Marking Scheme Applied Mathematics Term - I

Code-241

Q.N.	Correct option	Hints/Solutions
		Section – A
1	С	$5 \odot_8 11 = (5 \times 11) \mod 8 = 55 \mod 8 = 7$
2	а	For distinct $x, y > 0$; $AM > GM \Rightarrow \frac{x+y}{2} > \sqrt{xy} \Rightarrow x + y > 2\sqrt{xy}$
3	C	Let x be the speed of the stream
		$\therefore 8 + x = 3(8 - x) \Longrightarrow 4x = 16 \Longrightarrow x = 4 \text{km/h}$
4	d	Since $3 (x+4)$ is true for $x = 35$
5	d	$ adj(A) = A ^{n-1} \Rightarrow adj(A) = (-2)^2 = 4$ The summation of product of a_{ij} of 2 nd column with corresponding c_{ij} of 3
6	а	
		column =0
7	C	$ AB = 12 \implies A B = 12$ $\implies A = 12 \implies A = -2$
8	а	$\Rightarrow -4 \mathbf{A} = 12 \Rightarrow \mathbf{A} = -3$ If $\Delta = 0$ and at least (one of Δ_x , Δ_y , Δ_z) $\neq 0$
Ŭ	ŭ	The system of linear equations has no solution
9	С	$C(x) = x^2 + 30x + 1500$
	-	MC = C'(x) = 2x + 30
		<i>MC</i> when 10 units are produced = $C'(10) = ₹50$
10	С	$y = \frac{1}{x} \Longrightarrow \frac{dy}{dx} = -\frac{1}{x^2} < 0 \text{ for } (-\infty, 0) and (0, \infty)$
11	b	dy (dy)
	6	$y = x^{3} + x \Longrightarrow \frac{dy}{dx} = 3x^{2} + 1 \Longrightarrow \left(\frac{dy}{dx}\right)_{x=1} = 4$
10		$\therefore \text{ Equation to target is } y - 2 = 4(x - 1) \Rightarrow 4x - y = 2^{x - 1}$ Expected number of votes= $np = \frac{70}{100} \times 120000 = 84000$
12	b	
13	d	The total area under the normal distribution curve above the base line is 1
14	C	$\sum p_i = 1 \Longrightarrow 7k = 1 \Longrightarrow k = \frac{1}{7}$
		Now, $P(x \ge 3) = 3k = \frac{3}{7}$
		7
15	b	For Poisson distribution
		Mean = variance = $np = 20000 \times \frac{1}{10000} = 2$
16	d	$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = \text{Total probability} = 1$
17	b	$p = 0.05 = \frac{1}{20}, q = \frac{19}{20}$
		$P(x \ge 1) = 1 - P(0) = 1 - 6_{c_0} (\frac{1}{20})^0 (\frac{19}{20})^6 = 1 - (\frac{19}{20})^6$
18	C	In Laspeyre's price index the weight are taken as base year quantities
19	а	$P_{01}^{P} = \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}} \times 100 = \frac{506}{451} \times 100 = 112.19$
20	C	Marshall- Edgeworth formula uses the arithmetic mean of the base and current year quantities.

		Section –B
21	С	Since Vijay is faster by 4 secs.
		: he beats Samuel by $=\frac{100}{16} \times 4 = 25$ meters
22	b	∵ 876 (mod24) = 12
		$ m \div$ 8.40 PM will change to 8.40 AM after 12 hours, further after 30 minutes the time
		will be 9.10 AM
23	b	Let total capital be = x & let C's contribution = y, B's contribution = $\frac{x}{3}$, A's
		Contribution = $\frac{x}{3} + y$.
		Now $(A+B+C)$'s contribution = $x \Rightarrow x = 6y$
		hence their contributions are $2y + y$: $2y$: y i.e., in the ratio $3:2:1$
24	d	The relation R_m defined as $a \equiv b \pmod{m}$ is reflexive, symmetric and transitive
25	b	 ∴ R_m is an equivalent relation Time ratio = 2 : 3 : 4
25	b	Profit sharing ratio = $6:7:8$
		Investment ratio = $\frac{6}{2}$: $\frac{7}{3}$: $\frac{8}{4}$ ($\frac{Profit}{Time}$)
		= 9:7:6
26	С	$2a + b + c - 3d = b + c (\because a = d = 0)$
_		$= b + (-b)(\because c = -b)$
		= 0
27	d	$\therefore 1 - a_{11}, 1 - a_{22} > 0$ and $ I - A > 0$ and it
		is true only for $\begin{pmatrix} 0.3 & 0.2 \\ 0.1 & 0.5 \end{pmatrix}$
28	•	y = y has a sharp point at $y = 0$
20	С	y = x has a sharp point at $x = 0y = x $ is continuous but not differentiable at $x = 0$
29	а	$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2a}{2at} = \frac{1}{t} \Longrightarrow \frac{d^2y}{dx^2} = -\frac{1}{t^2} \times \frac{dt}{dx} = -\frac{1}{2at^3}$
30		$\frac{dx - dx/dt - 2at - t - dx^2 - t^2 \wedge dx - 2at^3}{TC = VC + FC = x^2 + 2x + 10000}$
30	C	$AC = x + 2 + \frac{10000}{x}$
		X
		$\frac{d(AC)}{dx} = 1 - \frac{10000}{x^2} = 0 \implies x = 100$
31	а	Prize (x_i) p_i $x_i p_i$
		$500000 \frac{1}{10000} 50$
		$0 \frac{9999}{10000} 0$
		So, $\sum x_i p_i = 50$
		Net expected gain = $50 - 100 = -50$
		So gain is -50
32	С	$P(r < 2) = P(0 \text{ or } 1) = 10_{c_0}(\frac{1}{2})^{10} + 10_{c_1}(\frac{1}{2})^{10} = \frac{1+10}{1024} = \frac{11}{1024}$
	d	$n = 100, \ p = \frac{1}{10}, \ q = \frac{9}{10}$
33		
		$\sigma = \sqrt{npq} = \sqrt{100 \times \frac{1}{10} \times \frac{9}{10}} = 3$
34	а	$\frac{1}{P(x > 518) = 1 - p(x < 518)}$
		= 1 - P(z < 1) = 1 - 0.8413
	<u> </u>	= 0.1587
35	b	P(x < 54) = P(z < 1.5)
		= 0.9332 - 93.32.06
		= 93.32 %

36	b	$\frac{\Sigma P_1}{\Sigma P_0} \times 100 = \frac{340}{300} = 113.34$
37	b	$\frac{2P_0}{P_{01}^F = \sqrt{(P_{01}^L \times P_{01}^P)} = \sqrt{118.4 \times 117.5} = 117.95$
38	C	Since, L: P = 28: 27, $\therefore \frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_0 q_1}{\sum p_1 q_1} = \frac{28}{27}$
		$ \sum p_0 q_0 \qquad \sum p_1 q_1 \qquad 27 $ $ \Rightarrow 9x + 36 = 40 + 8x \Rightarrow x = 4 $
39	а	
		$\frac{\Sigma\left(\frac{p_1}{p_0}\right)(p_0q_0)}{\Sigma(p_0q_0)} \times 100$
40	d	Time reversal Test is satisfied by Fishers ideal index
41	а	C = -5% $d = 10%$ $m = 7%$
		(d-m): (m-c)=1:4
10		Quantity sold at 10 % profit = $\frac{4}{5} \times 250 = 200$ Kg
42	d	Portion of cistern filled by both pipes in 1 hour = $\frac{1}{8} + \frac{1}{12} = \frac{5}{24}$.
		Time taken by both pipes to fill the cistern = $4 h 48$ mints
		Time taken to fill tank due to leakage = 5 h
		Work done by leakage in 1 h= $\frac{5}{24} - \frac{1}{5} = \frac{1}{120}$
40		Time taken by leakage to empty the tank=120 h $75x-x^2$
43	а	$TR = px = \frac{75x - x^2}{3}$
		$P = TR - TC = \frac{75x - x^2}{3} - (3x + 100)$
44	d	$\frac{dP}{dx} = 22 - \frac{2}{3}x = 0 \implies x = 33$ $P(X \ge 1) = 1 - P(0) = 1 - \frac{e^{-2}(2)^0}{0!}$
	•	
45	•	$= 1 - e^{-2} = 0.8647$ $P (10 < \times < 30)$
45	С	= P(-2.5 < Z < 2.5)
		= P(z < 2.5) - P(z < -2.5)
		= 0.9876
46	b	Since elements of technology matrix a_{ij} , represents units of sector <i>i</i> to
		produce 1 unit of sector j
		$\therefore \begin{pmatrix} 0.50 \\ 0.10 \end{pmatrix}$ is the technology matrix
47	С	$ \begin{array}{c} \vdots \begin{pmatrix} 0.50 & 0.25 \\ 0.10 & 0.25 \end{pmatrix} \text{ is the technology matrix} \\ I - A = \begin{pmatrix} 0.50 & -0.25 \\ -0.10 & 0.75 \end{pmatrix} \Longrightarrow (I - A)^{-1} = \frac{20}{7} \begin{pmatrix} 0.75 & 0.25 \\ 0.1 & 0.5 \end{pmatrix} $
		$=\frac{1}{7}\begin{pmatrix}15 & 5\\2 & 10\end{pmatrix}$ System is viable if $ I - A > 0$ and
48	b	System is viable if $ I - A > 0$ and
		$1 - a_{11} > 0, \ 1 - a_{22} > 0$
49	3	$Y = (I = A) = 1 D = \frac{1}{15} (15 - 5)(7000) = (25000)$
	a	$X = (I - A)^{-1}D = \frac{1}{7} {\binom{15}{2}} {\binom{7000}{14000}} = {\binom{25000}{22000}}$
50	d	Internal consumption=total production-external demand
		$=\binom{25000}{22000} - \binom{7000}{14000} = \binom{18000}{8000}$