Marking Scheme Applied Mathematics Term - I
 Code-241

Q.N.	Correct option	Hints/Solutions
		Section-A
1	c	$5 \odot_{8} 11=(5 \times 11) \bmod 8=55 \bmod 8=7$
2	a	For distinct $x, y>0 ; A M>G M \Longrightarrow \frac{x+y}{2}>\sqrt{x y} \Rightarrow x+y>2 \sqrt{x y}$
3	c	Let x be the speed of the stream $\therefore 8+x=3(8-x) \Rightarrow 4 \mathrm{x}=16 \Rightarrow \mathrm{x}=4 \mathrm{~km} / \mathrm{h}$
4	d	Since $3 \mid(x+4)$ is true for $x=35$
5	d	$\|\operatorname{adj}(A)\|=\|A\|^{n-1} \Rightarrow\|\operatorname{adj}(\mathrm{~A})\|=(-2)^{2}=4$
6	a	The summation of product of $a_{i j}$ of $2^{\text {nd }}$ column with corresponding $c_{i j}$ of 3 column $=0$
7	c	$\begin{aligned} & \|A B\|=12 \Rightarrow\|\mathrm{~A}\|\|B\|=12 \\ & \Rightarrow-4\|\mathrm{~A}\|=12 \Rightarrow\|\mathrm{~A}\|=-3 \end{aligned}$
8	a	If $\Delta=0$ and at least (one of $\left.\Delta_{x}, \Delta_{y}, \Delta_{z}\right) \neq 0$ The system of linear equations has no solution
9	c	$\begin{aligned} & C(x)=x^{2}+30 x+1500 \\ & M C=C^{\prime}(x)=2 x+30 \end{aligned}$ $M C$ when 10 units are produced $=C^{\prime}(10)=₹ 50$
10	c	$y=\frac{1}{x} \Rightarrow \frac{d y}{d x}=-\frac{1}{x^{2}}<0$ for $(-\infty, 0)$ and $(0, \infty)$
11	b	$y=x^{3}+x \Rightarrow \frac{d y}{d x}=3 x^{2}+1 \Rightarrow\left(\frac{d y}{d x}\right)_{x=1}=4$ \therefore Equation to target is $y-2=4(x-1) \Rightarrow 4 \mathrm{x}-\mathrm{y}=2$
12	b	Expected number of votes $=n p=\frac{70}{100} \times 120000=84000$
13	d	The total area under the normal distribution curve above the base line is 1
14	c	$\begin{aligned} & \sum p_{i}=1 \Rightarrow 7 \mathrm{k}=1 \Rightarrow \mathrm{k}=\frac{1}{7} \\ & \text { Now, } P(x \geq 3)=3 k=\frac{3}{7} \end{aligned}$
15	b	For Poisson distribution Mean $=$ variance $=n p=20000 \times \frac{1}{10000}=2$
16	d	$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^{k}}{k!}=\text { Total probability }=1$
17	b	$\begin{aligned} p= & 0.05=\frac{1}{20}, q=\frac{19}{20} \\ & P(x \geq 1)=1-P(0)=1-6_{c_{0}}\left(\frac{1}{20}\right)^{0}\left(\frac{19}{20}\right)^{6}=1-\left(\frac{19}{20}\right)^{6} \end{aligned}$
18	c	In Laspeyre's price index the weight are taken as base year quantities
19	a	$P_{01}^{P}=\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}} \times 100=\frac{506}{451} \times 100=112.19$
20	c	Marshall- Edgeworth formula uses the arithmetic mean of the base and current year quantities.

		Section -B
21	C	Since Vijay is faster by 4 secs. \therefore he beats Samuel by $=\frac{100}{16} \times 4=25$ meters
22	b	$\because 876(\bmod 24)=12$ $\therefore 8.40 \mathrm{PM}$ will change to 8.40 AM after 12 hours, further after 30 minutes the time will be 9.10 AM
23	b	Let total capital $\mathrm{be}=x$ \& let C's contribution $=y$, B's contribution $=\frac{x}{3}$, A's Contribution $=\frac{x}{3}+y$. Now ($\mathrm{A}+\mathrm{B}+\mathrm{C}$)'s contribution $=x \Rightarrow x=6 y$ hence their contribtions are $2 y+y: 2 y: y$ i.e., in the ratio $3: 2: 1$
24	d	The relation R_{m} defined as $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ is reflexive, symmetric and transitive $\therefore \quad \mathrm{R}_{\mathrm{m}}$ is an equivalent relation
25	b	$\begin{aligned} & \text { Time ratio }=2: 3: 4 \\ & \text { Profit sharing ratio }=6: 7: 8 \\ & \quad \text { Investment ratio }=\frac{6}{2}: \frac{7}{3}: \frac{8}{4}\left(\frac{\text { Profit }}{\text { Time }}\right) \\ & =9: 7: 6 \end{aligned}$
26	C	$\begin{aligned} & 2 a+b+c-3 d=b+c \quad(\because \mathrm{a}=\mathrm{d}=0) \\ & =b+(-b)(\because c=-b) \\ & =0 \end{aligned}$
27	d	$\because 1-a_{11}, 1-a_{22}>0$ and $\|I-A\|>0$ and it is true only for $\left(\begin{array}{ll}0.3 & 0.2 \\ 0.1 & 0.5\end{array}\right)$
28	C	$\begin{aligned} & \hline y=\|x\| \text { has a sharp point at } x=0 \\ & y=\|x\| \text { is continuous but not differentiable at } x=0 \end{aligned}$
29	a	$\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 a}{2 a t}=\frac{1}{t} \Rightarrow \frac{d^{2} y}{d x^{2}}=-\frac{1}{t^{2}} \times \frac{d t}{d x}=-\frac{1}{2 a t^{3}}$
30	C	$\begin{aligned} & T C=V C+F C=x^{2}+2 x+10000 \\ & \mathrm{AC}=x+2+\frac{10000}{x} \\ & \frac{d(A C)}{d x}=1-\frac{10000}{x^{2}}=0 \Rightarrow \mathrm{x}=100 \end{aligned}$
31	a	Prize $\left(x_{i}\right)$ p_{i} $x_{i} p_{i}$ 500000 $\frac{1}{10000}$ 50 0 $\frac{9999}{10000}$ 0 So, $\sum x_{i} p_{i}=50$ Net expected gain $=50-100=-50$ So gain is -50
32	c	$P(r<2)=P(0 \text { or } 1)=10_{C_{0}}\left(\frac{1}{2}\right)^{10}+10_{c_{1}}\left(\frac{1}{2}\right)^{10}=\frac{1+10}{1024}=\frac{11}{1024}$
33	d	$\begin{aligned} & n=100, p=\frac{1}{10}, q=\frac{9}{10} \\ & \sigma=\sqrt{n p q}=\sqrt{100 \times \frac{1}{10} \times \frac{9}{10}}=3 \end{aligned}$
34	a	$\begin{aligned} & P(x>518)=1-p(x<518) \\ & \quad=1-P(z<1)=1-0.8413 \\ & =0.1587 \end{aligned}$
35	b	$\begin{gathered} P(x<54)=P(z<1.5) \\ =0.9332 \\ =93.32 \% \end{gathered}$

36	b	$\frac{\sum P_{1}}{\sum P_{0}} \times 100=\frac{340}{300}=113.34$
37	b	$\left.P_{01}^{F}=\sqrt{\left(P_{01}^{L} \times\right.} P_{01}^{P}\right)=\sqrt{118.4 \times 117.5}=117.95$
38	C	$\begin{aligned} & \text { Since, } L: P=28: 27, \therefore \frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}} \times \frac{\sum p_{0} q_{1}}{\sum p_{1} q_{1}}=\frac{28}{27} \\ & \Rightarrow 9 \mathrm{x}+36=40+8 \mathrm{x} \Rightarrow \mathrm{x}=4 \end{aligned}$
39	a	$\frac{\sum\left(\frac{p_{1}}{p_{0}}\right)\left(p_{0} q_{0}\right)}{\sum\left(p_{0} q_{0}\right)} \times 100$
40	d	Time reversal Test is satisfied by Fishers ideal index
41	a	$\begin{gathered} C=-5 \% \quad \begin{array}{c} d=10 \% \quad m=7 \% \\ (d-m):(m-c)=1: 4 \end{array} \end{gathered}$ Quantity sold at 10% profit $=\frac{4}{5} \times 250=200 \mathrm{Kg}$
42	d	Portion of cistern filled by both pipes in 1 hour $=\frac{1}{8}+\frac{1}{12}=\frac{5}{24}$. Time taken by both pipes to fill the cistern $=4 \mathrm{~h} 48$ mints Time taken to fill tank due to leakage $=5 \mathrm{~h}$ Work done by leakage in $1 \mathrm{~h}=\frac{5}{24}-\frac{1}{5}=\frac{1}{120}$ Time taken by leakage to empty the tank= 120 h
43	a	$\begin{aligned} & T R=p x=\frac{75 x-x^{2}}{3} \\ & P=T R-T C=\frac{75 x-x^{2}}{3}-(3 x+100) \\ & \frac{d P}{d x}=22-\frac{2}{3} x=0 \Rightarrow \mathrm{x}=33 \end{aligned}$
44	d	$\begin{aligned} & P(X \geq 1)=1-P(0)=1-\frac{e^{-2}(2)^{0}}{0!} \\ & =1-e^{-2}=0.8647 \end{aligned}$
45	C	$\begin{aligned} P(10 & <\times<30) \\ & =P(-2.5<Z<2.5) \\ & =P(z<2.5)-P(z<-2.5) \\ & =0.9876 \end{aligned}$
46	b	Since elements of technology matrix $a_{i j}$, represents units of sector i to produce 1 unit of sector j $\therefore\left(\begin{array}{cc}0.50 & 0.25 \\ 0.10 & 0.25\end{array}\right)$ is the technology matrix
47	C	$\begin{aligned} I-A & =\left(\begin{array}{ll} 0.50 & -0.25 \\ -0.10 & 0.75 \end{array}\right) \Rightarrow(I-A)^{-1}=\frac{20}{7}\left(\begin{array}{cc} 0.75 & 0.25 \\ 0.1 & 0.5 \end{array}\right) \\ & =\frac{1}{7}\left(\begin{array}{cc} 15 & 5 \\ 2 & 10 \end{array}\right) \end{aligned}$
48	b	System is viable if $\|I-A\|>0$ and $1-a_{11}>0,1-a_{22}>0$
49	a	$X=(I-A)^{-1} D=\frac{1}{7}\left(\begin{array}{cc}15 & 5 \\ 2 & 10\end{array}\right)\binom{7000}{14000}=\binom{25000}{22000}$
50	d	Internal consumption=total production-external demand $=\binom{25000}{22000}-\binom{7000}{14000}=\binom{18000}{8000}$

