Marking Scheme Class- X Session- 2021-22 TERM 1 Subject- Mathematics (Standard)

		Subject- Mathematics (Standard) SECTION A	
QN	Correct Option	HINTS/SOLUTION	MAR KS
1	(b)	Least composite number is 4 and the least prime number is 2. $LCM(4,2)$: HCF(4,2) = 4:2 = 2:1	1
2	(a)	For lines to coincide: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ so, $\frac{5}{15} = \frac{7}{21} = \frac{-3}{-k}$ i.e. k= 9	1
3	(b)	By Pythagoras theorem The required distance $=\sqrt{(200^2 + 150^2)}$ $=\sqrt{(40000+22500)} = \sqrt{(62500)} = 250m.$ So the distance of the girl from the starting point is 250m.	1
4	(d)	Area of the Rhombus = $\frac{1}{2} d_1 d_2 = \frac{1}{2} \times 24 \times 32 = 384 \text{ cm}^2$. Using Pythagoras theorem side ² = $(\frac{1}{2}d_1)^2 + (\frac{1}{2}d_2)^2 = 12^2 + 16^2 = 144 + 256 = 400$ Side = 20cm Area of the Rhombus = base x altitude 384 = 20 x altitude So altitude = 384/20 = 19.2cm	1
5	(a)	Possible outcomes are (HH), (HT), (TH), (TT) Favorable outcomes(at the most one head) are (HT), (TH), (TT) So probability of getting at the most one head =3/4	1
6	(d)	Ratio of altitudes = Ratio of sides for similar triangles So AM:PN = AB:PQ = 2:3	1
7	(b)	$2\sin^2\beta - \cos^2\beta = 2$ Then $2\sin^2\beta - (1 - \sin^2\beta) = 2$ $3\sin^2\beta = 3 \text{ or } \sin^2\beta = 1$ $\beta \text{ is } 90^\circ$	1
8	(c)	Since it has a terminating decimal expansion, so prime factors of the denominator will be 2,5	1
9	(a)	Lines x=a is a line parallel to y axis and y=b is a line parallel to x axis. So they will intersect.	1
10	(d)	Distance of point A(-5,6) from the origin(0,0) is $\sqrt{(0+5)^2 + (0-6)^2} = \sqrt{25+36} = \sqrt{61}$ units	1
11	(b)	$a^2=23/25$, then $a = \sqrt{23}/5$, which is irrational	1
12	(c)	LCM X HCF = Product of two numbers 36 X 2 = 18 X x x = 4	1
13	(b)	$\tan A = \sqrt{3} = \tan 60^{\circ} \text{ so } \angle A = 60^{\circ}, \text{ Hence } \angle C = 30^{\circ}.$ So $\cos A \cos C - \sin A \sin C = (1/2)x (\sqrt{3}/2) - (\sqrt{3}/2)x (1/2) = 0$	1
14	(a)	$1x + 1x + 2x = 180^{\circ}, x = 45^{\circ}.$ $\angle A, \angle B \text{ and } \angle C \text{ are } 45^{\circ}, 45^{\circ} \text{ and } 90^{\circ} \text{resp.}$ $\frac{\sec A}{\csc B} - \frac{\tan A}{\cot B} = \frac{\sec 45}{\csc 45} - \frac{\tan 45}{\cot 45} = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{1} = 1 - 1 = 0$	1

15	(d)	total distance 176	1
		Number of revolutions= $\frac{\text{total distance}}{\text{circumference}} = \frac{170}{2 \text{ X} \frac{22}{7} \text{ X} 0.7}$	
		= 40	
16	(b)	$\frac{\text{perimeter of }\Delta ABC}{\text{perimeter of }\Delta DEF} = \frac{BC}{EF}$	1
		$\frac{7.5}{\text{perimeter of }\Delta\text{DEF}} = \frac{2}{4}$. So perimeter of $\Delta\text{DEF} = 15$ cm	
17	(b)	Since DE BC, $\triangle ABC \sim \triangle ADE$ (By AA rule of similarity)	1
		So $\frac{AD}{AB} = \frac{DE}{BC}$ i.e. $\frac{3}{7} = \frac{DE}{14}$. So $DE = 6cm$	
18	(a)	Dividing both numerator and denominator by $\cos\beta$,	1
		$\frac{4\sin\beta - 3\cos\beta}{4\sin\beta + 3\cos\beta} = \frac{4\tan\beta - 3}{4\tan\beta + 3} = \frac{3-3}{3+3} = 0$	
		$4 \sin \beta + 5 \cos \beta$ $4 \tan \beta + 5$ $5 + 5$	
19	(d)	-2(-5x + 7y = 2) gives $10x - 14y = -4$. Now $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = -2$	1
20	(a)	Number of Possible outcomes are 26	1
		Favorable outcomes are M, A, T, H, E, I, C, S probability = $8/26 = 4/13$	
		SECTION B	
21	(c)	Since $HCF = 81$, two numbers can be taken as $81x$ and $81y$,	1
		ATQ $81x + 81y = 1215$	
		Or $x+y = 15$ which gives four co prime pairs-	
		1,14	
		2,13	
		4,11	
		7, 8	
22	(c)	Required Area is area of triangle $ACD = \frac{1}{2}(6)2$	1
		= 6 sq units	
23	(b)	$\tan \alpha + \cot \alpha = 2 \text{ gives } \alpha = 45^{\circ}. \text{ So } \tan \alpha = \cot \alpha = 1$ $\tan^{20}\alpha + \cot^{20}\alpha = 1^{20} + 1^{20} = 1 + 1 = 2$	1
24	(a)	Adding the two given equations we get: $348x + 348y = 1740$.	1
		So $x + y = 5$	
25	(c)	LCM of two prime numbers = product of the numbers $221 - 12 = 17$	1
		221=13 x 17. So p= 17 & q= 13	
		\therefore 3p - q = 51-13 = 38	
26	(a)	Probability that the card drawn is neither a king nor a queen	1
		$=\frac{52-8}{52}$	
	/1 \	= 44/52 = 11/13	
27	(b)	Outcomes when 5 will come up at least once are- (1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (5,1), (5,2), (5,3), (5,4) and (5,6)	1
		Probability that 5 will come up at least once = $11/36$	
28	(c)	$1 + \sin^2 \alpha = 3 \sin \alpha \cos \alpha$	1
		$\sin^{2}\alpha + \cos^{2}\alpha + \sin^{2}\alpha = 3 \sin\alpha \cos \alpha$ $2 \sin^{2}\alpha - 3\sin\alpha \cos \alpha + \cos^{2}\alpha = 0$	
		$(2\sin\alpha - \cos\alpha)(\sin\alpha - \cos\alpha) = 0$	
		$\therefore \cot \alpha = 2 \text{ or } \cot \alpha = 1$	
29		Since APCD is a perplision discourse AC and DD bisset such other to mid	1
49	(a)	Since ABCD is a parallelogram, diagonals AC and BD bisect each other, \therefore mid point of AC= mid point of BD	
L			

		$\left(\frac{x+1}{2}, \frac{6+2}{2}\right) = \left(\frac{3+4}{2}, \frac{5+y}{2}\right)$ Comparing the co-ordinates, we get, $\frac{x+1}{2} = \frac{3+4}{2}. \text{ So, } x = 6$ Similarly, $\frac{6+2}{2} = \frac{5+y}{2}. \text{ So, } y = 3$ \therefore (x, y) = (6,3)	
30	(c)	$\Delta ACD \sim \Delta ABC(AA)$ $\therefore \frac{AC}{AB} = \frac{AD}{AC} (CPST)$ 8/AB = 3/8 This gives $AB = 64/3$ cm. So $BD = AB - AD = 64/3$ -3 = 55/3cm.	1
31	(d)	Any point (x, y) of perpendicular bisector will be equidistant from A & B. $\therefore \sqrt{(x-4)^2 + (y-5)^2} = \sqrt{(x+2)^2 + (y-3)^2}$ Solving we get $-12x - 4y + 28 = 0$ or $3x + y - 7 = 0$	1
32	(b)	$\frac{\cot y^{\circ}}{\cot x^{\circ}} = \frac{AC/BC}{AC/CD} = CD/BC = CD/2CD = \frac{1}{2}$	1
33	(a)	The smallest number by which 1/13 should be multiplied so that its decimal expansion terminates after two decimal points is $13/100$ as $\frac{1}{13} \times \frac{13}{100} = \frac{1}{100} = 0.01$ Ans: 13/100	1
34	(b)	$\Delta ABE \text{ is a right triangle & FDGB is a square of side x cm}$ $\Delta AFD \sim \Delta DGE(AA)$ $\therefore \frac{AF}{DG} = \frac{FD}{GE} (CPST)$ $\frac{16 - x}{x} = \frac{x}{8 - x} (CPST)$ $128 = 24x \text{ or } x = 16/3 \text{ cm}$	1
35	(a)	Since P divides the line segment joining R(-1, 3) and S(9,8) in ratio k:1 : coordinates of P are $(\frac{9k-1}{k+1}, \frac{8k+3}{k+1})$ Since P lies on the line x - y +2=0, then $\frac{9k-1}{k+1} - \frac{8k+3}{k+1} + 2 = 0$ 9k -1 -8k-3 +2k+2 =0 which gives k=2/3	1
36	(c)	Shaded area = Area of semicircle + (Area of half square – Area of two quadrants) = Area of semicircle +(Area of half square – Area of semicircle) = Area of half square = $\frac{1}{2} \times 14 \times 14 = 98 \text{ cm}^2$	1

37	(d)	Let O be the center of the circle. OA = OB = AB =1cm. So $\triangle OAB$ is an equilateral triangle and $\therefore \angle AOB = 60^{\circ}$ Required Area= 8x Area of one segment with r=1cm, $0 = 60^{\circ}$ $= 8x(\frac{60}{360} \times \pi \times 1^{2} - \frac{\sqrt{3}}{4} \times 1^{2})$ $= 8(\pi/6 - \sqrt{3}/4)cm^{2}$	1
38	(b)	Sum of zeroes = $2 + \frac{1}{2} = -\frac{5}{p}$ i.e. $\frac{5}{2} = -\frac{5}{p}$. So p= -2 Product of zeroes = $2x \frac{1}{2} = \frac{r}{p}$ i.e. $r/p = 1$ or $r = p = -2$	1
39	(c)	$2\pi r = 100$. So Diameter = $2r = 100/\pi$ = diagonal of the square. side $\sqrt{2}$ = diagonal of square = $100/\pi$ \therefore side = $100/\sqrt{2\pi} = 50\sqrt{2}/\pi$	1
40	(b)	$3^{x+y} = 243 = 3^{5}$ So $x+y=5$ (1) $243^{x-y} = 3$ $(3^{5})^{x-y} = 3^{1}$ So $5x - 5y = 1$ (2) Since $:\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, so unique solution	1
		SECTION C	
41	(c)	Initially, at t=0, Annie's height is 48ft So, at t =0, h should be equal to 48 $h(0) = -16(0)^2 + 8(0) + k = 48$ So k = 48	1
42	(b)	When Annie touches the pool, her height =0 feet i.e. $-16t^2 + 8t + 48 =0$ above water level $2t^2 - t - 6 = 0$ $2t^2 - 4t + 3t - 6 = 0$ 2t(t-2) + 3(t-2) = 0 (2t + 3) (t-2) = 0 i.e. $t= 2$ or $t= -3/2$ Since time cannot be negative , so $t= 2$ seconds	1
43	(d)	$\begin{array}{l} t=-1 \ \& \ t=2 \ are \ the \ two \ zeroes \ of \ the \ polynomial \ p(t) \\ Then \ p(t)=k \ (t-1)(t-2) \\ &= k(t+1)(t-2) \\ When \ t = 0 \ (initially) \ h_1 = 48 \ ft \\ p(0)=k(0^2-0\ -2)=48 \\ i.e. \ -2k = 48 \\ So \ the \ polynomial \ is \ -24(t^2-t\ -2) = -24t^2+24t+48. \end{array}$	1
44	(c)	A polynomial q(t) with sum of zeroes as 1 and the product as -6 is given by $q(t) = k(t^2 - (sum of zeroes)t + product of zeroes)$ $= k(t^2 - 1t + -6) \dots(1)$ When t=0 (initially) q(0)= 48ft	1

		$q(0)=k(0^2-1(0)-6)=48$	
		i.e. $-6k = 48$ or $k = -8$ Putting $k = -8$ in equation (1), reqd. polynomial is $-8(t^2 - 1t + -6)$ $= -8t^2 + 8t + 48$	
45	(a)	When the zeroes are negative of each other, sum of the zeroes = 0 So, $-b/a = 0$ $-\frac{(k-3)}{-12} = 0$ $+\frac{k-3}{12} = 0$ k-3 = 0, i.e. k = 3.	1
46	(a)	Centroid of \triangle EHJ with E(2,1), H(-2,4) & J(-2,-2) is $\left(\frac{2+-2+-2}{3}, \frac{1+4+-2}{3}\right) = (-2/3, 1)$	1
47	(c)	If P needs to be at equal distance from A(3,6) and G(1,-3), such that A,P and G are collinear, then P will be the mid-point of AG. So coordinates of P will be $\left(\frac{3+1}{2}, \frac{6+-3}{2}\right) = (2, 3/2)$	1
48	(a)	Let the point on x axis equidistant from I(-1,1) and E(2,1) be (x,0) then $\sqrt{(x + 1)^2 + (0 - 1)^2} = \sqrt{(x - 2)^2 + (0 - 1)^2}$ $x^2 + 1 + 2x + 1 = x^2 + 4 - 4x + 1$ 6x = 3 So $x = \frac{1}{2}$. \therefore the required point is ($\frac{1}{2}$, 0)	1
49	(b)	Let the coordinates of the position of a player Q such that his distance from K(-4,1) is twice his distance from E(2,1) be Q(x, y) Then KQ : QE = 2: 1 Q(x, y) = $\left(\frac{2X 2+1X-4}{3}, \frac{2X 1+1X 1}{3}\right)$ = (0,1)	1
50	(d)	Let the point on y axis equidistant from B(4,3) and C(4,-1) be (0,y) then $\sqrt{(4-0)^2 + (3-y)^2} = \sqrt{(4-0)^2 + (y+1)^2}$ $16 + y^2 + 9 - 6y = 16 + y^2 + 1 + 2y$ -8y = -8 So y = 1. \therefore the required point is (0, 1)	1