be respectively the radii of apples and oranges $\begin{aligned} & \because 2 r_{1}: 2 r_{2}=2: 3 \Rightarrow r_{1}: r_{2}=2: 3 \\ & 4 \pi r_{1}^{2}: 4 \pi r_{2}^{2}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=\left(\frac{2}{3}\right)^{2}=4: 9 \end{aligned}$ |
| :--- |
| Let the height of the drum be h. |
| Volume of the drum = volume of the cylinder + volume of the sphere $\begin{aligned} \pi 3^{2} \mathrm{~h} & =\left(\pi 3^{2} \times 8+\frac{4}{3} \pi 3^{3}\right) \mathrm{cm}^{3} \\ \Rightarrow h & =(8+4) \mathrm{cm} \\ \Rightarrow h & =12 \mathrm{~cm} \end{aligned}$ | \& $1 / 2$

1
1
2

\hline
\end{tabular}

