Applied Mathematics
 Term - II

Code-241

Q.N.	Hints/Solutions	Marks
Q.N. Section - A		
1	$\begin{aligned} & \text { Given, } M R=9+2 x-6 x^{2} \\ & T R=\int\left(9+2 x-6 x^{2}\right) d x \\ & T R=9 x+x^{2}-2 x^{3}+k \\ & \text { When } x=0, T R=0 \text {, so } k=0 \\ & T R=9 x+x^{2}-2 x^{3} \\ & \Rightarrow \quad p x=9 x+x^{2}-2 x^{3} \\ & \Rightarrow \quad p=9+x-2 x^{2} \text { which is the demand function } \\ & \\ & \text { OR } \\ & T C=\int\left(50+\frac{300}{x+1}\right) d x \\ & T C=50 x+300 \log \|x+1\|+k \\ & \text { If } x=0, T C=₹ 2000 \\ & \text { So } \quad 2000=300(\log 1)+k \quad \Rightarrow k=2000 \\ & \text { So } \quad T C=50 x+300 \log (x+1)+2000 \end{aligned}$	1 1 1 1
2	$\begin{aligned} R & =₹ 600 \\ i & =\frac{0.08}{4}=0.02 \end{aligned}$ Present value of perpetuity $=P=\frac{R}{i}$ $\Rightarrow P=\frac{600}{0.02}=₹ 30,000$	1 1
3	$\begin{aligned} & r_{e f f}=\left(1+\frac{r}{m}\right)^{m}-1 \\ & =\left(1+\frac{0.08}{4}\right)^{4}-1 \\ & =(1.02)^{4}-1=0.0824 \quad \text { or } \quad 8.24 \% \end{aligned}$ So effective rate is 8.24% compounded annually. OR Present value of ordinary annuity $\begin{aligned} & =R\left(\frac{1-(1+r)^{-n}}{r}\right) \\ & =1000\left(\frac{1-(1.06)^{-5}}{0.06}\right) \\ & =1000\left(\frac{1-0.7473}{0.06}\right)=₹ 4211.67 \end{aligned}$	1 1 1 1 1
4	$\boldsymbol{E}(\bar{X})=60 \mathrm{~kg}$	1

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \multicolumn{4}{|l|}{Standard deviation of \(\bar{X}=S E(\bar{X})=\frac{\sigma}{\sqrt{n}}=\frac{9}{6}=1.5 \mathrm{~kg}\)} \& 1 \\
\hline \multirow[t]{7}{*}{5} \& Yea \& Y \& 3 yearly moving total \& 3 yearly moving average(Trend) (in ₹ lakh) \& \multirow[t]{7}{*}{1M for 3-yearly moving totals 1 M for 3-yearly moving average} \\
\hline \& 2016 \& 25 \& \& ---- \& \\
\hline \& 2017 \& 30 \& 87 \& 29 \& \\
\hline \& 2018 \& 32 \& 102 \& 34 \& \\
\hline \& 2019 \& 40 \& 117 \& 39 \& \\
\hline \& 2020 \& 45 \& 135 \& 45 \& \\
\hline \& 202 \& 50 \& --- \& --- \& \\
\hline 6 \& \multicolumn{4}{|l|}{\begin{tabular}{l}

\begin{tabular}{|c|c|}
\hline Corner Point \& Z=3x+2y \\
\hline \(\mathrm{P}(2,2)\) \& 10 \\
\hline \(\mathrm{Q}(3,0)\) \& 9 \\
\hline
\end{tabular} \\
The smallest value of \(Z\) is 9 . Since the feasible region is unbounded, we draw the graph of \(3 x+2 y<9\). The resulting open half plane has points common with feasible region, therefore \(Z=9\) is not the minimum value of \(Z\). Hence the optimal solution does not exist.
\end{tabular}} \& 1

1

\hline \multicolumn{6}{|c|}{Section -B}

\hline 7 \& \multicolumn{4}{|l|}{$$
\begin{aligned}
& \text { Substituting, } p_{0}=₹ 48 \text { in } p=x^{2}+4 x+3 \\
& \quad \text { We get } x_{0}=5 \\
& \quad P S=p_{0} x_{0}-\int_{0}^{x_{0}} g(x) d x \\
& =48 \times 5-\int_{0}^{5}\left(x^{2}+4 x+3\right) d x \\
& =240-\left[\frac{x^{3}}{3}+2 x^{2}+3 x\right]_{0}^{5}=₹ 133.33
\end{aligned}
$$} \& 1

1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Thus a two-tailed test is applied under hypothesis \(H_{0}\), we have
\[
t=\frac{\bar{X}-\mu}{s} \sqrt{n-1}=\frac{0.53-0.50}{0.03} \times 3=3
\] \\
Since the calculated value of \(t=3\) does not lie in the internal \(-t_{0.025}\) to \(t_{0.025}\) i.e., -2.262 to 2.262 for \(10-1=9\) degree of freedom So we Reject \(H_{0}\) at 0.05 level. Hence we conclude that machine is not working properly.
\end{tabular} \& 1
1 \\
\hline 10 \& We know
\[
\begin{array}{r}
\text { CAGR }=\left[\left(\frac{F V}{I V}\right)^{\frac{1}{n}}-1\right] \times 100, \text { where, IV }=\text { Initial value of investment } \\
\text { FV=Final value of investment } \\
\Rightarrow 8.88=\left[\left(\frac{25000}{15000}\right)^{\frac{1}{n}}-1\right] \times 100 \Rightarrow 0.0888=\left(\frac{5}{3}\right)^{\frac{1}{n}}-1 \\
\Rightarrow 1.089=(1.667)^{\frac{1}{n}} \\
\Rightarrow \frac{1}{n} \log (1.667)=\log (1.089) \Rightarrow n(0.037)=0.2219 \\
\Rightarrow n=5.99 \approx 6 \text { years }
\end{array}
\] \& 1
1
1 \\
\hline \multicolumn{3}{|c|}{Section -C} \\
\hline 11 \& \begin{tabular}{l}
Let the company produces \(x\) and \(y\) gallons of alkaline solution and base oil respectively, also let \(C\) be the production cost. \\
\(\operatorname{Min} C=200 x+300 y\) \\
subject to constraints:
\[
\begin{align*}
\& x+y \geq 3500 \ldots \text {....(1) } \\
\& x \geq 1250 \tag{2}\\
\& 2 x+y \leq 6000 \ldots \text { (3) } \\
\& x, y \geq 0
\end{align*}
\]

\begin{tabular}{|c|c|}
\hline Corner Points \& \(\boldsymbol{C}=\mathbf{2 0 0 x}+\mathbf{3 0 0} \boldsymbol{y}\) \\
\hline \(\mathrm{P}(1250,2250)\) \& \(₹ 9,25,000\) \\
\hline
\end{tabular}
\end{tabular} \& \(1 \frac{1}{2}\)

$1 \frac{1}{2}$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\begin{tabular}{|c|c|}
\hline \(\mathrm{Q}(1250,3500)\) \& \(₹ 13,00,000\) \\
\hline \(\mathrm{R}(2500,1000)\) \& \(₹ 8,00,000\) \\
\hline
\end{tabular} \\
Minimum cost is \(8,00,000\) when 2500 gallons of alkaline solutions \& 1000 gallons of base oil are manufactured.
\end{tabular} \& 1 \\
\hline 12 \& \begin{tabular}{l}
The amount of sinking fund \(S\) at any time is given by
\[
S=R\left[\frac{(1+i)^{n}-1}{i}\right]
\] \\
Where \(R=\) Periodic payment, \(i=\) Interest per period, \(n=\) number of payments \\
\(S=\) Cost of machine - Salvage value
\[
=50,000-5000=₹ 45,000
\]
\[
i=\frac{8 \%}{4}=0.02
\]
\[
\begin{aligned}
\& \Rightarrow \quad 45000=R\left[\frac{(1+.02)^{40}-1}{0.02}\right] \\
\& \Rightarrow \quad 45000=R\left[\frac{2.208-1}{0.02}\right] \\
\& \Rightarrow \quad R=\frac{900}{1.208} \Rightarrow R=₹ 745.03
\end{aligned}
\]
\end{tabular} \& 1

$1 \frac{1}{2}$
$1 \frac{1}{2}$

\hline 13. \& | Amortized Amount i.e., $\mathrm{P}=$ Cost of house-Cash down payment $P=15,00,000-4,00,000=₹ 11,00,000$ $i=\frac{0.09}{12}=0.0075$ $n_{D}^{n}=10 \times 12=120$ $\begin{aligned} \mathrm{EMI}=R & =\frac{P}{a_{n-i}}, \\ R & =\frac{P \times i}{1-(1+i)^{-n}} \\ & =\frac{11,00,000 \times 0.0075}{1-(1.0075)^{-120}}=\frac{8250}{1-0.4079} \\ & =\frac{8250}{0.5921}=₹ 13933.5 \end{aligned}$ |
| :--- |
| Total interest paid $=n R-R=13933.5 \times 120-11,00,000$ $=₹ 5,72,020$ |
| OR |
| Face value of bond, $\mathrm{F}=₹ 2000$ |
| Redemption value $C=1.05 \times 2000=₹ 2100$ |
| Nominal rate $=8 \%$ $R=C \times i_{d}=2000 \times 0.08=₹ 160$ |
| Number of periods before redemption i.e., $\mathrm{n}=10$ |
| Annual yield rate, $i=10 \%$ or 0.1 $\text { Purchase price } \begin{aligned} V & =R\left[\frac{1-(1+i)^{-n}}{i}\right]+C(1+i)^{-n} \\ & =160\left[\frac{1-(1+0.1)^{-10}}{0.1}\right]+2100(1+0.1)^{-10} \\ & =160 \times 6.14+2100 \times 0.3855 \\ & =982.4+809.6=1792 \end{aligned}$ | \& 1

1
1
1
1
1
1
2

\hline
\end{tabular}

	Thus present value of the bond is ₹ 1792.	1
14 a) b)	Case Study $\begin{aligned} & \because \frac{d x}{d t} \propto x,: \therefore \frac{d x}{d t}=-k x \\ & \Rightarrow \int \frac{d x}{x}=\int-k d t \quad \Rightarrow \log x=-k t+c \\ & \Rightarrow x=e^{-k t+c} \Rightarrow x=\lambda e^{-k t} \end{aligned}$ $\text { Let } x=x_{0} \text { at } t=0$ $\because x_{0}=\lambda \Rightarrow x=x_{0} e^{-k t} \quad$ where $x_{0}=$ original quantity $\begin{equation*} x=x_{0} e^{-k t} \tag{1} \end{equation*}$ Now, $\frac{x_{0}}{2}=x_{0} e^{-5 k} \quad(\because$ half life $=5$ hours) $\Rightarrow e^{-5 k}=\frac{1}{2} \Rightarrow e^{k}=2^{\frac{1}{5}}$ The quantity of propofol needed in a 50 Kg adult at the end of 2 hours $=50 \times 3=150 \mathrm{mg} \Rightarrow 150=x_{0} e^{-2 k}$ [using... (1)] $\Rightarrow x_{0}=150 e^{2 k} \Rightarrow x_{0}=150\left(e^{k}\right)^{2}$ $\Rightarrow x_{0}=150\left(2^{\frac{1}{5}}\right)^{2}=150 \times 1.3195=197.93 \mathrm{mg}$	1 1 1

