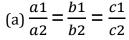
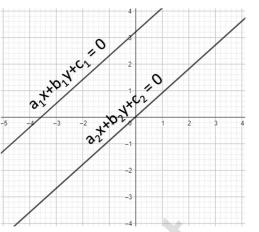
SAMPLE QUESTION PAPER

Class X Session 2023-24

MATHEMATICS STANDARD (Code No.041)


TIME: 3 hours MAX.MARKS: 80

General Instructions:


- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A Section A consists of 20 questions of 1 mark each.				
1.	If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime numbers, then the result obtained by dividing the product of the positive integers by the				
	LCM (a, b) is				
	(a) xy (b) xy^2 (c) x^3y^3 (d) x^2y^2				
2.		1			
	The given linear polynomial y = f(x) has (a) 2 zeros (b) 1 zero and the zero is '3' (c) 1 zero and the zero is '4' (d) No zero				

3. The lines representing the given pair of linear equations are non-intersecting. Which of the following statements is true?

- (b) $\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$
- (c) $\frac{a1}{a2} \neq \frac{b1}{b2} = \frac{c1}{c2}$
- $(d) \frac{a1}{a2} \neq \frac{b1}{b2} \neq \frac{c1}{c2}$

The nature of roots of the quadratic equation $9x^2 - 6x - 2 = 0$ is: 4.

(a) No real roots

(b) 2 equal real roots

(c) 2 distinct real roots

- (d) More than 2 real roots
- Two APs have the same common difference. The first term of one of these is -1 and that of 5. the other is – 8. The difference between their 4th terms is

(a) 1

(b) -7

(c) 7

(d) 9

What is the ratio in which the line segment joining (2,-3) and (5,6) is divided by x-axis? 6.

(a) 1:2

(b) 2:1

(c) 2:5

(d) 5:2

A point (x,y) is at a distance of 5 units from the origin. How many such points lie in the third 7. 1 quadrant?

(a) 0

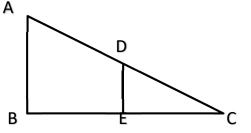
(b) 1

(c) 2

(d) infinitely many

1

1


1

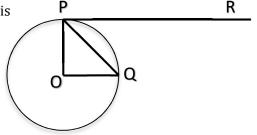
In \triangle ABC, DE || AB. If AB = a, DE = x, BE = b and EC = c. 8.

Then x expressed in terms of a, b and c is:

(b) $\frac{ac}{b+c}$

(d) $\frac{ab}{b+c}$

If O is centre of a circle and Chord PQ makes an angle 50° with the tangent PR at the point of contact 9.


P, then the angle subtended by the chord at the centre is

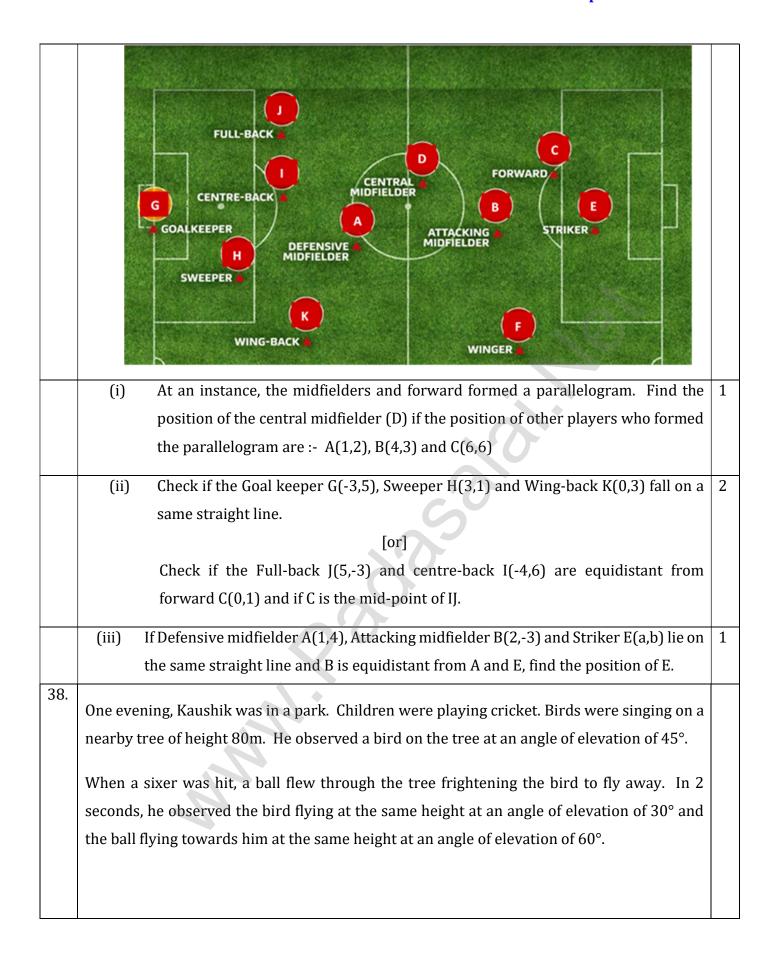
(a) 130°

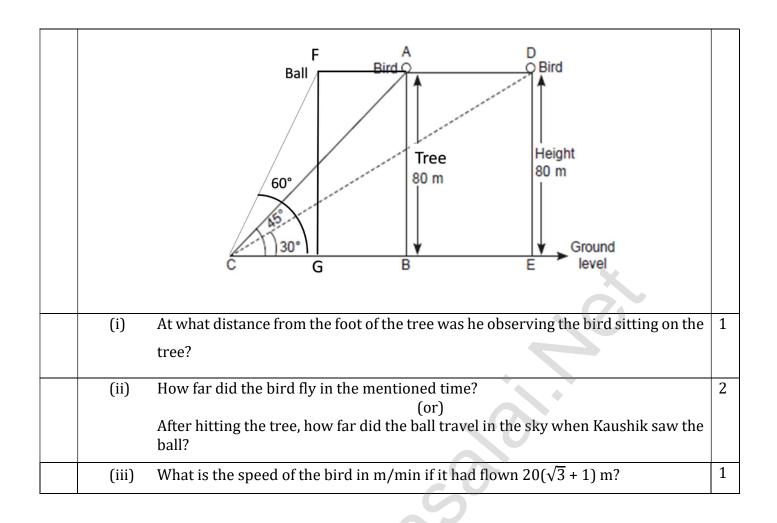
(b) 100°

(c) 50°

(d) 30°

10.	A quadrilater	al PQRS is dr	(b) 14 cm (d) 11 cm In the probability that he keeps the dot on the shaded lack. What is the probability of getting a black card? (b) $\frac{b}{a}$ (c) $\frac{\sqrt{b^2 - a^2}}{b}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{b}{a}$ (f) $\frac{b}{a}$ (c) $\frac{\sqrt{b^2 - a^2}}{b}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (g) $\frac{a}{\sqrt{b^2 - a^2}}$ (h) $\frac{a}{\sqrt{b^2 - a^2}}$ (o) $\frac{a}{\sqrt{b^2 - a^2}}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (h) $\frac{a}{\sqrt{b^2 - a^2}}$ (o) $\frac{a}{\sqrt{b^2 - a^2}}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (g) $\frac{a}{\sqrt{b^2 - a^2}}$ (h) $\frac{a}{\sqrt{b^2 - a^2}}$ (h) $\frac{a}{\sqrt{b^2 - a^2}}$ (g) $\frac{a}{\sqrt{b^2 - a^2}}$ (h) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (g) $\frac{a}{\sqrt{b^2 - a^2}}$ (g) $\frac{a}{\sqrt{b^2 - a^2}}$ (h) \frac{a}					
	If PQ = 12 cm	, QR = 15 cm	and RS = 14	cm, then find	the length of	SP is	45	
	(a) 15 cm		(b) 14 cm				115	
	(b) (c) 12	cm	(d) 11 cm	l		S	14 R	
11.	Given that sin	$\theta = \frac{a}{b}$, then co	os θ is.					1
	(a) $\frac{b}{\sqrt{b^2-a}}$	$\overline{\overline{a^2}}$	(b) $\frac{b}{a}$		(c) $\frac{\sqrt{b^2 - a^2}}{b}$	(dː	$\frac{a}{\sqrt{b^2 - a^2}}$	
12.	(sec A + tan A)	(1 – sin A) eq	uals:					1
	(a) sec A		(b) sin A		(c) cosec A	(0	l) cos A	
13.	If a pole 6 m l	high casts a s	hadow $2\sqrt{3}$ n	n long on the	ground, then	the Sun's ele	evation is	1
	(a) 60°		(b) 45°		(c) 30°	((d) 90°	
14.	If the perime	ter and the a	rea of a circle	e are numerio	cally equal, th	nen the radiu	s of the circle	1
	is							
	(a) 2 units	S	(b) π units		(c) 4 units	(d	l) 7 units	
15.	It is proposed	d to build a n	ew circular p	ark equal in	area to the su	ım of areas o	f two circular	
	is $ (a) \ 2 \ units \qquad (b) \ \pi \ units \qquad (c) \ 4 \ units \qquad (d) \ 7 \ units $ It is proposed to build a new circular park equal in area to the sum of areas of two circular parks of diameters $16 \ m$ and $12 \ m$ in a locality. The radius of the new park is $ (a) \ 10m \qquad (b) \ 15m \qquad (c) \ 20m \qquad (d) \ 24m $							
	(a) 10m	(b) 15m		c) 20m	(d) 24m	
16.	There is a sq	uare board c	of side '2a' ur	nits circumsc	ribing a red	circle. Jayade	ev is asked to	1
	keep a dot or	n the above s	aid board. T	'he probabili	ty that he ke	eps the dot o	n the shaded	
	region is.	(a) 15 cm (b) 14 cm (b) $(c) 12 \text{ cm}$ (d) 11 cm (e) $(c) 12 \text{ cm}$ (d) $(d) \frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{b}{a}$ (c) $\frac{\sqrt{b^2 - a^2}}{b}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{b}{a}$ (e) $\frac{b}{a}$ (c) $\frac{\sqrt{b^2 - a^2}}{b}$ (d) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{b}{a}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{b}{a}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (e) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}}$ (f) $\frac{a}{\sqrt{b^2 - a^2}}$						
	(a) $\frac{\pi}{4}$	(b)	$\frac{4-\pi}{4}$	(c) ¹	$\frac{\tau-4}{4}$	(d) $\frac{4}{\pi}$		
17.	2 cards of hea	rts and 4 card	ds of spades a	re missing fro	m a pack of 5	2 cards. A ca	rd is drawn at	1
	random from t	the remaining	pack. What is	the probability	y of getting a b	lack card?		
	(a) $\frac{22}{52}$		(b) $\frac{22}{46}$	((c) $\frac{24}{52}$	(d)	24 46	
18.	The upper lin	cm, QR = 15 cm and RS = 14 cm, then find the length of SP is cm (b) 14 cm 12 cm (d) 11 cm $ \sin \theta = \frac{a}{b'}, \text{ then } \cos \theta \text{ is.} $ $ \frac{b}{2-a^2} \qquad \text{(b)} \frac{b}{a} \qquad \text{(c)} \frac{\sqrt{b^2-a^2}}{b} \qquad \text{(d)} \frac{a}{\sqrt{b^2-a^2}} $ The A) (1 - sin A) equals: A (b) sin A (c) cosec A (d) cos A In high casts a shadow $2\sqrt{3}$ m long on the ground, then the Sun's elevation is (b) 45° (c) 30° (d) 90° In the term and the area of a circle are numerically equal, then the radius of the circle (d) 7 units (e) π units (f) π units (g) 4 units (g) 7 units (g) π units eigenvalue board of side (2a' units circumscribing a red circle. Jayadev is asked to 1 to on the above said board. The probability that he keeps the dot on the shaded (h) $\frac{4-\pi}{4}$ (d) $\frac{4}{\pi}$ hearts and 4 cards of spades are missing from a pack of 52 cards. A card is drawn at 1 units the remaining pack. What is the probability of getting a black card? (h) $\frac{22}{46}$ (c) $\frac{24}{52}$ (d) $\frac{24}{46}$ (e) $\frac{24}{46}$ (f) $\frac{24}{46}$ (f) $\frac{24}{46}$ (g) \frac						
	Height	Below 140	Below 145	Below 150	Below 155	Below 160	Below 165	
		4	11	29	40	46	51	
	810							


	(a) 165	(b) 160	(c) 155	(d) 150			
19.				assertion (A) is followed by	1		
17.	a statement of Reason (R). Choose the correct option						
	Statement A (Assertion): Total Surface area of the top is the sum of the						
	curved surface area of the hemisphere and the curved surface area of the						
	cone.						
	Statement R(Reason): Top is obtained by joining the plane surfaces of the						
	hemisphere and cone together.						
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation						
	of assertion (A)						
	(b) Both assertion ((A) and reason (R) are true and reas	on (R) is not the correct			
	explanation of assertion (A)						
	(c) Assertion (A) is true but reason (R) is false.						
	(d) Assertion (A) is false but reason (R) is true.						
20.	Statement A (Assertion): -5, $\frac{-5}{2}$, 0, $\frac{5}{2}$, is in Arithmetic Progression.						
	Statement R (Reason) :	The terms of an A	Arithmetic Progression	cannot have both positive			
	and negative rational numbers.						
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation						
	of assertion (A)						
	(b) Both assertion ((A) and reason (R) are true and reas	on (R) is not the correct			
	explanation of as	sertion (A)					
	(c) Assertion (A) is tr	ue but reason (R)	is false.				
	(d) Assertion (A) is fa	alse but reason (R)) is true.				
		SI	ECTION B				
	Sect	ion B consists of	5 questions of 2 mark	ks each.			
21.	Prove that $\sqrt{2}$ is an irrat	tional number.			2		


22.	ABCD is a parallelogram. Point P divides AB in the	2		
	ratio 2:3 and point Q divides DC in the ratio 4:1.			
	Prove that OC is half of OA.			
23.	From an external point P, two tangents, PA	2		
	and PB are drawn to a circle with centre 0.			
	At a point E on the circle, a tangent is drawn			
	to intersect PA and PB at C and D,			
	respectively. If PA = 10 cm, find the			
	perimeter of Δ PCD.			
	B/D			
24.	If tan (A + B) = $\sqrt{3}$ and tan (A - B) = $\frac{1}{\sqrt{3}}$; 0° < A + B < 90°; A > B, find A and B.	2		
	[or]			
	Find the value of x if			
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$			
	4			
25.	With vertices A, B and C of ΔABC as centres, arcs are drawn with radii 14 cm and the three	2		
	portions of the triangle so obtained are removed. Find the total area removed from the			
	triangle.			
	[or]			
	14 cm			
	Find the area of the unshaded region shown in the given figure. 3 cm 3 cm 14 cm			
	SECTION C			
	Section C consists of 6 questions of 3 marks each			
26.	National Art convention got registrations from students from all parts of the country, of	3		
	which 60 are interested in music, 84 are interested in dance and 108 students are interested			
	Page 5 of 10			

	in handicrafts. For optimum cultural exchange, organisers wish to keep them in minimum						
	number of groups such that each group consists of students interested in the same artform						
	and the number of students in each group is the same. Find the number of students in each						
	group. Find the number of groups in each art form. How many rooms are required if each						
	group will be allotted a room?						
27.	If α , β are zeroes of quadratic polynomial $5x^2 + 5x + 1$, find the value of						
	1. $\alpha^2 + \beta^2$						
	2. $\alpha^{-1} + \beta^{-1}$						
28.	The sum of a two digit number and the number obtained by reversing the digits is 66. If the	3					
	digits of the number differ by 2, find the number. How many such numbers are there?						
	[or]						
	Solve: $-\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$; $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -1$, x, y>o						
29.	PA and PB are tangents drawn to a circle of centre O from an external point P. Chord AB 3						
	makes an angle of 30° with the radius at the point of contact.						
	If length of the chord is 6 cm, find the length of the tangent PA and the length of the radius						
	O P						
	[or]						
	Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove						
	that \angle PTQ = 2 \angle OPQ.						
30.	If $1 + \sin^2\theta = 3\sin\theta \cos\theta$, then prove that $\tan\theta = 1$ or $\frac{1}{2}$						
31.	The length of 40 leaves of a plant are measured correct to nearest millimetre, and the data	3					
	obtained is represented in the following table.						
	Length [in mm] Number of leaves						
	118 - 126 3						
	127 – 135 5						
	136 - 144 9						

		145 152	12		$\overline{}$
		145 – 153	12		
		154 – 162	5		
		163 – 171	4		
		172 - 180	2		
	Find the mean length of t	he leaves.	1		
		S	ECTION D		
	Section	on D consists of	f 4 questions of 5 mar	ks each	
32.	A motor boat whose spee	d is 18 km/h in s	still water takes 1 hour i	more to go 24 km upstream	5
	than to return downstrea	m to the same s	pot. Find the speed of s	tream.	
			[or]		
	Two water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10				
	hours less than the small	er one to fill the	tank separately. Find the	ne time in which each tap	
	hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.				
33.	(a) State and prove Basic		theorem.	A N	5
	(b) In the given figure $\angle C$ Prove that $\frac{AB}{BD} = \frac{AE}{FD}$	CEF = ∠CFE. F is	the midpoint of DC.	D F C	
34.	Water is flowing at the r	ate of 15 km/h	through a pipe of diam	eter 14 cm into a cuboidal	5
	pond which is 50 m long	and 44 m wide.	In what time will the le	vel of water in pond rise by	
	21 cm?				
	What should be the speed	d of water if the	rise in water level is to	be attained in 1 hour?	
			[or]		
	A tent is in the shape of a	cylinder surmo	ounted by a conical top.	If the height and radius of	
	the cylindrical part are 3	m and 14 m res	pectively, and the total	height of the tent is 13.5 m,	
	find the area of the canv	as required for	making the tent, keepi	ng a provision of 26 m ² of	
	canvas for stitching and v	vastage. Also, fin	d the cost of the canvas	to be purchased at the rate	
	of ₹ 500 per m ² .				

35.	The median of the	e following data is 50. Find t	he values of 'p' and 'q', if the	sum of all frequencies is	5		
	90. Also find the 1	mode of the data.					
		Marks obtained	Number of students				
		20 – 30	p				
		30 – 40	15				
		40 – 50	25				
	50 - 60 60 - 70	20					
		60 – 70	q				
		70 - 80	8				
		80 - 90	10				
		SE	CTION E				
36.	Manpreet Kaur is	the national record holder	for women in the shot-put	discipline. Her throw of			
	18.86m at the A	18.86m at the Asian Grand Prix in 2017 is the					
	maximum distance for an Indian female athlete.						
	Keeping her as a role model, Sanjitha is determined						
	to earn gold in Olympics one day.						
	Initially her throw reached 7.56m only. Being an						
	athlete in school, she regularly practiced both in the						
	mornings and in	the evenings and was al	ole to				
	improve the dista	nce by 9cm every week.					
	During the special	camp for 15 days, she starte	d with				
	40 throws and every day kept increasing the number						
	of throws by 12 to achieve this remarkable progress.						
	(i) How many throws Sanjitha practiced on 11th day of the camp?				1		
	(ii) What would be Sanjitha's throw distance at the end of 6 weeks?				2		
			(or)				
	When	will she be able to achieve a	throw of 11.16 m?				
	(iii) How n	nany throws did she do durir	ng the entire camp of 15 days	?	1		
37.	Tharunya was thrilled to know that the football tournament is fixed with a monthly timeframe from						
	20th July to 20th August 2023 and for the first time in the FIFA Women's World Cup's history, two						
	nations host in 10	venues. Her father felt that	the game can be better unde	erstood if the position of	!		
	players is represe	nted as points on a coordina	te plane.				

