Marking Scheme

Mathematics Class X (2017-18)

Section A

S.No.	Answer	Marks
1.	Non terminating repeating decimal expansion.	[1]
2.	$k = \pm 4$	[1]
3.	$a_{11} = -25$	[1]
4.	(0,5)	[1]
5.	9:49	[1]
6.	25	[1]

Section B

7.	$LCM(p,q) = a^3b^3$	[1/2]
	$HCF(p,q) = a^2b$	[1/2]
	LCM $(p, q) \times HCF (p, q) = a^5b^4 = (a^2b^3) (a^3b) = pq$	[1]
8.	$S_n = 2n^2 + 3n$	[1/2]
	$S_1 = 5 = a_1$	[1/2]
	$S_2 = a_1 + a_2 = 14 \implies a_2 = 9$	[1/2]
	$d = a_2 - a_1 = 4$	
	$a_{16} = a_1 + 15d = 5 + 15(4) = 65$	[1/2]
9.	$a_{16} = a_1 + 15d = 5 + 15(4) = 65$ For pair of equations $kx + 1y = k^2$ and $1x + ky = 1$	
	<u>.</u>	
	We have: $\frac{a_1}{a_2} = \frac{k}{1}, \frac{b_1}{b_2} = \frac{1}{k}, \frac{c_1}{c_2} = \frac{k^2}{1}$	
	For infinitely many solutions, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
	$\mathbf{a_2} \mathbf{b_2} \mathbf{c_2}$	[1/2]
	$\therefore \frac{k}{1} = \frac{1}{k} \Rightarrow k^2 = 1 \Rightarrow k = 1, -1 \qquad \dots (i)$	[1/2]
	1 K	
	and $\frac{1}{k} = \frac{k^2}{1} \Rightarrow k^3 = 1 \Rightarrow k = 1$ (ii)	[1/2]
	From (i) and (ii), $k = 1$	[1/2]
10.	Since $\left(1, \frac{p}{3}\right)$ is the mid-point of the line segment joining the points $(2, 0)$ and	
	2	
	$\left(0, \frac{2}{9}\right)$ therefore, $\frac{p}{3} = \frac{0 + \frac{2}{9}}{2} \Rightarrow p = \frac{1}{3}$	[1]
	The line $5x + 3y + 2 = 0$ passes through the point $(-1, 1)$ as $5(-1) + 3(1) + 2 = 0$	F13
11		[1]
11.	(i) P(square number) = $\frac{8}{113}$	[1]
	(ii) P(multiple of 7) = $\frac{16}{113}$	[1]

12. Let number of red balls be = x

∴ P(red ball) =
$$\frac{x}{12}$$

If 6 more red balls are added:

The number of red balls = x + 6

$$P(\text{red ball}) = \frac{x+6}{18}$$

$$Since, \frac{x+6}{18} = 2\left(\frac{x}{12}\right) \Rightarrow x = 3$$
∴ There are 3 red balls in the bag.

Section C

13. Let n = 3k, 3k + 1 or 3k + 2.

(i) When n = 3k:

n is divisible by 3.

$$n + 2 = 3k + 2 \Rightarrow n + 2$$
 is not divisible by 3.

 $n + 4 = 3k + 4 = 3(k + 1) + 1 \Rightarrow n + 4$ is not divisible by 3.

(ii) When n = 3k + 1:

n is not divisible by 3.

 $n + 2 = (3k + 1) + 2 = 3k + 3 = 3(k + 1) \Rightarrow n + 2$ is divisible by 3.

 $n + 4 = (3k + 1) + 4 = 3k + 5 = 3(k + 1) \Rightarrow n + 2$ is not divisible by 3.

(iii) When n = 3k + 2:

n is not divisible by 3.

 $n + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 \Rightarrow n + 2$ is not divisible by 3.

 $n + 2 = (3k + 2) + 2 = 3k + 4 = 3(k + 1) + 1 \Rightarrow n + 2$ is not divisible by 3.

Hence exactly one of the numbers $n, n + 2$ or $n + 4$ is divisible by 3.

14. Since $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are the two zeroes therefore, $\left(x - \sqrt{\frac{5}{3}}\right)\left(x + \sqrt{\frac{5}{3}}\right) = \frac{1}{3}(3x^2 - 5)$

is a factor of given polynomial.

We divide the given polynomial by $3x^2 - 5$.

$$\frac{x^2 + 2x + 1}{3x^2 + 5}$$

$$\frac{x^2 + 2x + 1}{3x^2 - 5}$$

$$\frac{x^2 + 2x + 1}{3x$$

15.	Let the ten's and the units digit be y and x respectively.	
	So, the number is $10y + x$.	[1/2]
	The number when digits are reversed is $10x + y$.	[1/2]
	Now, $7(10y + x) = 4(10x + y) \Rightarrow 2y = x$ (i)	[1]
	Also $x - y = 3$ (ii)	[1/2]
	Solving (1) and (2), we get $y = 3$ and $x = 6$.	[1,2]
	Hence the number is 36.	[1/2]
16.	Let x-axis divides the line segment joining $(-4, -6)$ and $(-1, 7)$ at the point P in the	[1/2]
10.	ratio 1: k.	Γ1/ 2]
	1 41- 7 (1-)	[1/2]
	Now, coordinates of point of division $P\left(\frac{-1-4k}{k+1}, \frac{7-6k}{k+1}\right)$	
	$\left(\begin{array}{cc} k+1 & k+1 \end{array}\right)$	
	7-6k	F11
	Since P lies on x-axis, therefore $\frac{7-6k}{k+1} = 0$	[1]
	$\Rightarrow 7 - 6k = 0$	
	$\Rightarrow k = \frac{7}{6}$	
		F1 /O1
	Hence the ratio is $1:\frac{7}{6}=6:7$	[1/2]
	6	F4.3
	$\left(-34\right)$	[1]
	Now, the coordinates of P are $\left(\frac{-34}{13},0\right)$.	
	OR	
	Let the height of parallelogram taking AB as base be h.	
		E4.3
	Now AB = $\sqrt{(7-4)^2 + (2+2)^2} = \sqrt{3^2 + 4^2} = 5$ units.	[1]
	Area $(\Delta ABC) = \frac{1}{2} [4(2-9) + 7(9+2) + 0(-2-2)] = \frac{49}{2} \text{ sq units}.$	[1]
	Now, $\frac{1}{2} \times AB \times h = \frac{49}{2}$	
	$\Rightarrow \frac{1}{2} \times 5 \times h = \frac{49}{2}$	
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	49	
	$\Rightarrow h = \frac{49}{5} = 9.8 \text{ units}$.	[1]
17.	$\angle SQN = \angle TRM (CPCT \text{ as } \Delta NSQ \cong \Delta MTR)$	[1]
	P	
	\wedge	
	S T	
	M Q R N	
	Since, $\angle P + \angle 1 + \angle 2 = \angle P + \angle PQR + \angle PRQ$ (Angle sum property)	
	$\Rightarrow \angle 1 + \angle 2 = \angle PQR + \angle PRQ$	
	$\Rightarrow 2\angle 1 = 2\angle PQR \text{ (as } \angle 1 = \angle 2 \text{ and } \angle PQR = \angle PRQ)$	[1]
	$\angle 1 = \angle PQR$	
	l	

		,
	Also $\angle 2 = \angle PRQ$	
	And $\angle SPT = \angle QPR$ (common)	
	$\Delta PTS \sim \Delta PRQ$ (By AAA similarity criterion)	[1]
	OR B D P	
	Construction: Draw AP \perp BC	[1/2]
	In $\triangle ADP$, $AD^2 = AP^2 + DP^2$	[1/2]
	$AD^2 = AP^2 + (BP - BD)^2$	
	·	[1/2]
	$AD^2 = AP^2 + BP^2 + BD^2 - 2(BP)(BD)$	
	$AD^{2} = AB^{2} + \left(\frac{1}{3}BC\right)^{2} - 2\left(\frac{BC}{2}\right)\left(\frac{BC}{3}\right)$	[1]
	$AD^2 = \frac{7}{9}AB^2 (\because BC = AB)$	
	$9AD^2 = 7AB^2$	[1/2]
18.	Join OC	
	In \triangle OPA and \triangle OCA	
	OP = OC (radii of same circle)	
	PA = CA (length of two tangents)	
	X P A Y	
	4	
	AO = AO (Common)	[1]
	\triangle OPA \cong \triangle OCA (By SSS congruency criterion)	
	Hence, $\angle 1 = \angle 2$ (CPCT)	[1]
	Similarly $\angle 3 = \angle 4$	
	Now, $\angle PAB + \angle QBA = 180^{\circ}$	
	$\Rightarrow 2 \angle 2 + 2 \angle 4 = 180^{\circ}$	[1]
	$\Rightarrow \angle 2 + \angle 4 = 90^{\circ}$	
	$\Rightarrow \angle AOB = 90^{\circ}$ (Angle sum property)	

$$\begin{array}{c} 19. \\ \hline 19. \\ \hline cot^2 66^\circ + \sec^2 27^\circ \\ \hline cot^2 66^\circ + \sec^2 27^\circ \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\cos(2^\circ 65^\circ + \tan^2 24^\circ)} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 (90^\circ - 66^\circ) + \cos \csc^2 (90^\circ - 27^\circ)} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 (90^\circ - 66^\circ) + \cos \csc^2 (90^\circ - 27^\circ)} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 24^\circ + \csc^2 63^\circ} \\ \hline = \frac{\cos \csc^2 63^\circ + \tan^2 24^\circ}{\tan^2 24^\circ + \csc^2 63^\circ} \\ \hline = \frac{1 + \frac{1 + 1}{2(1)} = 2}{1 + \frac{1 + 1}{2(1)}} \\ \hline = \frac{1 + \frac{1 + 1}{2(1)} = 2 \\ \hline OR \\ \hline sin \theta + \cos \theta = \sqrt{2} \\ \hline \Rightarrow \sin \theta + \cos \theta = \sqrt{2} \\ \hline \Rightarrow \sin \theta + \cos \theta = 2 \\ \hline \Rightarrow \sin \theta \cos \theta = 2 \\ \hline \Rightarrow \sin \theta \cos \theta = \frac{1}{2} \\ \hline \sin \theta \cos \theta = \frac{1}{1/2} \\ \hline \Rightarrow \tan \theta \cos \theta = \frac{1}{1/2} \\ \hline \Rightarrow \tan \theta + \cot \theta = 2 \\ \hline 20. \\ \hline We know, \sin^2 \theta + \cos^2 \theta = 1 \\ \hline In A ACB, BC^2 = AC^2 + AB^2 \\ \hline \Rightarrow BC = AC\sqrt{2} \\ \hline \therefore AB = AC) \\ \hline \Rightarrow BC = r\sqrt{2} \\ \hline Required area = ar(\Delta ACB) + ar(semicircle on BC as diameter) - ar(quadrant ABPC) \\ \hline = \frac{r^2}{2} + \frac{\pi r^2}{4} - \frac{\pi r^2}{4} \\ \hline = \frac{r^2}{2} = \frac{196}{2} \text{cm}^2 = 98 \text{ cm}^2 \\ \hline \end{array}$$

21.	Let the area that can be irrigated in 30 minute be A m ² .				
	Water flowing in canal in 30 minutes = $\left(10,000 \times \frac{1}{2}\right)$ m = 5000 m	[1/2]			
	Volume of water flowing out in 30 minutes = $(5000 \times 6 \times 1.5) \text{ m}^3 = 45000 \text{ m}^3$ (i)				
	Volume of water required to irrigate the field = $A \times \frac{8}{100}$ m ³				
	(ii) Equating (i) and (ii), we get				
	$A \times \frac{8}{100} = 45000$	[1]			
	$A = 562500 \text{ m}^2.$				
	OR	[1/2]			
	$l = \sqrt{7^2 + 14^2} = 7\sqrt{5}$	[1]			
	Surface area of remaining solid = $6l^2 - \pi r^2 + \pi r l$, where r and l are the radius and slant height of the cone.				
	14 cm				
		[1]			
	$= 6 \times 14 \times 14 - \frac{22}{7} \times 7 \times 7 + \frac{22}{7} \times 7 \times 7\sqrt{5}$	F1 /21			
	$= 1176 - 154 + 154\sqrt{5}$	[1/2]			
	$= (1022 + 154\sqrt{5}) \text{ cm}^2$				
22.	$Mode = \ell + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$	[1]			
	$=60+\left(\frac{29-21}{58-21-17}\right)\times20$				
	= 68	[1]			
	So, the mode marks is 68.				
	Empirical relationship between the three measures of central tendencies is:				
	$3 \text{ Median} = \text{Mode} + 2 \text{ Mean}$ $3 \text{ Median} = 68 + 2 \times 53$	[1]			
	$3 \text{ Median} = 68 + 2 \times 53$ $\text{Median} = 58 \text{ marks}$				
	Michail — 50 marks				

Section D

23.	Let original speed of the train be x km/h.	
	Time taken at original speed = $\frac{360}{100}$ hours	[1]
	X	
	Time taken at increased speed = $\frac{360}{x+5}$ hours	[1/2]
	Now, $\frac{360}{x} - \frac{360}{x+5} = \frac{48}{60}$	[1½]
	$\Rightarrow 360\left[\frac{1}{x} - \frac{1}{x+5}\right] = \frac{4}{5}$	
	$\Rightarrow x^2 + 5x - 2250 = 0$ \Rightarrow x = 45 or -50 (as speed cannot be negative)	Г1 1
	$\Rightarrow x = 45 \text{ km/h}$	[1]
	OR	
	Discriminant = $b^2 - 4ac = 36 - 4 \times 5 \times (-2) = 76 > 0$	[1]
	So, the given equation has two distinct real roots	
	$5x^2 - 6x - 2 = 0$ Multiplying both sides by 5	
	Multiplying both sides by 5. $(5x)^2 - 2 \times (5x) \times 3 = 10$	
	$\Rightarrow (5x)^{2} - 2 \times (5x) \times 3 + 3^{2} = 10 + 3^{2}$	
	$\Rightarrow (5x-3)^2 = 19$	[1]
	$\Rightarrow 5x - 3 = \pm \sqrt{19}$	
	$\Rightarrow x = \frac{3 \pm \sqrt{19}}{5}$	Г1]
	$\Rightarrow x = \frac{1}{5}$	[1]
	Verification:	
	$\left(3+\sqrt{19}\right)^2$ $\left(3+\sqrt{19}\right)$ $\left(3+\sqrt{19}+19\right)$ $\left(3+\sqrt{19}+19\right)$ $\left(3+\sqrt{19}\right)$ $\left(3+\sqrt{19}\right)$	
	$5\left(\frac{3+\sqrt{19}}{5}\right)^2 - 6\left(\frac{3+\sqrt{19}}{5}\right) - 2 = \frac{9+6\sqrt{19}+19}{5} - \frac{18+6\sqrt{19}}{5} - \frac{10}{5} = 0$	[1/2]
	Similarly, $5\left(\frac{3-\sqrt{19}}{2}\right) - 6\left(\frac{3-\sqrt{19}}{2}\right) - 2 = 0$	
	Similarly, $5\left(\frac{3-\sqrt{19}}{5}\right)^2 - 6\left(\frac{3-\sqrt{19}}{5}\right) - 2 = 0$	[1/2]
24.	Let the three middle most terms of the AP be $a - d$, a , $a + d$.	-1-
	We have, $(a - d) + a + (a + d) = 225$	[1]
	$\Rightarrow 3a = 225 \Rightarrow a = 75$ Now, the AP is	[1/2]
	a - 18d,,a - 2d, a - d, a, a + d, a + 2d,, a + 18d	
	Sum of last three terms:	
	(a + 18d) + (a + 17d) + (a + 16d) = 429	[1]
	$\Rightarrow 3a + 51d = 429 \Rightarrow a + 17d = 143$	
	$\Rightarrow 75 + 17d = 143$ $\Rightarrow d = 4$	[1/2]
	\Rightarrow d = 4 Now, first term = a - 18d = 75 - 18(4) = 3	[1/4]
	\therefore The AP is 3, 7, 11,, 147.	[1]
L	· · · · · · · · · · · · · · · · · · ·	1

	Hence, $\frac{\operatorname{ar}(\Delta ABC)}{\Delta ABC} = \frac{BC}{ABC} \times \frac{AM}{ABC}$ from (i)	
	$ar(\Delta PQR)$ QR PN	
	$= \frac{AB}{PQ} \times \frac{AB}{PQ}$ [from (ii) and (iii)]	
	$= \left(\frac{AB}{PQ}\right)^2$	[1/2]
	$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2 \text{ Using (iii)}$	[1/2]
26.	Draw \triangle ABC in which BC = 7 cm, \angle B = 45°, \angle A = 105° and hence \angle C = 30°. Construction of similar triangle A'BC' as shown below:	[1] [3]
	B_1 B_2 B_3 B_4 X	
27.	LHS = $\frac{\cos \theta - \sin \theta + 1}{\cos \theta + \sin \theta - 1}$ $= \frac{\cos \theta - \sin \theta + 1}{\times \cos \theta + \sin \theta + 1}$	[1]
	$\cos\theta + \sin\theta - 1 \cos\theta + \sin\theta + 1$	[1]
	$=\frac{(\cos\theta+1)^2-\sin^2\theta}{1-\cos^2\theta}$	[1]
	$-(\cos\theta+\sin\theta)^2-1^2$	
	$=\frac{\cos^2\theta+1+2\cos\theta-\sin^2\theta}{2}$	
	$\cos^2\theta + \sin^2\theta + 2\sin\theta\cos\theta - 1$	
	$=\frac{2\cos^2\theta+2\cos\theta}{2\cos^2\theta}$	
	$2\sin\theta\cos\theta$	[1]
	$=\frac{2\cos\theta(\cos\theta+1)}{2\sin\theta\cos\theta}$	
	$\cos \theta + 1$	
	$= \frac{\cos \theta + 1}{\sin \theta} = \csc \theta + \cot \theta = RHS$	F11
		[1]

	Daily pocket	Number of	Mid-point	$x_{i} - 18$	$f_i u_i$	
30.	allowance (in ₹)	children (f _i)	(x_i)	$u_i = \frac{x_i - 18}{2}$		
	11–13	3	12	-3	-9	
	13–15	6	14	-3 -2	-12	
	15–17	9	16	-1	-9	
	17–19	13	18	0	0	
	19–21	k	20	1	k	
	21–23	5	22	2	10	[2]
	23–25	4	24	3	12	[2]
	$\Sigma \ f_i = 40 + k $ $\Sigma \ f_i u_i = k - 8$ $Mean = \ \overline{x} = a + h \left(\frac{\Sigma f_i u_i}{\Sigma f_i} \right)$					[1]
	18 = 18 + 2	$\left(\frac{k-8}{40+k}\right)$				F13
	\Rightarrow k = 8	`	OR			[1]
		Less than	Numbe	er of Students		
		10		4		
		20		9		
		30		22		
		40		42		
		50		56		
		60		64		[1]
		70		68		[1]
	70 68 Y 70 60 70 60 50 40 10 20 30 40 50 68 Nedian distance is value of x that corresponds to Cumulative frequency $\frac{N}{2} = \frac{68}{2} = 34$					[2]
	Therefore, Median distance = 36 m					[1]
	Therefore, Median dist	ance – 30 III				[T]