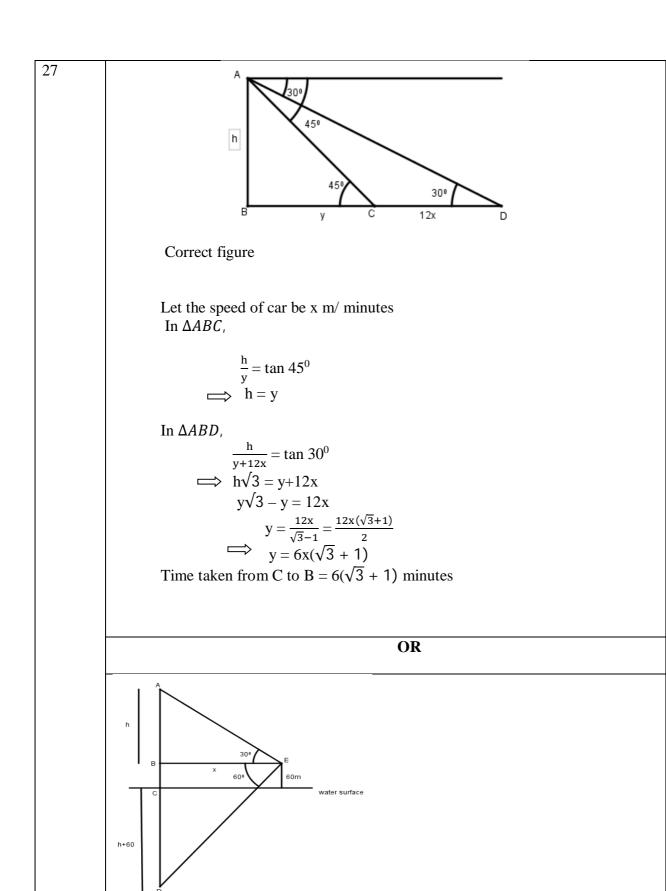
Class: X Mathematics Marking Scheme 2018-19

Time allowed: 3hrs Maximum Marks: 80

Q No	SECTION A	Marks
1	$\left(\frac{-5+(-1)}{2}, \frac{4+0}{2}\right) = \left(\frac{a}{3}, 2\right)$ $\frac{a}{3} = \frac{-6}{2} \Longrightarrow a = -9 \Longrightarrow$	1
2	4K -28+8 = 0 K= 5	$\begin{array}{c c} 1/_2 \\ 1/_2 \end{array}$
	For roots to be real and equal, $b^2 - 4ac = 0$ $\implies (5k)^2 - 4 \times 1 \times 16 = 0$ $k = \pm \frac{8}{5}$	$\begin{array}{c c} & 1/2 \\ & 1/2 \end{array}$
3	$\cot^2\theta - \frac{1}{\sin^2\theta} \cdot = \cot^2\theta - \csc^2\theta$ $= -1$	1 1/ ₂ 1/ ₂
	$ sin\theta = cos\theta \theta = 45^{\circ} $ $ \therefore 2tan\theta + cos^{2}\theta = 2 + \frac{1}{2} = \frac{5}{2} $	
4	$a_1 = 3, a_3 = 7$ $s_3 = \frac{3}{2}(3 + 7) = 15$	1/ ₂ 1/ ₂
5	$\frac{AD}{DB} = \frac{AE}{EC} \qquad DE \parallel BC$ $\implies \angle ADE = \angle ABC = 48^{\circ}$	1/ ₂ 1/ ₂
6	4 places	1
	SECTION B	
7	HCF × LCM = Product of two numbers $9 \times 360 = 45 \times 2^{nd}$ number 2^{nd} number = 72	1
	OR	


	Let us assume, to the contrary that $7 - \sqrt{5}$ is irrational	
	$7 - \sqrt{5} = \frac{p}{a}$, Where p & q are co-prime and $q \neq 0$	
	_ 4	1
	$=\sqrt{5}=\frac{7q-p}{q}$	
	$\frac{7q-p}{q}$ is rational = $\sqrt{5}$ is rational which is a contradiction	1
	Hence $7 - \sqrt{5}$ is irrational	
8	20^{th} term from the end = $l - (n-1)d$	1/2
	$= 253-19 \times 5$	
	= 158	$\begin{vmatrix} 1 \\ 1/2 \end{vmatrix}$
		, ,
	OR	
	$7a_7 = 11a_{11} \implies 7(a+6d) = 11(a+10d)$	
		1
	$\implies a + 17d = 0 :: a_{18} = 0$	1
9	$X = \frac{6-6}{5} = 0$	1
	$Y = \frac{-10+15}{5} = 1$	
	5 5	1
10	Probability of either a red card or a queen	1
	$=\frac{26+2}{52}=\frac{28}{52}$	
		1
	P(neither red car nor a queen) = $1 - \frac{28}{52}$	
	$=\frac{24}{52} or \frac{7}{13}$	
11	Total number of outcomes $= 36$	1
	Favourable outcomes are (1,2), (2,1), (1,3), (3,1), (1,5), (5,1) i.e. 6	1
	Required probability = $\frac{6}{36}$ or $\frac{1}{6}$	
10		1,
12	For infinitely many solutions	1/2
	$\frac{p-3}{p} = \frac{3}{p} = \frac{-p}{-12}$	
	$\implies p^2-3p = 3p \qquad \text{or} \qquad 12 \times 3 = p^2$	1
	$\implies p^2 - 6p = 0 \qquad \text{or} \qquad p = \pm 6$	
	p = 0.6	
	$\Longrightarrow p = 6$	
	SECTION: C	
13	By Euclid's Division lemma	6 ×
	$726 = 275 \times 2 + 176$	1/2 =
	$275 = 176 \times 1 + 99$	3
	$176 = 99 \times 1 + 77$	
	$99 = 77 \times 1 + 22$	
	$77=22 \times 3 + 11$	
	$22 = 11 \times 2 + 0$	
	HCF = 11	

14	$5\sqrt{5}x^2+30x+8\sqrt{5}$	1
	$=5\sqrt{5}x^2+20x+10x+8\sqrt{5}$	
	$= 5x(\sqrt{5}x + 4) + 2\sqrt{5}(\sqrt{5}x + 4)$	
	$=(\sqrt{5}x + 4)(5x+2\sqrt{5})$	1
	Zeroes are $\frac{-4}{\sqrt{5}} = \frac{-4\sqrt{5}}{5}$ and $\frac{-2\sqrt{5}}{5}$	1
15	Let the speed of car at A be x km/h	1
	And the speed of car at B be y km/h Case 1 8x-8y = 80	
	x-y=10	
	Case 2 $\frac{4}{3}X + \frac{4}{3}y = 80$	
	x+y=60	1
	on solving $x=35$ and $y=25$	1
	Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.	_
16		11/2
	(-4,-3) D C (k,2)	72
	A B	
	Diagonals of parallelogram bisect each other	
	\implies midpoint of AC = midpoint of BD	1/2
	$(\frac{1+k}{2}, \frac{-2+2}{2}) = (\frac{-4+2}{2}, \frac{-3+3}{2})$	
		1
	OR	
	For collinearity of the points, area of the triangle formed by given Points is zero.	1
	$\implies \frac{1}{2} \{ (3k-1)(k-7+k+2) + k(-k-2-k+2) + (k-1)(k-2-k+1) \}$	1
	(7) = 0	1
	$\implies \{(3k-1)(2k-5)-2k^2+5k-5\}=0$	1
	$\Rightarrow 4k^2 - 12k = 0$	1
	$\implies \qquad k = 0 \; , \; 3$	
17	LHS = $\cot \theta$ - $\tan \theta$	1
	$=\frac{\cos\theta}{\sin\theta}$ - $\frac{\sin\theta}{\cos\theta}$	4.
	$ \frac{\sin\theta}{\cos^2\theta - \sin^2\theta} $	1/2
	$\sin \theta \cos \theta$ $\cos^2 \theta - 1 + \cos^2 \theta$	1
	$={\sin\theta\cos\theta}$	1/2
	$= \frac{2\cos^2\theta - 1}{\sin\theta\cos\theta} = RHS$	/2
		_
	OR	
<u> </u>	I	

	LHS = $sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta)$	1
		1
	$= \sin\theta \left(1 + \frac{\sin\theta}{\cos\theta} \right) + \cos\theta \left(1 + \frac{\cos\theta}{\sin\theta} \right)$	
	$= \sin\theta \left(\frac{\cos\theta + \sin\theta}{\cos\theta} \right) + \cos\theta \left(\frac{\sin\theta + \cos\theta}{\sin\theta} \right)$	1
	$= (\cos\theta + \sin\theta) \left(\frac{\sin^2\theta + \cos^2\theta}{\cos\theta \sin\theta} \right)$	
		1
	$= \frac{\cos\theta + \sin\theta}{\cos\theta \sin\theta} = \csc\theta + \sec\theta = RHS$	1
	SECTION: E	
18		
	A O D	1
	$\angle APB = 90^{0}$ (angle in semi-circle) $\angle ODB = 90^{0}$ (radius is perpendicular to tangent)	1/2
	$\triangle ABP \sim \triangle OBD$	
	$\implies \frac{AB}{OB} = \frac{AP}{OD}$	1
	, OB OD	1
	$\Longrightarrow \frac{26}{13} = \frac{AP}{8}$ $\Longrightarrow AP = 16cm$	
19	$ \angle 1 = \angle 2 $ $ \Rightarrow PT=PS \qquad (i) $ $ \Delta NSQ \cong \Delta MTR $ $ \Rightarrow \angle NQS = \angle MRT $ $ \Rightarrow \angle PQR = \angle PRQ $ $ \Rightarrow PR=PQ \qquad (ii) $ From (i) and (ii) $ \frac{PT}{PR} = \frac{PS}{PQ} $	1
	Also, $\frac{1}{PR} = \frac{1}{PQ}$ $\angle TPS = \angle RPQ \text{ (common)}$	_
	$\Rightarrow \Delta PTS \sim \Delta PRQ$	1
	OR	

	AD is median, So BD=DC.	1
	$AB^{2}=AE^{2}+BE^{2}$ $AC^{2}=AE^{2}+EC^{2}$	1
	Adding both, $AB^{2}+AC^{2} = 2AE^{2}+BE^{2}+CE^{2}$ $= 2(AD^{2}-ED^{2})+(BD-ED)^{2}+(DC+ED)^{2}$ $= 2AD^{2}-2ED^{2}+BD^{2}+ED^{2}-2BD.ED+DC^{2}+ED^{2}+2CD.ED$ $= 2AD^{2}+BD^{2}+CD^{2}$ $= 2(AD^{2}+BD^{2})$	1
20	$r = 42cm$ $\frac{2\pi r\theta}{360^{\circ}} = 44$ $\theta = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^{0}$	1
	Area of minor segment = area of sector – area of corresponding triangle $= \frac{\pi r^2 \theta}{360^{\circ}} - \frac{\sqrt{3}}{4} r^2$ $= r^2 \left[\frac{22}{7} \times \frac{60}{360} - \frac{\sqrt{3}}{4} \right]$	1/2
	$= 42 \times 42 \left[\frac{11}{21} - \frac{\sqrt{3}}{4} \right]$ $= 42 \times 42 \times \left[\frac{44 - 21\sqrt{3}}{84} \right]$	1/ ₂
	$= 21 (44 - 21\sqrt{3}) \text{ cm}^2$	
21	Volume of water flowing through pipe in 1 hour $= \frac{22}{7} \times 15 \times 1000 \times \frac{7}{100} \times \frac{7}{100}$ $= 231 \text{ m}^3$	1
	Volume of rectangular tank = $50 \times 44 \times \frac{21}{100}$	1
	$= 22 \times 21 \text{ m}^3$ Time taken to flow 231 m³ of water = 1 hours ∴ Time taken to flow 22 × 21 m³ of water = $\frac{1}{231}$ × 22 × 21 = 2 hours	1
	OR	
	Number of balls = $\frac{\text{Volume of solid sphere}}{\text{Volume of 1 spherical ball}}$	1
	$= \frac{\frac{4}{3} \times \pi \times 3 \times 3 \times 3}{\frac{4}{3} \times \pi \times 0.3 \times 0.3 \times 0.3}$	1
	= 1000	1
		1
		i

22	200-250 is the modal class	1
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1
	$=200+\frac{12-5}{24-5-2}\times 50$	$\begin{vmatrix} 1/2 \\ 1/2 \end{vmatrix}$
	= 200+20.59 = Rs. 220.59	/ 2
	Section D	
23	Let the usual speed of the train be x km/h	2
	$\frac{300}{x} - \frac{300}{x+5} = 2$	
	$\implies x^2 + 5x - 750 = 0 (x+30)(x-25) = 0$	1
	$\Rightarrow (x+30)(x-25) = 0$ $\Rightarrow x = -30,25$	
	∴ Usual Speed of the train = 25 km/h	1
	OR	
	$\frac{1}{(a+b+x)} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$ $\implies \frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$	1
	$x(a+b+x) = ab$ $-ab = x^2 + (a+b)x$	1
	$\Rightarrow x^2 + ax + bx + ab = 0$	1
	$\implies (x+a)(x+b) = 0$ $\implies x = -a, -b$	1
24	$n=50$, $a_3=12$ and $a_{50}=106$	1/2
	a+2d = 12 a+49d = 106	1
	on solving, d=2 and a= 8	1
	$a_{29} = a + 28d$	1/2
	$= 8+28\times 2 = 64$	1
25	Correct given, To prove, figure and construction	1/2
		× 4 = 2
	Correct proof	2
26	Correct construction of $\triangle ABC$	1
	Correct construction of similar triangle	3

Correct figure

In
$$\triangle ABE$$
,
 $\frac{h}{x} = \tan 30^{\circ}$
 $\implies x = h\sqrt{3}$

1/2

1

1

1

1

1/2

1/2

	In $\triangle BDE$, $\frac{h+60+60}{x} = \tan \theta$ $h+120 = x\sqrt{3}$ $h+120 = h\sqrt{3} \times \sqrt{3}$ $2h = 120$ $h = 60$ $\therefore height of cloud from$		r = (60 + 60)m = 120m	
28	Class Interval	Frequency	cf	1
	0-100	2	2	
	100-200	5	7	
	200-300	X	7+x	
	300-400	12	19+x	
	400-500	17	36+x	
	500-600	20	56+x	
	600-700	у	56+x+y	
	700-800	9	65+x+y	
	800-900	7	72+x+y	
	900-1000	4	76+x+y	
	N=100 \Longrightarrow 76+x+y=100 \Rightarrow x+y=24 Median = 525 \Longrightarrow 500 - 6 60-80 is the median class Median = $l + \frac{\frac{n}{2} - cf}{f} \times h$ \Longrightarrow 500 + $\left(\frac{50 - 36 - x}{20}\right) \times 10$ \Longrightarrow (14 - x) × 5 = 25 \Longrightarrow x = 9 \Longrightarrow from (1), y = 5.9	00 is median class 00 = 525	(i)	1/ ₂ 1/ ₂ 1
		OR		

		Marks	Number of students	cf		
		0-10	5	5		
		10-20	3	8		
		20-30	4	12		
		30-40	3	15		
		40-50	3	18		
		50-60	4	22		
		60-70	7	29		
		70-80	9	38		
		80-90	7	45		
		90-100	8	53		
	Correct tab Drawing co Median=64	le orrect Ogive			1 2 1	
29	$r_1 = 15 \text{cm}$, $r_2 = 5 \text{cm}$ h = 24 cm $l = \sqrt{h^2 + (r_1 - r_2)^2}$ $= \sqrt{24^2 + 10^2} = 26 \text{cm}$				1	
	Curved surface area of bucket = $\pi(r_1 + r_2)l$ = $\frac{22}{7} \times (15 + 5) \times 26$ = $\frac{22 \times 20 \times 26}{2}$					
	$= \frac{11440}{7} cm^2 \text{ or } 1634.3 cm^2$					
30	1. $Sec\theta + tan\theta = p$ $\frac{1}{cos\theta} + \frac{sin\theta}{cos\theta} = p$ $1 + sin\theta = pcos\theta$ $= p\sqrt{1 - sin^2\theta}$			1		
	$(1+\sin\theta)^2 = p^2(1-\sin^2\theta)$ $1 + \sin^2\theta + 2\sin\theta = p^2 - p^2\sin^2\theta$ $(1+p^2)\sin^2\theta + 2\sin\theta + (1-p^2) = 0$ $D = 4 - 4(1+p^2)(1-p^2)$ $= 4 - 4(1-p^4) = 4p^4$				1	
			$ \frac{\overline{p^4}}{\stackrel{2}{2}} = \frac{-1 \pm p^2}{(1+p^2)} $ $ = \frac{p^2 - 1}{p^2 + 1}, -1 $		1/2	
		$Cosec \theta = \frac{p^2+1}{p^2-1}, -$			1	