Class X
 Mathematics
 Sample Question Paper 2018-19

Time allowed: 3 Hours
Max. Marks: 80

General Instructions:

1. All the questions are compulsory.
2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
5. Use of calculators is not permitted.

Section-A		
1.	Find the value of a, for which point $\mathrm{P}\left(\frac{\mathrm{a}}{3}, 2\right)$ is the mid-point of the line segment joining the points $\mathrm{Q}(-5,4)$ and $\mathrm{R}(-1,0)$.	1
2.	Find the value of k , for which one root of the quadratic equation $\mathrm{kx}^{2}-14 \mathrm{x}+8=0$ is 2 .	1
	OR	
	Find the value(s) of k for which the equation $x^{2}+5 k x+16=0$ has real and equal roots.	
3.	Write the value of $\cot ^{2} \theta-\frac{1}{\sin ^{2} \theta}$	1
	OR	
	If $\sin \theta=\cos \theta$, then find the value of $2 \tan \theta+\cos ^{2} \theta$	
4.	If nth term of an A.P. is ($2 \mathrm{n}+1$), what is the sum of its first three terms?	1
5.	In figure if $\mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{EC}=12 \mathrm{~cm}$ and $\angle \mathrm{ADE}=48^{\circ}$. Find $\angle \mathrm{ABC}$	1
6.	After how many decimal places will the decimal expansion of $\frac{23}{2^{4} \times 5^{3}}$ terminate?	1

Section-B

Section-B		
7.	The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45 , find the other number.	2
	OR	
	Show that $7-\sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational.	
8.	Find the $20^{\text {th }}$ term from the last term of the AP 3,8,13, $\ldots, 253$	2
	OR	
	If 7 times the $7^{\text {th }}$ term of an A.P is equal to 11 times its $11^{\text {th }}$ term, then find its $18^{\text {th }}$ term.	
9.	Find the coordinates of the point P which divides the join of $\mathrm{A}(-2,5)$ and $\mathrm{B}(3,-5)$ in the ratio 2:3	2
10.	A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.	2
11.	Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number	2
12.	For what value of p will the following pair of linear equations have infinitely many solutions $\begin{aligned} & (\mathrm{p}-3) \mathrm{x}+3 \mathrm{y}=\mathrm{p} \\ & \mathrm{px}+\mathrm{py}=12 \end{aligned}$	2
Section-C		
13.	Use Euclid's Division Algorithm to find the HCF of 726 and 275.	3
14.	Find the zeroes of the following polynomial: $5 \sqrt{5} x^{2}+30 x+8 \sqrt{5}$	3
15.	Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.	3
16.	The points $\mathrm{A}(1,-2), \mathrm{B}(2,3), \mathrm{C}(\mathrm{k}, 2)$ and $\mathrm{D}(-4,-3)$ are the vertices of a parallelogram. Find the value of k .	3
	OR	
	Find the value of k for which the points ($3 \mathrm{k}-1, \mathrm{k}-2$), (k,k-7) and (k-1,-k-2) are collinear.	
17.	Prove that $\boldsymbol{\operatorname { c o t } \theta}-\boldsymbol{\operatorname { t a n } \theta}=\frac{2 \cos ^{2} \theta-1}{\sin \theta \cos \theta}$	3
	OR	
	Prove that $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}(1+\boldsymbol{t a n} \theta)+\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}(1+\cot \theta)=\boldsymbol{\operatorname { s e c }} \theta+\boldsymbol{\operatorname { c o s e c }} \theta$	
18.	The radii of two concentric circles are 13 cm and $8 \mathrm{~cm} . \mathrm{AB}$ is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.	3

19. In figure $\angle 1=\angle 2$ and $\Delta \mathrm{NSQ} \cong \triangle \mathrm{MTR}$, then prove that $\triangle \mathrm{PTS} \sim \Delta \mathrm{PRQ}$.

> OR

In $\triangle A B C$, if $A D$ is the median, then show that $\mathrm{AB}^{2}+A C^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$

20. Find the area of the minor segment of a circle of radius 42 cm , if length of the corresponding $\mathbf{3}$ arc is 44 cm .
21. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm .

OR

A solid sphere of radius 3 cm is melted and then recast into small spherical balls each of diameter 0.6 cm . Find the number of balls.
22. The table shows the daily expenditure on grocery of 25 households in a locality. Find the modal daily expenditure on grocery by a suitable method.

Daily Expenditure (in Rs.)	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
No of households	4	5	12	2	2

		OR	
	The following data indicates the	students in Mathema	
	Marks	Number of students	
	0-10	5	
	10-20	3	
	20-30	4	
	30-40	3	
	40-50	4	
	50-60	4	
	60-70	7	
	70-80	9	
	80-90	7	
	90-100	8	
	Draw less than type ogive for	and hence find the medis	
29.	The radii of circular ends of a its curved surface.	ht 24 cm are 15 cm an	4
30.	If $\sec \theta+\tan \theta=p$, then find	sect θ	4

