	Sample Question Paper CLASS: XII Session: 2022-23 Applied Mathematics (Code-241) Marking Scheme	
	Section - A Each question carries 1-mark weightage	
1.	$\begin{aligned} & x \equiv 27(\bmod 4) \\ & \Rightarrow x-27=4 k, \text { for some integer } k \\ & \Rightarrow x=31 \text { as } 27<x \leq 36 \end{aligned}$ (C) option	
2.	(D) option	
3.	$\mathrm{n}=26 \Rightarrow\|t\|=3.07>t_{25}(0.05)=2.06$ (B) option	
4.	$\mathrm{n}=34 \Rightarrow v=34-1=33$ (B) option	
5.	Speed of boat downstream $=u=10 \mathrm{~km} / \mathrm{h}$ And, speed of boat upstream $=v=6 \mathrm{~km} / \mathrm{h}$ \Rightarrow Speed of stream $=\frac{1}{2}(u-v)=2 \mathrm{~km} / \mathrm{h}$ (B) option	
6.	(C) option	
7.	$\begin{aligned} & \text { Truck A carries water }=100-\left(\frac{20 \times 1500}{1000}\right)=70 l \\ & \text { Truck B carries water }=80-\left(\frac{20 \times 1000}{1000}\right)=60 l \end{aligned}$ (C) option	
8.	Let the face value of the bond $=x$ Then, $\frac{10}{200} x=1800 \Rightarrow x=36000$ (D) option	
9.	(C) option	
10.	(D) option	
11.	$\mathrm{D}=\frac{C-S}{n}=\frac{480000-25000}{10}=45500$ (B) option	
12.	(A) option	
13.	$\begin{aligned} & \int \frac{d y}{y \log y}=\int \frac{d x}{x} \\ & \Rightarrow \log (\log y)=\log \|x\|+\log \|C\| \\ & \Rightarrow \log (\log y)=\log \|C x\| \\ & \Rightarrow y=e^{\|C x\|} \end{aligned}$	

	(B) option	
14.	$\left[\left(\frac{60000}{10000}\right)^{\frac{1}{4}}-1\right] \times 100=[\sqrt[4]{6}-1] \times 100$ (C) option	
15.		
16.	(D) option	
17.	(C) option	
18.	(B) option	
19.	$P($ Win in one game $)=P($ Lose in one game $)=1 / 2$ $\Rightarrow P$ (Beena to win in 3 out of 4 games) $={ }^{4} C_{3} \cdot\left(\frac{1}{2}\right)^{4}=\frac{1}{4}=25 \%$ Assertion is correct and Reason is the correct explanation for it (A)option	
20.	Effective rate of interest $=$ Nominal rate - inflation rate $=12.5-2=10.5 \%$ Assertion is correct Reason is true but not supportive of assertion (B) option	
Section - B Each question carries 2-mark weightage		
21.	$\begin{aligned} & \mathrm{P}=250000, \mathrm{R}=7500, i=r / 400 \\ & \Rightarrow 250000=\frac{7500 \times 400}{r} \Rightarrow r=12 \end{aligned}$	1
	$\Rightarrow r=12$	1
22.	$\begin{aligned} & \mathrm{a}-8=1 \Rightarrow a=9 \\ & 3 \mathrm{~b}=-2 \Rightarrow b=-\frac{2}{3} \\ & -\mathrm{c}+2=-28 \Rightarrow c=30 \end{aligned}$	1
	$\Rightarrow 2 \mathrm{a}+3 \mathrm{~b}-\mathrm{c}=-14$	1
	OR Expanding C_{1}, we get $\Delta=1\left(2 x^{2}+4\right)-2(-4 x-20)=86$	1
	$\begin{gathered} \Rightarrow x^{2}+4 x-21=0 \\ \quad \therefore x=3,-7 \end{gathered}$	1
23.	Let the number of hardcopy and paperback copies be x and y respectively \Rightarrow Maximum profit $Z=(72 x+40 y)-(9600+56 x+28 y)=16 x+12 y-9600$	1

	Subject to constraints: $\begin{aligned} & x+y \leq 960 \\ & 5 x+y \leq 2400 \\ & x, y \geq 0 \\ & \hline \end{aligned}$	1
24.	Speed of boat in still waters $=x \mathrm{~km} / \mathrm{h}$ Speed of stream $=y \mathrm{~km} / \mathrm{h}$ Distance travelled $=d \mathrm{~km}$ Time taken to travel downstream $=\frac{d}{x+y}$ Time taken to travel upstream $=\frac{d}{x-y}$	1
	Then, $\quad \frac{2 d}{x+y}=\frac{d}{x-y} \Rightarrow x: y=3: 1$	1
	OR Param runs 5 m in 3 seconds \Rightarrow time taken to run $200 \mathrm{~m}=\frac{3}{5} \times 200=120$ seconds	1
	Anuj 's time $=120-3=117$ seconds	1
25.	$\begin{aligned} & V_{f}=437500, V_{i}=350000 \\ & \text { Nominal rate }=\frac{V_{f}-V_{i}}{V_{i}} \times 100 \end{aligned}$	1
	$=\frac{437500-350000}{350000} \times 100=25 \%$	1
Section - C Each question carries 3 -mark weightage		
26.	$\begin{aligned} f^{\prime}(x)=x^{3}-6 x^{2}+11 x-6 & =(x-1)(x-2)(x-3) \\ & \Rightarrow x=1,2,3 \end{aligned}$	1
	Strictly increasing in (1,2) $\cup(3, \infty)$	1
	Strictly decreasing in (-m,1) $\cup(2,3)$	1
27.	Daily diet of team $A=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]\left[\begin{array}{ll}2500 & 65 \\ 1900 & 50 \\ 2000 & 54\end{array}\right]=\left[\begin{array}{c}12700 \\ 334\end{array}\right]$ Team A consumes 12700 calories and 334 g vitamin	1.5
	Daily diet of team $B=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]\left[\begin{array}{ll}2500 & 65 \\ 1900 & 50 \\ 2000 & 54\end{array}\right]=\left[\begin{array}{c}10300 \\ 273\end{array}\right]$ Team B consumes 10300 calories and 273 g vitamin	1.5
28.	$\begin{aligned} & \int \frac{d x}{\left(1+e^{x}\right)\left(1+e^{-x}\right)} \\ & =\int \frac{e^{x} d x}{\left(1+e^{x}\right)^{2}} \end{aligned}$	3

	$\begin{aligned} & =\int \frac{d t}{t^{2}}, \text { where } t=e^{x}+1 \text { and } d t=e^{x} d x \\ & =\frac{-1}{t}+C \\ & =\frac{-1}{1+e^{x}}+C \end{aligned}$ OR $\int_{I I}^{x} \log \left(1+x^{2}\right) d x$, Integration by parts $\begin{aligned} & =\log \left(1+x^{2}\right) \cdot \int x d x-\int\left[\frac{d}{d x} \log \left(1+x^{2}\right) \cdot \int x d x\right] d x \\ & =\frac{x^{2}}{2} \log \left(1+x^{2}\right)-\int\left[\frac{2 x}{1+x^{2}} \cdot \frac{x^{2}}{2}\right] d x \\ & =\frac{x^{2}}{2} \log \left(1+x^{2}\right)-\int \frac{x^{3}}{1+x^{2}} d x \\ & =\frac{x^{2}}{2} \log \left(1+x^{2}\right)-\int\left[x-\frac{x}{1+x^{2}}\right] d x \\ & =\frac{x^{2}}{2} \log \left(1+x^{2}\right)-\frac{x^{2}}{2}+\frac{1}{2} \log \left(1+x^{2}\right)+C \\ & =\frac{1}{2}\left[\left(1+x^{2}\right) \log \left(1+x^{2}\right)-x^{2}\right]+C \end{aligned}$	
29.	Under pure competition, $p_{d}=p_{s}$ $\begin{aligned} & \Rightarrow \frac{8}{x+1}-2=\frac{x+3}{2} \\ & \Rightarrow x^{2}+8 x-9=0 \\ & \Rightarrow x=-9,1 \\ & \therefore x=1 \end{aligned}$	1.5
	When $x_{0}=1 \Rightarrow p_{0}=2$ $\therefore \text { Produce surplus }=2-\int_{0}^{1} \frac{x+3}{2} d x=2-\left[\frac{x^{2}}{4}+\frac{3 x}{2}\right]=\frac{1}{4}$	1.5
	$\begin{aligned} & p=274-x^{2} \\ & \Rightarrow R=p x=274 x-x^{3} \\ & \frac{d R}{d x}=274-3 x^{2} \end{aligned}$ Given MR $=4+3 x$ In profit monopolist market, $\begin{aligned} & \mathrm{MR}=\frac{d R}{d x} \Rightarrow 4+3 x=274-3 x^{2} \\ & \Rightarrow x^{2}+x-90=0 \end{aligned}$	1.5

	$\begin{aligned} & \Rightarrow x=-10,9 \\ & \therefore x=9 \end{aligned}$	
	When $x_{0}=9 \Rightarrow p_{0}=193$ $\begin{aligned} & \therefore \text { Consumer surplus }=\int_{0}^{9}(274\left.-x^{2}\right) d x-193 \times 9 \\ &= {\left[274 x-\frac{x^{3}}{3}\right] } \\ &=486 \end{aligned}$	1.5
30.	$\begin{aligned} & \text { Purchase }=₹ 40,00,000 \\ & \text { Down payment }=x \\ & \text { Balance }=40,00,000-x \\ & i=\frac{9}{1200}=0.0075, \mathrm{n}=25 \times 12=300 \\ & \mathrm{E}=₹ 30,000 \end{aligned}$	1
	$\begin{aligned} & \Rightarrow 30000=\frac{(4000000-x) \times 0.0075}{1-(1.0075)^{-300}} \\ & \Rightarrow 30000=\frac{(4000000-x) \times 0.0075}{1-0.1062} \\ & \Rightarrow x=424800 \\ & \text { Down payment }=₹ 4,24,800 \end{aligned}$	2
31.	$\begin{aligned} & \mathrm{n}=10 \times 2=20, \mathrm{~S}=10,21,760, i=\frac{5}{200}=0.025, \mathrm{R}=? \\ & \mathrm{~S}=\mathrm{R}\left[\frac{(1+i)^{n}-1}{i}\right] \end{aligned}$	1.5
	$\begin{aligned} & \Rightarrow 1021760=R\left[\frac{(1+0.025)^{20}-1}{0.025}\right] \\ & \Rightarrow 1021760=R\left[\frac{1.6386-1}{0.025}\right] \\ & \Rightarrow R=\left[\frac{1021760 \times 0.025}{0.6386}\right] \\ & \Rightarrow R=₹ 40,000 \end{aligned}$ Mr Mehra set aside an amount of ₹ 40,000 at the end of every six months	1.5
	Section - D Each question carries 5-mark weightage	
32.	Probability of defective bucket $=0.03$ $\begin{aligned} & n=100 \\ & m=n p=100 \times 0.03=3 \end{aligned}$ Let $\mathrm{X}=$ number of defective buckets in a sample of 100 $\mathrm{P}(\mathrm{X}=\mathrm{r})=\frac{m^{r} e^{-m}}{r!}, r=0,1,2,3, \ldots .$	1
	(i) P (no defective bucket) $=\mathrm{P}(\mathrm{r}=0)=\frac{3^{0} e^{-3}}{0!}=0.049$	2
	$\begin{aligned} \text { (ii) } \quad & \mathrm{P} \text { (at most one defective bucket })=P(r=0,1) \\ = & \frac{3^{0} e^{-3}}{0!}+\frac{3^{1} e^{-3}}{1!} \end{aligned}$	2

	$\begin{aligned} & =0.049+0.147 \\ & =0.196 \end{aligned}$	
	OR $\mathrm{X}=\text { scores of students, } \mu=45, \sigma=5 .$	1
	$\begin{aligned} & \text { (i) } \quad \text { When } X=45, Z=0 \\ & P(X>45)=P(Z>0)=0.5 \\ & \Rightarrow 50 \% \text { students scored more than the mean score } \end{aligned}$	2
	$\begin{aligned} & \text { (ii) When } \mathrm{X}=30, Z=-3 \text { and when } \mathrm{X}=50, Z=1 \\ & \mathrm{P}(30<\mathrm{X}<50)=\mathrm{P}(-3<\mathrm{Z}<1)=\mathrm{P}(-3<\mathrm{Z} \leq 1) \\ & =\mathrm{P}(-3<Z \leq 0)+\mathrm{P}(0 \leq \mathrm{Z}<1) \\ & =\mathrm{P}(0 \leq Z<3)+\mathrm{P}(0 \leq \mathrm{Z}<1) \\ & =0.4987+0.3413=0.84 \\ & \Rightarrow 84 \% \text { students scored between } 30 \text { and } 50 \text { marks } \end{aligned}$	2
33.	Let x be the number of guests for the booking Clearly, $x>100$ to avail discount \therefore Profit, $\mathrm{P}=\left[4800-\frac{200}{10}(x-100)\right] x=6800 x-20 x^{2}$	2
	$\Rightarrow \frac{d P}{d x}=6800-40 x \Rightarrow x=170$	1
	$\text { As } \frac{d^{2} P}{d x^{2}}=-40<0, \forall x$	1
	A booking for 170 guests will maximise the profit of the company And, Profit = ₹ 5,78,000	1
	OR $\begin{aligned} & P(x)=R(x)-C(x) \\ & =5 x-\left(100+0.025 x^{2}\right) \end{aligned}$	2
	$\Rightarrow \mathrm{P}^{\prime}(\mathrm{x})=5-0.05 \mathrm{x} \Rightarrow x=100$	1
	As $\mathrm{P}^{\prime \prime}(\mathrm{x})=-0.05<0, \forall x$	1
	\therefore Manufacturing 100 dolls will maximise the profit of the company And, Profit = ₹ 1,50,000	1
34.	Let the number of tables and chairs be x and y respectively (Max profit) $\mathrm{Z}=22 x+18 y$ Subject to constraints: $\begin{aligned} & x+y \leq 20 \\ & 3 x+2 y \leq 48 \\ & x, y \geq 0 \end{aligned}$	1.5

| | | |
| :--- | :--- | :--- | :--- |

| | |
| :--- | :--- | :--- | :--- | :--- |

	$P(X)$	$\frac{1}{24}$	$\frac{1}{12}$	$\frac{3}{8}$	$\frac{1}{2}$				
	$X P(X)$	$\frac{9600}{24}$	$\frac{12000}{12}$	$\frac{60000}{8}$	$\frac{50000}{2}$				
:---	:---								
$\therefore \mathrm{E}(\mathrm{X})=₹ 33,900$									

