SAMPLE QUESTION PAPER
 MARKING SCHEME
 SUBJECT: MATHEMATICS- STANDARD
 CLASS X

SECTION - A

1 (c) 35
2 (b) $\mathrm{x}^{2}-(\mathrm{p}+1) \mathrm{x}+\mathrm{p}=0$1

3 (b) $2 / 3 \quad 1$
4 (d) 2 1

5 (c) $(2,-1)$ 1

6 (d) $2: 3$ 1

7 (b) $\tan 30^{\circ}$ 1

8 (b) 2 1

9 (c) $\mathrm{x}=\frac{a y}{a+b}$
10 (c) 8 cm1
11 (d) $3 \sqrt{ } 3 \mathrm{~cm}$ 1
12 (d) $9 \pi \mathrm{~cm}^{2}$ 1
13 (c) $96 \mathrm{~cm}^{2}$ 1
14 (b) 12 1
15 (d) 7000 1
16 (b) 25 1
17 (c) $11 / 36$ 1
18 (a) $1 / 3$ 1
19 (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct 1 explanation of assertion (A)
20. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)

SECTION - B

21 Adding the two equations and dividing by 10 , we get: $x+y=10 \quad 1 / 2$
Subtracting the two equations and dividing by -2 , we get : $x-y=1 \quad 1 / 2$
Solving these two new equations, we get, $\mathbf{x}=\mathbf{1 1 / 2} 1 / 2$
$y=9 / 2 \quad 1 / 2$

22 In $\triangle \mathrm{ABC}$,
$\angle 1=\angle 2$
$\therefore \mathrm{AB}=\mathrm{BD}$
Given,
$\mathrm{AD} / \mathrm{AE}=\mathrm{AC} / \mathrm{BD}$
Using equation (i), we get
$\mathrm{AD} / \mathrm{AE}=\mathrm{AC} / \mathrm{AB}$
In $\triangle B A E$ and $\triangle C A D$, by equation (ii),
$\mathrm{AC} / \mathrm{AB}=\mathrm{AD} / \mathrm{AE}$
$1 / 2$
$\angle \mathrm{A}=\angle \mathrm{A}$ (common)
$\therefore \triangle \mathrm{BAE} \sim \triangle \mathrm{CAD}$ [By SAS similarity criterion]
$1 / 2$
$23 \angle \mathrm{PAO}=\angle \mathrm{PBO}=90^{\circ}$ (angle b / w radius and tangent) 1 1/2
$\angle \mathrm{AOB}=105^{\circ}($ By angle sum property of a triangle $) \quad 1 / 2$
$\angle \mathrm{AQB}=1 / 2 \times 105^{\circ}=52.5^{\circ}$ (Angle at the remaining part of the circle is half the
angle subtended by the arc at the centre)

24
We know that, in 60 minutes, the tip of minute hand moves 360°
In 1 minute, it will move $=360^{\circ} / 60=6^{\circ}$
\therefore From 7:05 pm to 7: 40 pm i.e. 35 min , it will move through $=35 \times 6^{\circ}=210^{\circ}$
\therefore Area of swept by the minute hand in $35 \mathrm{~min}=$ Area of sector with sectorial angle θ

$$
\begin{aligned}
& \text { of } 210^{\circ} \text { and radius of } 6 \mathrm{~cm} \\
= & \frac{210}{360} \times \pi \times 6^{2} \\
= & \frac{7}{12} \times \frac{22}{7} \times 6 \times 6 \\
= & 66 \mathrm{~cm}^{2}
\end{aligned}
$$

OR

Let the measure of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$ be $\theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4} respectively Required area $=$ Area of sector with centre $A+$ Area of sector with centre B + Area of sector with centre $C+$ Area of sector with centre D

$$
\begin{align*}
& =\frac{\boldsymbol{\theta}_{1}}{360} \times \pi \times 7^{2}+\frac{\boldsymbol{\theta}_{2}}{360} \times \pi \times 7^{2}+\frac{\boldsymbol{\theta}_{3}}{360} \times \pi \times 7^{2}+\frac{\boldsymbol{\theta}_{4}}{360} \times \pi \times 7^{2} \\
& =\frac{\left(\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}+\boldsymbol{\theta}_{3}+\boldsymbol{\theta}_{4}\right)}{360} \times \pi \times 7^{2} \\
& =\frac{(\mathbf{3 6 0})}{360} \times \frac{22}{7} \times 7 \times 7 \text { (By angle sum property of a triangle) } \\
& =154 \mathrm{~cm}^{2} \tag{i}
\end{align*}
$$

$25 \quad \sin (\mathrm{~A}+\mathrm{B})=1=\sin 90$, so $\mathrm{A}+\mathrm{B}=90$.
$\cos (A-B)=\sqrt{3} / 2=\cos 30$, so $A-B=30$
From (i) \& (ii) $\angle \mathrm{A}=60^{\circ}$
And $\angle \mathrm{B}=30^{\circ}$

OR

$\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}}$
Dividing the numerator and denominator of LHS by $\cos \theta$, we get
$\frac{1-\tan \theta}{1+\tan \theta}=\frac{1-\sqrt{ } 3}{1+\sqrt{3}}$
Which on simplification (or comparison) gives $\tan \theta=\sqrt{ } 3$
Or $\theta=60^{\circ}$

SECTION - C

26 Let us assume $5+2 \sqrt{ } 3$ is rational, then it must be in the form of p / q where p and q are co-prime integers and $\mathrm{q} \neq 0$
i.e $5+2 \sqrt{ } 3=\mathrm{p} / \mathrm{q}$

So $\sqrt{ } 3=\frac{p-5 q}{2 q}$.
Since $\mathrm{p}, \mathrm{q}, 5$ and 2 are integers and $\mathrm{q} \neq 0$, HS of equation (i) is rational. But LHS of (i) is $\sqrt{ } 3$ which is irrational. This is not possible.

This contradiction has arisen due to our wrong assumption that $5+2 \sqrt{ } 3$ is rational. So, $5+2 \sqrt{ } 3$ is irrational.

27 Let α and β be the zeros of the polynomial $2 x^{2}-5 x-3$
Then $\alpha+\beta=5 / 2$
And $\alpha \beta=-3 / 2$.
Let 2α and 2β be the zeros $x^{2}+p x+q$
Then $2 \alpha+2 \beta=-p$
$2(\alpha+\beta)=-p$
$2 \times 5 / 2=-\mathrm{p}$
So $\mathbf{p}=-5 \quad 1 / 2$
And $2 \alpha \times 2 \beta=\mathrm{q}$

$$
4 \alpha \beta=\mathrm{q}
$$

So $q=4 x-3 / 2$
$=-6$

Let the actual speed of the train be $\mathrm{x} \mathrm{km} / \mathrm{hr}$ and let the actual time taken be y hours.
Distance covered is xy km
If the speed is increased by $6 \mathrm{~km} / \mathrm{hr}$, then time of journey is reduced by 4 hours i.e., when speed is $(x+6) \mathrm{km} / \mathrm{hr}$, time of journey is $(\mathrm{y}-4)$ hours.
\therefore Distance covered $=(x+6)(y-4)$
$\Rightarrow \mathrm{xy}=(\mathrm{x}+6)(\mathrm{y}-4)$
$\Rightarrow-4 x+6 y-24=0$
$\Rightarrow-2 \mathrm{x}+3 \mathrm{y}-12=0$
Similarly $x y=(x-6)(y+6)$
$\Rightarrow 6 \mathrm{x}-6 \mathrm{y}-36=0$
$\Rightarrow x-y-6=0$
Solving (i) and (ii) we get $\mathrm{x}=30$ and $\mathrm{y}=24$
Putting the values of x and y in equation (i), we obtain
Distance $=(30 \times 24) \mathrm{km}=720 \mathrm{~km}$.
Hence, the length of the journey is 720 km .

OR

Let the number of chocolates in lot A be x
And let the number of chocolates in lot B be y
\therefore total number of chocolates $=x+y$
Price of 1 chocolate $=₹ 2 / 3$, so for x chocolates $=\frac{2}{3} \mathrm{x}$
and price of y chocolates at the rate of $₹ 1$ per chocolate $=y$.
\therefore by the given condition $\frac{2}{3} \mathrm{x}+\mathrm{y}=400$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}=1200$
Similarly $x+\frac{4}{5} y=460$
$\Rightarrow 5 \mathrm{x}+4 \mathrm{y}=2300$
Solving (i) and (ii) we get
$x=300$ and $y=200$
$\therefore x+y=300+200=500$
So, Anuj had 500 chocolates.
29 LHS : $\frac{\sin ^{3} \theta / \cos ^{3} \theta}{1+\sin ^{2} \theta / \cos ^{2} \theta}+\frac{\cos ^{3} \theta / \sin ^{3} \theta}{1+\cos ^{2} \theta / \sin ^{2} \theta}$ $1 / 2$

$$
\begin{aligned}
& =\frac{\sin ^{3} \theta / \cos ^{3} \theta}{\left(\cos ^{2} \theta+\sin ^{2} \theta\right) / \cos ^{2} \theta}+\frac{\cos ^{3} \theta / \sin ^{3} \theta}{\left(\sin ^{2} \theta+\cos ^{2} \theta\right) / \sin ^{2} \theta} \\
& =\frac{\sin ^{3} \theta}{\cos \theta}+\frac{\cos ^{3} \theta}{\sin \theta} \\
& =\frac{\sin ^{4} \theta+\cos ^{4} \theta}{\cos \theta \sin \theta} \\
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta \quad 1 / 2 \\
& =\underline{1-2 \sin ^{2} \theta \cos ^{2} \theta} \\
& =\frac{1}{\cos \theta \sin \theta}-\frac{2 \sin ^{2} \theta \cos ^{2} \theta}{\cos \theta \sin \theta} \\
& =\sec \theta \operatorname{cosec} \theta-2 \sin \theta \cos \theta \\
& \text { = RHS }
\end{aligned}
$$

30

Let ABCD be the rhombus circumscribing the circle with centre O, such that $A B, B C, C D$ and $D A$ touch the circle at points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S respectively.
We know that the tangents drawn to a circle from an exterior point are equal in length.

$$
\begin{gather*}
\therefore \mathrm{AP}=\mathrm{AS} \ldots \ldots \ldots \ldots(1) \tag{1}\\
\mathrm{BP}=\mathrm{BQ} \ldots \ldots \ldots \ldots . .(2) \tag{2}\\
\mathrm{CR}=\mathrm{CQ} \ldots \ldots \ldots \ldots . .(3) \\
\mathrm{DR}=\mathrm{DS} \ldots \ldots \ldots \ldots \ldots(4) . \tag{4}
\end{gather*}
$$

Adding (1), (2), (3) and (4) we get
$\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS}$
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ})$
$\therefore \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
Since $A B=D C$ and $A D=B C$ (opposite sides of parallelogram $A B C D$)
putting in (5) we get, $2 \mathrm{AB}=2 \mathrm{AD}$
or $A B=A D$.
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{DC}=\mathrm{AD}$
Since a parallelogram with equal adjacent sides is a rhombus, so ABCD is a rhombus

Join OC

In Δ OPA and Δ OCA
$\mathrm{OP}=\mathrm{OC}$ (radii of same circle)
$\mathrm{PA}=\mathrm{CA}$ (length of two tangents from an external point)
$\mathrm{AO}=\mathrm{AO}$ (Common)
Therefore, $\Delta \mathrm{OPA} \cong \Delta \mathrm{OCA}($ By SSS congruency criterion) $\quad 1 / 2$
Hence, $\angle 1=\angle 2$ (CPCT) $1 / 2$
Similarly $\angle 3=\angle 4$
$\angle \mathrm{PAB}+\angle \mathrm{QBA}=180^{\circ}$ (co interior angles are supplementary as $\mathrm{XY} \| \mathrm{X}^{\prime} \mathrm{Y}^{\prime}$)
$2 \angle 2+2 \angle 4=180^{\circ}$
$\angle 2+\angle 4=90^{\circ}$
$\angle 2+\angle 4+\angle \mathrm{AOB}=180^{\circ}$ (Angle sum property)
Using (1), we get, $\angle \mathrm{AOB}=90^{\circ}$
$31 \quad$ (i) $\quad \mathrm{P}$ (At least one head $)=\frac{3}{4}$
(ii) $\quad \mathrm{P}($ At most one tail $)=\frac{3}{4}$
(iii) $\quad \mathrm{P}(\mathrm{A}$ head and a tail $)=\frac{2}{4}=\frac{1}{2}$

SECTION D

32 Let the time taken by larger pipe alone to fill the tank= x hours
Therefore, the time taken by the smaller pipe $=\mathrm{x}+10$ hours
Water filled by larger pipe running for 4 hours $=\frac{4}{x}$ litres
Water filled by smaller pipe running for 9 hours $=\frac{9}{x+10}$ litres

We know that
$\frac{4}{x}+\frac{9}{x+10}=\frac{1}{2}$
Which on simplification gives:
$x^{2}-16 x-80=0$
$x^{2}-20 x+4 x-80=0$
$\mathrm{x}(\mathrm{x}-20)+4(\mathrm{x}-20)=0$
$(x+4)(x-20)=0$
$x=-4,20$
x cannot be negative.
Thus, $x=20$
$\mathrm{x}+10=30$
Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the tank alone in 30 hours.

OR

Let the usual speed of plane be $x \mathrm{~km} / \mathrm{hr}$
and the reduced speed of the plane be ($\mathrm{x}-200$) km/hr
Distance $=600 \mathrm{~km}$ [Given]
According to the question,
$($ time taken at reduced speed $)-($ Schedule time $)=30$ minutes $=0.5$ hours.
$\frac{600}{x-200}-\frac{600}{x}=\frac{1}{2}$
Which on simplification gives:
$x^{2}-200 x-240000=0$
$x^{2}-600 x+400 x-240000=0$
$x(x-600)+400(x-600)=0$
$(x-600)(x+400)=0$
$\mathrm{x}=600$ or $\mathrm{x}=-400$
But speed cannot be negative.
\therefore The usual speed is $600 \mathrm{~km} / \mathrm{hr}$ and
the scheduled duration of the flight is $\frac{600}{600}=1$ hour
33 For the Theorem :
Given, To prove, Construction and figure
Proof

Let ABCD be a trapezium $\mathrm{DC} \| \mathrm{AB}$ and EF is a line parallel to AB and hence to DC .

To prove: $\frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathbf{C F}}{\mathbf{F B}}$
Construction : Join AC, meeting EF in G.
Proof:
In $\triangle \mathrm{ABC}$, we have
GF\|AB
$\mathrm{CG} / \mathrm{GA}=\mathrm{CF} / \mathrm{FB} \quad[\mathrm{By} \mathrm{BPT}]$
In $\triangle \mathrm{ADC}$, we have
EG $\| \mathrm{DC}(\mathrm{EF}\|\mathrm{AB} \& \mathrm{AB}\| \mathrm{DC})$
DE/EA= CG/GA [By BPT](2)
From (1) \& (2), we get,
$\frac{\mathrm{DE}}{\mathrm{EA}}=\frac{\mathrm{CF}}{\mathrm{FB}}$
34. Radius of the base of cylinder $(\mathrm{r})=2.8 \mathrm{~m}=$ Radius of the base of the cone (r)

Height of the cylinder (h) $=3.5 \mathrm{~m}$
Height of the cone $(\mathrm{H})=2.1 \mathrm{~m}$.
Slant height of conical part $(1)=\sqrt{ } \mathrm{r}^{2}+\mathrm{H}^{2}$
$=\sqrt{ }(2.8)^{2}+(2.1)^{2}$
$=\sqrt{ } 7.84+4.41$
$=\sqrt{ } 12.25=3.5 \mathrm{~m}$
Area of canvas used to make tent $=$ CSA of cylinder + CSA of cone
$=2 \times \pi \times 2.8 \times 3.5+\pi \times 2.8 \times 3.5$
$=61.6+30.8$
$=92.4 \mathrm{~m}^{2}$

Cost of 1500 tents at $₹ 120$ per sq.m
$=1500 \times 120 \times 92.4$
$=16,632,000$
Share of each school to set up the tents $=16632000 / 50=₹ 332,640$

OR

First Solid

(i) SA for first new solid (S_{1}):
$6 \times 7 \times 7+2 \pi \times 3.5^{2}-\pi \times 3.5^{2}$
$=294+77-38.5$
$=332.5 \mathrm{~cm}^{2}$
SA for second new solid (S_{2}):
$6 \times 7 \times 7+2 \pi \times 3.5^{2}-\pi \times 3.5^{2}$
$=294+77-38.5$
$=332.5 \mathrm{~cm}^{2}$
So S_{1} : $\mathrm{S}_{2}=1: 1$
(ii) Volume for first new solid $\left(\mathrm{V}_{1}\right)=7 \times 7 \times 7-\frac{2}{3} \pi \times 3.5^{3}$

$$
=343-\frac{539}{6}=\frac{1519}{6} \mathrm{~cm}^{3}
$$

Volume for second new solid $\left(\mathrm{V}_{2}\right)=7 \times 7 \times 7+\frac{2}{3} \pi \times 3.5^{3}$

$$
=343+\frac{539^{3}}{6}=\frac{2597}{6} \mathrm{~cm}^{3}
$$

35 Median $=525$, so Median Class $=500-600$

Class interval	Frequency	Cumulative Frequency
$0-100$	2	2
$100-200$	5	7
$200-300$	x	$7+\mathrm{x}$
$300-400$	12	$19+\mathrm{x}$
$400-500$	17	$36+\mathrm{x}$
$500-600$	20	$56+\mathrm{x}$
$600-700$	y	$56+\mathrm{x}+\mathrm{y}$
$700-800$	9	$65+\mathrm{x}+\mathrm{y}$
$800-900$	7	$72+\mathrm{x}+\mathrm{y}$
$900-1000$	4	$76+\mathrm{x}+\mathrm{y}$

$76+x+y=100 \Rightarrow x+y=24$
Median $=1+\frac{\frac{\mathrm{n}}{2}-c f}{\mathrm{f}} \mathrm{xh}$
Since, $l=500, h=100, f=20, c f=36+x$ and $n=100$
Therefore, putting the value in the Median formula, we get;
$525=500+\frac{50-(36+\mathrm{x})}{20} \times 100$
so $\mathrm{x}=9$
$y=24-x$ (from eq.i)
$y=24-9=15$
Therefore, the value of $\mathrm{x}=9$
and $\mathrm{y}=15$.
(i) $\quad \mathrm{B}(1,2), \mathrm{F}(-2,9)$

$$
\begin{aligned}
\mathrm{BF}^{2} & =(-2-1)^{2}+(9-2)^{2} \\
& =(-3)^{2}+(7)^{2} \\
& =9+49 \\
& =58
\end{aligned}
$$

So, $B F=\sqrt{ } 58$ units
(ii)

$W(-6,2), X(-4,0), O(5,9), P(3,11)$
Clearly WXOP is a rectangle
Point of intersection of diagonals of a rectangle is the mid point of the diagonals. So the required point is mid point of WO or XP

$$
\begin{aligned}
& =\left(\frac{-6+5}{2}, \frac{2+9}{2}\right) \\
& =\left(\frac{-1}{2}, \frac{11}{2}\right)
\end{aligned}
$$

(iii) $\mathrm{A}(-2,2), \mathrm{G}(-4,7)$

Let the point on y -axis be $\mathrm{Z}(0, \mathrm{y})$
$A Z^{2}=G Z^{2}$

$$
\begin{aligned}
& (0+2)^{2}+(y-2)^{2}=(0+4)^{2}+(y-7)^{2} \\
& (2)^{2}+y^{2}+4-4 y=(4)^{2}+y^{2}+49-14 y \\
& 8-4 y=65-14 y \\
& 10 y=57
\end{aligned}
$$

So, $y=5.7$
i.e. the required point is $(0,5.7)$

OR

$\mathrm{A}(-2,2), \mathrm{F}(-2,9), \mathrm{G}(-4,7), \mathrm{H}(-4,4)$
Clearly GH = 7-4=3units
AF $=9-2=7$ units
So, height of the trapezium AFGH $=2$ units
So, area of AFGH $=\frac{1}{2}(\mathrm{AF}+\mathrm{GH}) \mathrm{x}$ height

$$
\begin{aligned}
& =\frac{1}{2}(7+3) \times 2 \\
& =10 \text { sq. units }
\end{aligned}
$$

37. (i) Since each row is increasing by 10 seats, so it is an AP with first term $\mathrm{a}=30$, and common difference $\mathrm{d}=10$.
So number of seats in $10^{\text {th }}$ row $=a_{10}=\mathrm{a}+9 \mathrm{~d}$

$$
=30+9 \times 10=120
$$

(ii) $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$

$$
\begin{array}{ll}
1500=\frac{n}{2}(2 \times 30+(n-1) 10) & 1 / 2 \\
3000=50 \mathrm{n}+10 \mathrm{n}^{2} & \\
\mathrm{n}^{2}+5 \mathrm{n}-300=0 & 1 / 2 \\
\mathrm{n}^{2}+20 \mathrm{n}-15 \mathrm{n}-300=0 & \\
(\mathrm{n}+20)(\mathrm{n}-15)=0 & 1 / 2
\end{array}
$$

Rejecting the negative value, $\mathrm{n}=15$

OR

No. of seats already put up to the $10^{\text {th }}$ row $=S_{10}$
$\left.\mathrm{S}_{10}=\frac{10}{2}\{2 \times 30+(10-1) 10)\right\}$

$$
=5(60+90)=750 \quad 1 / 2
$$

So, the number of seats still required to be put are $1500-750=750$
(iii) If no. of rows $=17$
then the middle row is the $9^{\text {th }}$ row

$$
\begin{aligned}
& a_{8}=\mathrm{a}+8 \mathrm{~d} \\
& \quad=30+80 \\
& \quad=110 \text { seats }
\end{aligned}
$$

38 (i)

P and Q are the two positions of the plane flying at a height of $3000 \sqrt{ } 3 \mathrm{~m}$.
A is the point of observation.
(ii) In $\triangle \mathrm{PAB}, \tan 60^{\circ}=\mathrm{PB} / \mathrm{AB}$

Or $\sqrt{ } 3=3000 \sqrt{ } 3 / \mathrm{AB}$
So $\mathrm{AB}=3000 \mathrm{~m}$
$\tan 30^{\circ}=\mathrm{QC} / \mathrm{AC}$
$1 / \sqrt{ } 3=3000 \sqrt{ } 3 / A C$
$\mathrm{AC}=9000 \mathrm{~m}$
distance covered $=9000-3000$
$=6000 \mathrm{~m}$.

OR

In $\triangle \mathrm{PAB}, \tan 60^{\circ}=\mathrm{PB} / \mathrm{AB}$
Or $\sqrt{ } 3=3000 \sqrt{ } 3 / A B$
So $\mathrm{AB}=3000 \mathrm{~m}$
$\tan 45^{\circ}=\mathrm{RD} / \mathrm{AD}$
$1=3000 \sqrt{ } 3 / \mathrm{AD}$
$\mathrm{AD}=3000 \sqrt{3} \mathrm{~m}$
$\begin{array}{ll}\text { distance covered }=3000 \sqrt{ } 3-3000 & 1 / 2 \\ =3000(\sqrt{ } 3-1) \mathrm{m} . & \end{array}$
(iii) speed $=6000 / 30 \quad 1 / 2$
$=200 \mathrm{~m} / \mathrm{s}$
$=200 \times 3600 / 1000 \quad 1 / 2$
$=720 \mathrm{~km} / \mathrm{hr}$
$\begin{array}{rlr}\text { Alternatively: } \text { speed }=\frac{3000(\sqrt{ } 3-1)}{15(\sqrt{ } 3-1)} & \\ & =200 \mathrm{~m} / \mathrm{s} & 1 / 2 \\ = & 200 \times 360 / 1000 & 1 / 2 \\ = & 720 \mathrm{~km} / \mathrm{hr} & \end{array}$

