Marking Scheme

Class- X Session- 2021-22
TERM 1
Subject- Mathematics (Standard)

SECTION A			
QN	Correct Option	HINTS/SOLUTION	$\begin{gathered} \text { MAR } \\ \text { KS } \end{gathered}$
1	(b)	Least composite number is 4 and the least prime number is 2. $\operatorname{LCM}(4,2)$: $\operatorname{HCF}(4,2)=4: 2=2: 1$	1
2	(a)	For lines to coincide: $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ so, $\frac{5}{15}=\frac{7}{21}=\frac{-3}{-k}$ i.e. $\mathrm{k}=9$	1
3	(b)	By Pythagoras theorem The required distance $=\sqrt{ }\left(200^{2}+150^{2}\right)$ $=\sqrt{ }(40000+22500)=\sqrt{ }(62500)=250 \mathrm{~m} .$ So the distance of the girl from the starting point is 250 m .	1
4	(d)	Area of the Rhombus $=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}=\frac{1}{2} \times 24 \times 32=384 \mathrm{~cm}^{2}$. Using Pythagoras theorem $\begin{gathered} \text { side }^{2}=\left(\frac{1}{2} d_{1}\right)^{2}+\left(\frac{1}{2} d_{2}\right)^{2}=12^{2}+16^{2}=144+256=400 \\ \text { Side }=20 \mathrm{~cm} \end{gathered}$ Area of the Rhombus $=$ base x altitude $384=20 \mathrm{x}$ altitude So altitude $=384 / 20=19.2 \mathrm{~cm}$	1
5	(a)	Possible outcomes are (HH), (HT), (TH), (TT) Favorable outcomes(at the most one head) are (HT), (TH), (TT) So probability of getting at the most one head $=3 / 4$	1
6	(d)	Ratio of altitudes $=$ Ratio of sides for similar triangles $\text { So } \mathrm{AM}: \mathrm{PN}=\mathrm{AB}: \mathrm{PQ}=2: 3$	1
7	(b)	$\begin{aligned} & 2 \sin ^{2} \beta-\cos ^{2} \beta=2 \\ & \text { Then } 2 \sin ^{2} \beta-\left(1-\sin ^{2} \beta\right)=2 \\ & 3 \sin ^{2} \beta=3 \text { or } \sin ^{2} \beta=1 \\ & \beta \text { is } 90^{\circ} \end{aligned}$	1
8	(c)	Since it has a terminating decimal expansion, so prime factors of the denominator will be 2,5	1
9	(a)	Lines $\mathrm{x}=\mathrm{a}$ is a line parallel to y axis and $\mathrm{y}=\mathrm{b}$ is a line parallel to x axis. So they will intersect.	1
10	(d)	Distance of point $\mathrm{A}(-5,6)$ from the origin $(0,0)$ is $\sqrt{(0+5)^{2}+(0-6)^{2}}=\sqrt{25+36}=\sqrt{61}$ units	1
11	(b)	$\mathrm{a}^{2}=23 / 25$, then $\mathrm{a}=\sqrt{23} / 5$, which is irrational	1
12	(c)	$\begin{aligned} & \text { LCM X HCF = Product of two numbers } \\ & 36 \mathrm{X} 2=18 \mathrm{X} x \\ & x=4 \end{aligned}$	1
13	(b)	$\tan \mathrm{A}=\sqrt{3}=\tan 60^{\circ}$ so $\angle \mathrm{A}=60^{\circ}$, Hence $\angle \mathrm{C}=30^{\circ}$. So $\cos A \cos C-\sin A \sin C=(1 / 2) x(\sqrt{3} / 2)-(\sqrt{3} / 2) x(1 / 2)=0$	1
14	(a)	$1 \mathrm{x}+1 \mathrm{x}+2 \mathrm{x}=180^{\circ}, \mathrm{x}=45^{\circ} .$ $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are $45^{\circ}, 45^{\circ}$ and 90° resp. $\frac{\sec A}{\operatorname{cosec} B}-\frac{\tan A}{\cot B}=\frac{\sec 45}{\operatorname{cosec} 45}-\frac{\tan 45}{\cot 45}=\frac{\sqrt{2}}{\sqrt{2}}-\frac{1}{1}=1-1=0$	1

15	(d)	$\begin{array}{r} \text { Number of revolutions= } \frac{\text { total distance }}{\text { circumference }}=\frac{176}{2 \times \frac{22}{7} \mathrm{X} 0.7} \\ =40 \end{array}$	1	
16	(b)	$\begin{aligned} & \frac{\text { perimeter of } \triangle \mathrm{ABC}}{\text { perimeter of } \triangle \mathrm{DEF}}=\frac{\mathrm{BC}}{\mathrm{EF}} \\ & \frac{7.5}{\text { perimeter of } \triangle \mathrm{DEF}}=\frac{2}{4} . \text { So perimeter of } \Delta \mathrm{DEF}=15 \mathrm{~cm} \end{aligned}$	1	
17	(b)	Since $\mathrm{DE} \\| \mathrm{BC}, \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ (By AA rule of similarity) So $\frac{A D}{A B}=\frac{D E}{B C}$ i.e. $\frac{3}{7}=\frac{D E}{14}$. So $D E=6 \mathrm{~cm}$	1	
18	(a)	Dividing both numerator and denominator by $\cos \beta$, $\frac{4 \sin \beta-3 \cos \beta}{4 \sin \beta+3 \cos \beta}=\frac{4 \tan \beta-3}{4 \tan \beta+3}=\frac{3-3}{3+3}=0$	1	
19	(d)	$-2(-5 x+7 y=2)$ gives $10 x-14 y=-4$. Now $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=-2$	1	
20	(a)	Number of Possible outcomes are 26 Favorable outcomes are M, A, T, H, E, I, C, S probability $=8 / 26=4 / 13$	1	
		SECTION B		
21	(c)	Since HCF $=81$, two numbers can be taken as 81 x and 81 y , ATQ $81 \mathrm{x}+81 \mathrm{y}=1215$ Or $x+y=15$ which gives four co prime pairs- 1,14 2,13 4,11 7, 8	1	
22	(c)	$\text { Required Area is area of triangle } \begin{aligned} \mathrm{ACD} & =1 / 2(6) 2 \\ & =6 \mathrm{sq} \text { units } \end{aligned}$	1	
23	(b)	$\begin{aligned} & \tan \alpha+\cot \alpha=2 \text { gives } \alpha=45^{\circ} \text {. So tan } \alpha=\cot \alpha=1 \\ & \tan ^{20} \alpha+\cot ^{20} \alpha=1^{20}+1^{20}=1+1=2 \end{aligned}$	1	
24	(a)	Adding the two given equations we get: $348 x+348 y=1740$. So $x+y=5$	1	
25	(c)	LCM of two prime numbers = product of the numbers $221=13 \times 17$. So $\mathrm{p}=17 \& \mathrm{q}=13$ $\therefore 3 p-q=51-13=38$	1	
26	(a)	Probability that the card drawn is neither a king nor a queen $\begin{aligned} & =\frac{52-8}{52} \\ & =44 / 52=11 / 13 \end{aligned}$	1	
27	(b)	Outcomes when 5 will come up at least once are$(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4)$ and $(5,6)$ Probability that 5 will come up at least once $=11 / 36$	1	
28	(c)	$\begin{aligned} & 1+\sin ^{2} \alpha=3 \sin \alpha \cos \alpha \\ & \sin ^{2} \alpha+\cos ^{2} \alpha+\sin ^{2} \alpha=3 \sin \alpha \cos \alpha \\ & 2 \sin ^{2} \alpha-3 \sin \alpha \cos \alpha+\cos ^{2} \alpha=0 \\ & (2 \sin \alpha-\cos \alpha)(\sin \alpha-\cos \alpha)=0 \\ & \therefore \cot \alpha=2 \text { or } \cot \alpha=1 \end{aligned}$	1	
29	(a)	Since ABCD is a parallelogram, diagonals AC and BD bisect each other, \therefore mid point of $A C=$ mid point of $B D$	1	

		$\left(\frac{x+1}{2}, \frac{6+2}{2}\right)=\left(\frac{3+4}{2}, \frac{5+y}{2}\right)$ Comparing the co-ordinates, we get, $\frac{x+1}{2}=\frac{3+4}{2}$. So, $\mathrm{x}=6$ Similarly, $\frac{6+2}{2}=\frac{5+y}{2}$. So, $\mathrm{y}=3$ $\therefore(\mathrm{x}, \mathrm{y})=(6,3)$	
30	(c)	$\begin{aligned} & \triangle \mathrm{ACD} \sim \Delta \mathrm{ABC}(\mathrm{AA}) \\ & 8 / \mathrm{AB}=3 / 8 \\ & \text { This gives } \mathrm{AB}=64 / 3 \mathrm{~cm} . \\ & \text { So } \mathrm{BD}=\mathrm{AB}-\mathrm{AD}=64 / 3-3=55 / 3 \mathrm{~cm} . \end{aligned}$	1
31	(d)	Any point (x, y) of perpendicular bisector will be equidistant from A \& B. $\begin{aligned} & \therefore \sqrt{(x-4)^{2}+(y-5)^{2}}=\sqrt{(x+2)^{2}+(y-3)^{2}} \\ & \text { Solving we get }-12 \mathrm{x}-4 \mathrm{y}+28=0 \text { or } 3 \mathrm{x}+\mathrm{y}-7=0 \end{aligned}$	1
32	(b)	$\frac{\cot y^{\circ}}{\cot x^{\circ}}=\frac{\mathrm{AC} / \mathrm{BC}}{A C / C D}=\mathrm{CD} / \mathrm{BC}=\mathrm{CD} / 2 \mathrm{CD}=1 / 2$	1
33	(a)	The smallest number by which $1 / 13$ should be multiplied so that its decimal expansion terminates after two decimal points is $13 / 100$ as $\frac{1}{13} \times \frac{13}{100}=\frac{1}{100}=$ 0.01 Ans: 13/100	1
34	(b)	$\triangle \mathrm{ABE}$ is a right triangle \& FDGB is a square of side xcm $\begin{aligned} & \Delta \mathrm{AFD} \sim \Delta \operatorname{DGE}(\mathrm{AA}) \\ & \therefore \frac{\mathrm{AF}}{\mathrm{DG}}=\frac{\mathrm{FD}}{\mathrm{GE}}(\mathrm{CPST}) \\ & \frac{16-\mathrm{x}}{\mathrm{x}}=\frac{\mathrm{x}}{8-\mathrm{x}}(\mathrm{CPST}) \\ & 128=24 \mathrm{x} \text { or } \mathrm{x}=16 / 3 \mathrm{~cm} \end{aligned}$	1
35	(a)	Since P divides the line segment joining $\mathrm{R}(-1,3)$ and $\mathrm{S}(9,8)$ in ratio $\mathrm{k}: 1 \therefore$ coordinates of P are $\left(\frac{9 \mathrm{k}-1}{\mathrm{k}+1}, \frac{8 \mathrm{k}+3}{\mathrm{k}+1}\right)$ Since P lies on the line $x-y+2=0$, then $\frac{9 k-1}{k+1}-\frac{8 k+3}{k+1}+2=0$ $9 \mathrm{k}-1-8 \mathrm{k}-3+2 \mathrm{k}+2=0$ which gives $\mathrm{k}=2 / 3$	1
36	(c)	Shaded area $=$ Area of semicircle + (Area of half square - Area of two quadrants) $=$ Area of semicircle + (Area of half square - Area of semicircle) $=$ Area of half square $=1 / 2 \times 14 \times 14=98 \mathrm{~cm}^{2}$	1

37	(d)	Let O be the center of the circle. $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}=1 \mathrm{~cm}$. So $\triangle \mathrm{OAB}$ is an equilateral triangle and $\therefore \angle \mathrm{AOB}=60^{\circ}$ Required Area $=8 \mathrm{x}$ Area of one segment with $\mathrm{r}=1 \mathrm{~cm}, \theta=60^{\circ}$ $\begin{aligned} & =8 \times\left(\frac{60}{360} \times \pi \times 1^{2}-\frac{\sqrt{3}}{4} \times 1^{2}\right) \\ & =8(\pi / 6-\sqrt{3} / 4) \mathrm{cm}^{2} \end{aligned}$	1
38	(b)	$\begin{aligned} & \text { Sum of zeroes }=2+1 / 2=-5 / \mathrm{p} \\ & \text { i.e. } 5 / 2=-5 / \mathrm{p} \text {. So } \mathrm{p}=-2 \\ & \text { Product of zeroes }=2 \mathrm{x} 1 / 2=\mathrm{r} / \mathrm{p} \\ & \qquad \text { i.e. } \mathrm{r} / \mathrm{p}=1 \text { or } \mathrm{r}=\mathrm{p}=-2 \end{aligned}$	1
39	(c)	$\begin{aligned} & 2 \pi r=100 . \text { So Diameter }=2 r=100 / \pi=\text { diagonal of the square. } \\ & \text { side } \sqrt{ } 2=\text { diagonal of square }=100 / \pi \\ & \therefore \text { side }=100 / \sqrt{ } 2 \pi=50 \sqrt{ } 2 / \pi \end{aligned}$	1
40	(b)	$\begin{align*} & 3^{x+y}=243=3^{5} \\ & \text { So } x+y=5---- \tag{1}\\ & 243^{x-y}=3 \\ & \left(3^{5}\right)^{x-y}=3^{1} \end{align*}$ So $5 \mathrm{x}-5 \mathrm{y}=1$ Since : $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, so unique solution	1
		SECTION C	
41	(c)	Initially, at $\mathrm{t}=0$, Annie's height is 48 ft So, at $\mathrm{t}=0$, h should be equal to 48 $h(0)=-16(0)^{2}+8(0)+k=48$ $\text { So } k=48$	1
42	(b)	When Annie touches the pool, her height $=0$ feet i.e. $-16 t^{2}+8 t+48=0$ above water level $\begin{aligned} & 2 t^{2}-t-6=0 \\ & 2 t^{2}-4 \mathrm{t}+3 \mathrm{t}-6=0 \\ & 2 \mathrm{t}(\mathrm{t}-2)+3(\mathrm{t}-2)=0 \\ & (2 \mathrm{t}+3)(\mathrm{t}-2)=0 \\ & \text { i.e. } \mathrm{t}=2 \text { or } \mathrm{t}=-3 / 2 \end{aligned}$ Since time cannot be negative, so $t=2$ seconds	1
43	(d)	```\(t=-1 \& t=2\) are the two zeroes of the polynomial \(p(t)\) Then \(\mathrm{p}(\mathrm{t})=\mathrm{k}(\mathrm{t}-\mathrm{-1})(\mathrm{t}-2)\) \(=\mathrm{k}(\mathrm{t}+1)(\mathrm{t}-2)\) When \(t=0\) (initially) \(h_{1}=48 f t\) \(\mathrm{p}(0)=\mathrm{k}\left(0^{2}-0-2\right)=48\) i.e. \(-2 \mathrm{k}=48\)``` So the polynomial is $-24\left(\mathrm{t}^{2}-\mathrm{t}-2\right)=-24 \mathrm{t}^{2}+24 \mathrm{t}+48$.	1
44	(c)	A polynomial $\mathrm{q}(\mathrm{t})$ with sum of zeroes as 1 and the product as -6 is given by $\mathrm{q}(\mathrm{t})=\mathrm{k}\left(\mathrm{t}^{2}-(\right.$ sum of zeroes $) \mathrm{t}+$ product of zeroes $)$ $\begin{equation*} =\mathrm{k}\left(\mathrm{t}^{2}-1 \mathrm{t}+-6\right) \tag{1} \end{equation*}$ When $\mathrm{t}=0$ (initially) $\mathrm{q}(0)=48 \mathrm{ft}$	1

		$\begin{aligned} & \begin{aligned} & \mathrm{q}(0)=\mathrm{k}\left(0^{2}-1(0)-6\right)=48 \\ & \text { i.e. }-6 \mathrm{k}=48 \text { or } \mathrm{k}=-8 \\ & \text { Putting } \mathrm{k}=-8 \text { in equation }(1), \text { reqd. polynomial is }-8\left(\mathrm{t}^{2}-1 \mathrm{t}+-6\right) \\ &=-8 \mathrm{t}^{2}+8 \mathrm{t}+48 \end{aligned} \end{aligned}$	
45	(a)	When the zeroes are negative of each other, sum of the zeroes $=0$ So, $-\mathrm{b} / \mathrm{a}=0$ $\begin{aligned} & \quad-\frac{(k-3)}{-12}=0 \\ & +\frac{\mathrm{k}-3}{12}=0 \\ & \mathrm{k}-3=0, \end{aligned}$ $\text { i.e. } \mathrm{k}=3 \text {. }$	1
46	(a)	Centroid of $\Delta \mathrm{EHJ}$ with $\mathrm{E}(2,1), \mathrm{H}(-2,4) \& \mathrm{~J}(-2,-2)$ is $\left(\frac{2+-2+-2}{3}, \frac{1+4+-2}{3}\right)=(-2 / 3,1)$	1
47	(c)	If P needs to be at equal distance from $\mathrm{A}(3,6)$ and $\mathrm{G}(1,-3)$, such that A, P and G are collinear, then P will be the mid-point of AG. So coordinates of P will be $\left(\frac{3+1}{2}, \frac{6+-3}{2}\right)=(\mathbf{2}, \mathbf{3} / \mathbf{2})$	1
48	(a)	Let the point on x axis equidistant from $\mathrm{I}(-1,1)$ and $\mathrm{E}(2,1)$ be $(\mathrm{x}, 0)$ then $\sqrt{(x+1)^{2}+(0-1)^{2}}=\sqrt{(x-2)^{2}+(0-1)^{2}}$ $x^{2}+1+2 x+1=x^{2}+4-4 x+1$ $6 x=3$ So $x=1 / 2$. \therefore the required point is $(1 / 2,0)$	1
49	(b)	Let the coordinates of the position of a player Q such that his distance from $K(-4,1)$ is twice his distance from $E(2,1)$ be $Q(x, y)$ Then $\mathrm{KQ}: \mathrm{QE}=2: 1$ $\begin{aligned} \mathrm{Q}(\mathrm{x}, \mathrm{y}) & =\left(\frac{2 \mathrm{x} 2+1 \mathrm{x}-4}{3}, \frac{2 \mathrm{x} 1+1 \mathrm{X} 1}{3}\right) \\ & =(0,1) \end{aligned}$	1
50	(d)	Let the point on y axis equidistant from $\mathrm{B}(4,3)$ and $\mathrm{C}(4,-1)$ be $(0, \mathrm{y})$ then $\sqrt{(4-0)^{2}+(3-y)^{2}}=\sqrt{(4-0)^{2}+(y+1)^{2}}$ $16+y^{2}+9-6 y=16+y^{2}+1+2 y$ $-8 y=-8$ So $y=1$. \therefore the required point is $(0,1)$	1

