## Marking Scheme <br> Mathematics Class X (2017-18)

Section A

| S.No. | Answer | Marks |
| :--- | :--- | :--- |
| 1. | Non terminating repeating decimal expansion. | $[1]$ |
| 2. | $\mathrm{k}= \pm 4$ | $[1]$ |
| 3. | $\mathrm{a}_{11}=-25$ | $[1]$ |
| 4. | $(0,5)$ | $[1]$ |
| 5. | $9: 49$ | $[1]$ |
| 6. | 25 | $[1]$ |

## Section B

| 7. | $\begin{aligned} & \operatorname{LCM}(p, q)=a^{3} b^{3} \\ & \operatorname{HCF}(p, q)=a^{2} b \\ & \operatorname{LCM}(p, q) \times \operatorname{HCF}(p, q)=a^{5} b^{4}=\left(a^{2} b^{3}\right)\left(a^{3} b\right)=p q \end{aligned}$ | $\begin{array}{\|l} \hline[1 / 2] \\ {[1 / 2]} \\ {[1]} \\ \hline \end{array}$ |
| :---: | :---: | :---: |
| 8. | $\begin{aligned} & \mathrm{S}_{\mathrm{n}}=2 \mathrm{n}^{2}+3 \mathrm{n} \\ & \mathrm{~S}_{1}=5=\mathrm{a}_{1} \\ & \mathrm{~S}_{2}=\mathrm{a}_{1}+\mathrm{a}_{2}=14 \Rightarrow \mathrm{a}_{2}=9 \\ & \mathrm{~d}=\mathrm{a}_{2}-\mathrm{a}_{1}=4 \\ & \mathrm{a}_{16}=\mathrm{a}_{1}+15 \mathrm{~d}=5+15(4)=65 \end{aligned}$ | $\begin{aligned} & {[1 / 2]} \\ & {[1 / 2]} \\ & {[1 / 2]} \\ & {[1 / 2]} \end{aligned}$ |
| 9. | For pair of equations $k x+1 y=k^{2}$ and $1 x+k y=1$ We have: $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{k}}{1}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{1}{\mathrm{k}}, \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}=\frac{\mathrm{k}^{2}}{1}$ For infinitely many solutions, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ $\begin{equation*} \therefore \frac{\mathrm{k}}{1}=\frac{1}{\mathrm{k}} \Rightarrow \mathrm{k}^{2}=1 \Rightarrow \mathrm{k}=1,-1 \tag{i} \end{equation*}$ <br> and $\frac{1}{\mathrm{k}}=\frac{\mathrm{k}^{2}}{1} \Rightarrow \mathrm{k}^{3}=1 \Rightarrow \mathrm{k}=1$ <br> From (i) and (ii), $\mathrm{k}=1$ | [1/2] <br> [1/2] <br> [1/2] <br> [1/2] |
| 10. | Since $\left(1, \frac{\mathrm{p}}{3}\right)$ is the mid-point of the line segment joining the points $(2,0)$ and $\left(0, \frac{2}{9}\right)$ therefore, $\frac{\mathrm{p}}{3}=\frac{0+\frac{2}{9}}{2} \Rightarrow \mathrm{p}=\frac{1}{3}$ <br> The line $5 x+3 y+2=0$ passes through the point $(-1,1)$ as $5(-1)+3(1)+2=0$ | [1] <br> [1] |
| 11. | (i) $\mathrm{P}($ square number $)=\frac{8}{113}$ <br> (ii) $\mathrm{P}($ multiple of 7$)=\frac{16}{113}$ | $\left[\begin{array}{l} {[1]} \\ {[1]} \end{array}\right.$ |


| 12. | Let number of red balls be $=\mathrm{x}$ |
| :--- | :--- |
| $\therefore \mathrm{P}($ red ball $)=\frac{\mathrm{x}}{12}$ |  |

If 6 more red balls are added:
The number of red balls $=x+6$

$$
\begin{aligned}
& P(\text { red ball })=\frac{x+6}{18} \\
& \text { Since, } \frac{x+6}{18}=2\left(\frac{x}{12}\right) \Rightarrow x=3
\end{aligned}
$$

$\therefore$ There are 3 red balls in the bag.

## Section C

\begin{tabular}{|c|c|c|}
\hline 13. \& \begin{tabular}{l}
Let \(\mathrm{n}=3 \mathrm{k}, 3 \mathrm{k}+1\) or \(3 \mathrm{k}+2\). \\
(i) When \(\mathrm{n}=3 \mathrm{k}\) : \\
n is divisible by 3 . \\
\(\mathrm{n}+2=3 \mathrm{k}+2 \Rightarrow \mathrm{n}+2\) is not divisible by 3 . \\
\(\mathrm{n}+4=3 \mathrm{k}+4=3(\mathrm{k}+1)+1 \Rightarrow \mathrm{n}+4\) is not divisible by 3 . \\
(ii) When \(\mathrm{n}=3 \mathrm{k}+1\) : \\
n is not divisible by 3 . \\
\(\mathrm{n}+2=(3 \mathrm{k}+1)+2=3 \mathrm{k}+3=3(\mathrm{k}+1) \Rightarrow \mathrm{n}+2\) is divisible by 3 . \\
\(\mathrm{n}+4=(3 \mathrm{k}+1)+4=3 \mathrm{k}+5=3(\mathrm{k}+1)+2 \Rightarrow \mathrm{n}+4\) is not divisible by 3 . \\
(iii) When \(n=3 k+2\) : \\
n is not divisible by 3 . \\
\(\mathrm{n}+2=(3 \mathrm{k}+2)+2=3 \mathrm{k}+4=3(\mathrm{k}+1)+1 \Rightarrow \mathrm{n}+2\) is not divisible by 3 . \(\mathrm{n}+4=(3 \mathrm{k}+2)+4=3 \mathrm{k}+6=3(\mathrm{k}+2) \Rightarrow \mathrm{n}+4\) is divisible by 3 . \\
Hence exactly one of the numbers \(n, n+2\) or \(n+4\) is divisible by 3 .
\end{tabular} \& [1]
[1]

[1] <br>

\hline 14. \& | Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the two zeroes therefore, $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\frac{1}{3}\left(3 x^{2}-5\right)$ is a factor of given polynomial. |
| :--- |
| We divide the given polynomial by $3 x^{2}-5$. $\begin{array}{r} 3 x^{2}+2 x+1 \\ \frac{\begin{array}{l} 3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 \\ \pm 3 x^{4} \quad \mp 5 x^{2} \end{array}}{6 x^{3}+3 x^{2}-10 x-5} \\ \frac{ \pm 6 x^{3} \quad \mp 10 x}{3 x^{2}-5} \\ \frac{ \pm 3 x^{2} \mp 5}{0} \end{array} ~\left(\begin{array}{r} 3 \end{array}\right.$ |
| For other zeroes, $\mathrm{x}^{2}+2 \mathrm{x}+1=0 \Rightarrow\left(\overline{\mathrm{x}+1)^{2}=0, \mathrm{x}}=-1,-1\right.$ |
| $\therefore$ Zeroes of the given polynomial are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1$ and -1 . | \& [1]

[1]

[1] <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 15. \& \begin{tabular}{l}
Let the ten's and the units digit be y and x respectively. So, the number is \(10 y+x\). \\
The number when digits are reversed is \(10 x+y\). \\
Now, \(7(10 y+x)=4(10 x+y) \Rightarrow 2 y=x\) \\
Also \(x-y=3\) \\
Solving (1) and (2), we get \(\mathrm{y}=3\) and \(\mathrm{x}=6\). \\
Hence the number is 36 .
\end{tabular} \& \[
\begin{align*}
\& {[1 / 2]} \\
\& {[1 / 2]} \\
\& {[1]}  \tag{i}\\
\& {[1 / 2]}  \tag{ii}\\
\& {[1 / 2]}
\end{align*}
\] \\
\hline 16. \& \begin{tabular}{l}
Let x -axis divides the line segment joining \((-4,-6)\) and \((-1,7)\) at the point P in the ratio \(1: \mathrm{k}\). \\
Now, coordinates of point of division \(\mathrm{P}\left(\frac{-1-4 \mathrm{k}}{\mathrm{k}+1}, \frac{7-6 \mathrm{k}}{\mathrm{k}+1}\right)\) \\
Since \(P\) lies on \(x\)-axis, therefore \(\frac{7-6 k}{k+1}=0\)
\[
\begin{aligned}
\& \Rightarrow 7-6 \mathrm{k}=0 \\
\& \Rightarrow \mathrm{k}=\frac{7}{6}
\end{aligned}
\] \\
Hence the ratio is \(1: \frac{7}{6}=6: 7\) \\
Now, the coordinates of P are \(\left(\frac{-34}{13}, 0\right)\). \\
OR \\
Let the height of parallelogram taking AB as base be h . \\
Now \(\mathrm{AB}=\sqrt{(7-4)^{2}+(2+2)^{2}}=\sqrt{3^{2}+4^{2}}=5\) units. \\
Area \((\Delta \mathrm{ABC})=\frac{1}{2}[4(2-9)+7(9+2)+0(-2-2)]=\frac{49}{2}\) sq units . \\
Now, \(\frac{1}{2} \times \mathrm{AB} \times \mathrm{h}=\frac{49}{2}\)
\[
\begin{aligned}
\& \Rightarrow \frac{1}{2} \times 5 \times \mathrm{h}=\frac{49}{2} \\
\& \Rightarrow \mathrm{~h}=\frac{49}{5}=9.8 \text { units }
\end{aligned}
\]
\end{tabular} \& [1/2]
[1]

$[1 / 2]$
$[1]$
$[1]$
$[1]$
$[1]$ <br>

\hline 17. \& $$
\angle \mathrm{SQN}=\angle \mathrm{TRM} \quad(\mathrm{CPCT} \text { as } \triangle \mathrm{NSQ} \cong \triangle \mathrm{MTR})
$$

$$
\begin{aligned}
& \text { Since, } \angle \mathrm{P}+\angle 1+\angle 2=\angle \mathrm{P}+\angle \mathrm{PQR}+\angle \mathrm{PRQ} \quad \text { (Angle sum property) } \\
& \Rightarrow \angle 1+\angle 2=\angle \mathrm{PQR}+\angle \mathrm{PRQ} \\
& \Rightarrow 2 \angle 1=2 \angle \mathrm{PQR} \quad \text { (as } \angle 1=\angle 2 \text { and } \angle \mathrm{PQR}=\angle \mathrm{PRQ} \text { ) } \\
& \angle 1=\angle \mathrm{PQR}
\end{aligned}
$$ \& [1]

[1] <br>
\hline
\end{tabular}

|  | Also $\angle 2=\angle \mathrm{PRQ}$ <br> And $\angle \mathrm{SPT}=\angle \mathrm{QPR}$ (common) <br> $\Delta \mathrm{PTS} \sim \Delta \mathrm{PRQ}$ <br> (By AAA similarity criterion) <br> Construction: Draw AP $\perp \mathrm{BC}$ <br> In $\triangle \mathrm{ADP}, \mathrm{AD}^{2}=\mathrm{AP}^{2}+\mathrm{DP}^{2}$ $\begin{aligned} & A D^{2}=A P^{2}+(B P-B D)^{2} \\ & \mathrm{AD}^{2}=\mathrm{AP}^{2}+\mathrm{BP}^{2}+\mathrm{BD}^{2}-2(\mathrm{BP})(\mathrm{BD}) \\ & \mathrm{AD}^{2}=\mathrm{AB}^{2}+\left(\frac{1}{3} \mathrm{BC}\right)^{2}-2\left(\frac{\mathrm{BC}}{2}\right)\left(\frac{\mathrm{BC}}{3}\right) \\ & \mathrm{AD}^{2}=\frac{7}{9} \mathrm{AB}^{2}(\because \mathrm{BC}=\mathrm{AB}) \\ & 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2} \end{aligned}$ | [1] <br> [1/2] <br> [1/2] <br> [1/2] <br> [1] <br> [1/2] |
| :---: | :---: | :---: |
| 18. | Join OC <br> In $\triangle$ OPA and $\Delta$ OCA <br> $\mathrm{OP}=\mathrm{OC} \quad$ (radii of same circle) <br> $\mathrm{PA}=\mathrm{CA}$ (length of two tangents) <br> $\mathrm{AO}=\mathrm{AO}$ (Common) <br> $\therefore \triangle \mathrm{OPA} \cong \triangle \mathrm{OCA}$ (By SSS congruency criterion) <br> Hence, $\angle 1=\angle 2$ (CPCT) <br> Similarly $\angle 3=\angle 4$ <br> Now, $\angle \mathrm{PAB}+\angle \mathrm{QBA}=180^{\circ}$ <br> $\Rightarrow 2 \angle 2+2 \angle 4=180^{\circ}$ <br> $\Rightarrow \angle 2+\angle 4=90^{\circ}$ <br> $\Rightarrow \angle \mathrm{AOB}=90^{\circ}$ (Angle sum property) | $[1]$ $[1]$ $[1]$ |


| 19. | $\begin{aligned} & \frac{\operatorname{cosec}^{2} 63^{\circ}+\tan ^{2} 24^{\circ}}{\cot ^{2} 66^{\circ}+\sec ^{2} 27^{\circ}}+\frac{\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}+\sin 27^{\circ} \sec 63^{\circ}}{2\left(\operatorname{cosec}^{2} 65^{\circ}-\tan ^{2} 25^{\circ}\right)} \\ & =\frac{\operatorname{cosec}^{2} 63^{\circ}+\tan ^{2} 24^{\circ}}{\tan ^{2}\left(90^{\circ}-66^{\circ}\right)+\operatorname{cosec}^{2}\left(90^{\circ}-27^{\circ}\right)}+\frac{\sin ^{2} 63^{\circ}+\cos 63^{\circ} \cos \left(90^{\circ}-27^{\circ}\right)+\sin 27^{\circ} \operatorname{cosec}\left(90^{\circ}-63^{\circ}\right)}{2\left[\operatorname{cosec}^{2} 65^{\circ}-\cot ^{2}\left(90^{\circ}-25^{\circ}\right)\right]} \\ & =\frac{\operatorname{cosec}^{2} 63^{\circ}+\tan ^{2} 24^{\circ}}{\tan ^{2} 24^{\circ}+\operatorname{cosec}^{2} 63^{\circ}}+\frac{\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ}+\sin 27^{\circ} \operatorname{cosec} 27^{\circ}}{2\left(\operatorname{cosec}^{2} 65^{\circ}-\cot ^{2} 65^{\circ}\right)} \\ & =1+\frac{1+1}{2(1)}=2 \end{aligned}$ <br> OR $\begin{align*} & \sin \theta+\cos \theta=\sqrt{2} \\ & \Rightarrow(\sin \theta+\cos \theta)^{2}=(\sqrt{2})^{2} \\ & \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=2 \\ & \Rightarrow 1+2 \sin \theta \cos \theta=2 \\ & \Rightarrow \sin \theta \cos \theta=\frac{1}{2} \tag{i} \end{align*}$ <br> we know, $\sin ^{2} \theta+\cos ^{2} \theta=1$ <br> Dividing (ii) by (i) we get $\begin{aligned} & \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}=\frac{1}{1 / 2} \\ & \Rightarrow \tan \theta+\cot \theta=2 \end{aligned}$ | [1] <br> [1] <br> [1] <br> [1/2] <br> [1] <br> [1/2] <br> [1] |
| :---: | :---: | :---: |
| 20. | We know, $\mathrm{AC}=\mathrm{r}$ <br> In $\triangle \mathrm{ACB}, \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}$ $\begin{aligned} & \Rightarrow \mathrm{BC}=\mathrm{AC} \sqrt{2} \quad(\because \mathrm{AB}=\mathrm{AC}) \\ & \Rightarrow \mathrm{BC}=\mathrm{r} \sqrt{2} \end{aligned}$ <br> Required area $=\operatorname{ar}(\Delta \mathrm{ACB})+\operatorname{ar}($ semicircle on BC as diameter) $-\operatorname{ar}$ (quadrant ABPC) $\begin{aligned} & =\frac{1}{2} \times \mathrm{r} \times \mathrm{r}+\frac{1}{2} \times \pi \times\left(\frac{\mathrm{r} \sqrt{2}}{2}\right)^{2}-\frac{1}{4} \pi \mathrm{r}^{2} \\ & =\frac{\mathrm{r}^{2}}{2}+\frac{\pi \mathrm{r}^{2}}{4}-\frac{\pi \mathrm{r}^{2}}{4} \\ & =\frac{\mathrm{r}^{2}}{2}=\frac{196}{2} \mathrm{~cm}^{2}=98 \mathrm{~cm}^{2} \end{aligned}$ | [1] <br>  <br>  <br>  <br>  <br>  <br> [1] <br> [1] |

\begin{tabular}{|c|c|c|}
\hline 21. \& \begin{tabular}{l}
Let the area that can be irrigated in 30 minute be \(\mathrm{Am}^{2}\). \\
Water flowing in canal in 30 minutes \(=\left(10,000 \times \frac{1}{2}\right) \mathrm{m}=5000 \mathrm{~m}\) \\
Volume of water flowing out in 30 minutes \(=(5000 \times 6 \times 1.5) \mathrm{m}^{3}=45000 \mathrm{~m}^{3}\) \\
Volume of water required to irrigate the field \(=A \times \frac{8}{100} \mathrm{~m}^{3}\) \\
...(ii) \\
Equating (i) and (ii), we get
\[
\begin{aligned}
\& \mathrm{A} \times \frac{8}{100}=45000 \\
\& \mathrm{~A}=562500 \mathrm{~m}^{2}
\end{aligned}
\] \\
OR
\[
l=\sqrt{7^{2}+14^{2}}=7 \sqrt{5}
\] \\
Surface area of remaining solid \(=6 l^{2}-\pi r^{2}+\pi r l\), where r and \(l\) are the radius and slant height of the cone.
\[
\begin{aligned}
\& =6 \times 14 \times 14-\frac{22}{7} \times 7 \times 7+\frac{22}{7} \times 7 \times 7 \sqrt{5} \\
\& =1176-154+154 \sqrt{5} \\
\& =(1022+154 \sqrt{5}) \mathrm{cm}^{2}
\end{aligned}
\]
\end{tabular} \& \([1 / 2]\)
\([1]\)
\([1 / 2]\) \\
\hline 22. \& \begin{tabular}{l}
\[
\begin{aligned}
\text { Mode } \& =\ell+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
\& =60+\left(\frac{29-21}{58-21-17}\right) \times 20 \\
\& =68
\end{aligned}
\] \\
So, the mode marks is 68 . \\
Empirical relationship between the three measures of central tendencies is:
\[
\begin{aligned}
\& 3 \text { Median }=\text { Mode }+2 \text { Mean } \\
\& 3 \text { Median }=68+2 \times 53 \\
\& \text { Median }=58 \text { marks }
\end{aligned}
\]
\end{tabular} \& [1]
[1]

[1] <br>
\hline
\end{tabular}

## Section D

23. Let original speed of the train be $x \mathrm{~km} / \mathrm{h}$.

Time taken at original speed $=\frac{360}{x}$ hours
Time taken at increased speed $=\frac{360}{x+5}$ hours
Now, $\frac{360}{x}-\frac{360}{x+5}=\frac{48}{60}$
$\Rightarrow 360\left[\frac{1}{x}-\frac{1}{x+5}\right]=\frac{4}{5}$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-2250=0$
$\Rightarrow x=45$ or -50 (as speed cannot be negative)
$\Rightarrow \mathrm{x}=45 \mathrm{~km} / \mathrm{h}$

## OR

Discriminant $=b^{2}-4 \mathrm{ac}=36-4 \times 5 \times(-2)=76>0$
So, the given equation has two distinct real roots

$$
\begin{equation*}
5 x^{2}-6 x-2=0 \tag{1}
\end{equation*}
$$

Multiplying both sides by 5 .

$$
\begin{equation*}
(5 x)^{2}-2 \times(5 x) \times 3=10 \tag{1}
\end{equation*}
$$

$\Rightarrow(5 \mathrm{x})^{2}-2 \times(5 \mathrm{x}) \times 3+3^{2}=10+3^{2}$
$\Rightarrow(5 \mathrm{x}-3)^{2}=19$
$\Rightarrow 5 \mathrm{x}-3= \pm \sqrt{19}$
$\Rightarrow \mathrm{x}=\frac{3 \pm \sqrt{19}}{5}$
Verification:

$$
5\left(\frac{3+\sqrt{19}}{5}\right)^{2}-6\left(\frac{3+\sqrt{19}}{5}\right)-2=\frac{9+6 \sqrt{19}+19}{5}-\frac{18+6 \sqrt{19}}{5}-\frac{10}{5}=0
$$

Similarly, $5\left(\frac{3-\sqrt{19}}{5}\right)^{2}-6\left(\frac{3-\sqrt{19}}{5}\right)-2=0$
24. Let the three middle most terms of the AP be $a-d, a, a+d$.

We have, $(a-d)+a+(a+d)=225$
$\Rightarrow 3 \mathrm{a}=225 \Rightarrow \mathrm{a}=75$
Now, the AP is
$a-18 d, \ldots, a-2 d, a-d, a, a+d, a+2 d, \ldots, a+18 d$
Sum of last three terms:
$(a+18 d)+(a+17 d)+(a+16 d)=429$
$\Rightarrow 3 \mathrm{a}+51 \mathrm{~d}=429 \Rightarrow \mathrm{a}+17 \mathrm{~d}=143$
$\Rightarrow 75+17 \mathrm{~d}=143$
$\Rightarrow \mathrm{d}=4$
Now, first term $=\mathrm{a}-18 \mathrm{~d}=75-18(4)=3$
$\therefore$ The AP is $3,7,11, \ldots, 147$.
25. Given: A right triangle ABC right angled at B .

To prove: $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Construction: Draw $\mathrm{BD} \perp \mathrm{AC}$
Proof: In $\triangle \mathrm{ADB}$ and $\Delta \mathrm{ABC}$
$\angle \mathrm{ADB}=\angle \mathrm{ABC}\left(\right.$ each $\left.90^{\circ}\right)$
$\angle \mathrm{BAD}=\angle \mathrm{CAB}$ (common)

$\Delta \mathrm{ADB} \sim \Delta \mathrm{ABC}$ (By AA similarity criterion)
Now, $\frac{A D}{A B}=\frac{A B}{A C}$ (corresponding sides are proportional)
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
Similarly $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
$\Rightarrow \mathrm{BC}^{2}=\mathrm{CD} \times \mathrm{AC}$
Adding (1) and (2)
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AD} \times \mathrm{AC}+\mathrm{CD} \times \mathrm{AC}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} \times(\mathrm{AD}+\mathrm{CD})$
$\Rightarrow A B^{2}+\mathrm{BC}^{2}=A C^{2}$, Hence Proved.

## OR

Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
To prove: $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}$
Construction: Draw $\mathrm{AM} \perp \mathrm{BC}, \mathrm{PN} \perp \mathrm{QR}$

$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{AM}}{\mathrm{PN}}$
In $\Delta \mathrm{ABM}$ and $\Delta \mathrm{PQN}$

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{Q} \quad(\because \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}) \\
& \angle \mathrm{M}=\angle \mathrm{N}\left(\text { each } 90^{\circ}\right)
\end{aligned}
$$

$\Delta \mathrm{ABM} \sim \Delta \mathrm{PQN}$ (AA similarity criterion)
Therefore, $\quad \frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{AB}}{\mathrm{PQ}}$
But

$$
\begin{equation*}
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}}(\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}) \tag{ii}
\end{equation*}
$$

|  | Hence, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{AM}}{\mathrm{PN}}$ <br> from (i) <br> $=\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AB}}{\mathrm{PQ}}$ <br> [from (ii) and (iii)] $=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}$ <br> $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}$ Using (iii) | $\begin{aligned} & {[1 / 2]} \\ & {[1 / 2]} \end{aligned}$ |
| :---: | :---: | :---: |
| 26. | Draw $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}, \angle \mathrm{A}=105^{\circ}$ and hence $\angle \mathrm{C}=30^{\circ}$. Construction of similar triangle $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ as shown below: | $\begin{gathered} {[1]} \\ {[3]} \end{gathered}$ |
| 27. | $\begin{aligned} & \text { LHS }=\frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1} \\ & =\frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1} \times \frac{\cos \theta+\sin \theta+1}{\cos \theta+\sin \theta+1} \\ & =\frac{(\cos \theta+1)^{2}-\sin ^{2} \theta}{(\cos \theta+\sin \theta)^{2}-1^{2}} \\ & =\frac{\cos ^{2} \theta+1+2 \cos \theta-\sin ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta-1} \\ & =\frac{2 \cos ^{2} \theta+2 \cos \theta}{2 \sin \theta \cos \theta} \\ & =\frac{2 \cos \theta(\cos \theta+1)}{2 \sin \theta \cos \theta} \\ & =\frac{\cos \theta+1}{\sin \theta}=\operatorname{cosec} \theta+\cot \theta=\text { RHS } \end{aligned}$ | [1] <br> [1] <br> [1] <br> [1] |

\begin{tabular}{|c|c|c|}
\hline 28. \& \begin{tabular}{l}
In \(\triangle \mathrm{BTP} \Rightarrow \tan 30^{\circ}=\frac{\mathrm{TP}}{\mathrm{BP}}\) \\
Correct Figure
\[
\begin{align*}
\& \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{TP}}{\mathrm{BP}} \\
\& \mathrm{BP}=\mathrm{TP} \sqrt{3} \tag{i}
\end{align*}
\] \\
In \(\Delta\) GTR,
\[
\begin{equation*}
\tan 60^{\circ}=\frac{\mathrm{TR}}{\mathrm{GR}} \Rightarrow \sqrt{3}=\frac{\mathrm{TR}}{\mathrm{GR}} \Rightarrow \mathrm{GR}=\frac{\mathrm{TR}}{\sqrt{3}} \tag{ii}
\end{equation*}
\] \\
Now, \(\mathrm{TP} \sqrt{3}=\frac{\mathrm{TR}}{\sqrt{3}} \quad(\) as \(\mathrm{BP}=\mathrm{GR})\)
\[
\begin{aligned}
\& \Rightarrow 3 \mathrm{TP}=\mathrm{TP}+\mathrm{PR} \\
\& \Rightarrow 2 \mathrm{TP}=\mathrm{BG} \Rightarrow \mathrm{TP}=\frac{50}{2} \mathrm{~m}=25 \mathrm{~m}
\end{aligned}
\] \\
Now, \(\mathrm{TR}=\mathrm{TP}+\mathrm{PR}=(25+50) \mathrm{m}\). \\
Height of tower \(=T R=75 \mathrm{~m}\). \\
Distance between building and tower \(=G R=\frac{\mathrm{TR}}{\sqrt{3}}\)
\[
\Rightarrow \mathrm{GR}=\frac{75}{\sqrt{3}} \mathrm{~m}=25 \sqrt{3} \mathrm{~m}
\]
\end{tabular} \& [1/2] \\
\hline 29. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Capacity of mug (actual quantity of milk) }=\pi r^{2} \mathrm{~h}-\frac{2}{3} \pi \mathrm{r}^{3} \\
\& \quad=\pi \mathrm{r}^{2}\left(\mathrm{~h}-\frac{2}{3} \mathrm{r}\right) \\
\& \quad=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times\left(14-\frac{2}{3} \times \frac{7}{2}\right) \\
\& \quad=\frac{2695}{6} \mathrm{~cm}^{3}
\end{aligned}
\] \\
Amount dairy owner B should charge for one mug of milk
\[
=\frac{2695}{6} \times \frac{80}{1000}=₹ 35.93
\] \\
Value exhibited by dairy owner B: honesty (or any similar value)
\end{tabular} \& [1]

$[1]$
$[1]$
$[1]$ <br>
\hline
\end{tabular}

30. 

| Daily pocket <br> allowance (in ₹) Number of <br> children ( $\mathrm{f}_{\mathrm{i}}$ ) Mid-point <br> $\left(\mathrm{x}_{\mathrm{i}}\right)$ <br> $11-13$ 3 12 <br> $\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-18}{2}$ $\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$  <br> $13-15$ 6 14 <br> -3 -2 -12 <br> $15-17$ 9 16 <br> -18 -9  <br> $17-19$ 13 18 <br> $19-21$ k 20 <br> 0 1 0 <br> $21-23$ 5 22 <br> 2 24 10 <br> $23-25$ 4 3 | 12 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\Sigma \mathrm{f}_{\mathrm{i}}=40+\mathrm{k}$ |  |  |  |

Mean $=\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}\right)$
$18=18+2\left(\frac{k-8}{40+k}\right)$

$$
\Rightarrow \quad \mathrm{k}=8
$$

OR

| Less than | Number of Students |
| :---: | :---: |
| 10 | 4 |
| 20 | 9 |
| 30 | 22 |
| 40 | 42 |
| 50 | 56 |
| 60 | 64 |
| 70 | 68 |



Median distance is value of $x$ that corresponds to
Cumulative frequency $\frac{\mathrm{N}}{2}=\frac{68}{2}=34$
Therefore, Median distance $=36 \mathrm{~m}$

