MARKING SCHEME SAMPLE QUESTION PAPER 2019-20 CLASS XII (BIOLOGY)

TIME 3 HOURS MM 70

	Section – A	
1.	b) Leydig cells OR b)Amniocentesis	1
2.	d) Cell-mediated immune response OR d) ii and iv	1
3.	d) P enzyme is Restriction endonuclease and Q enzyme is ligase	1
4.	a) Sal I	1
5.	b) Habitat loss and fragmentation	1
	Section B	l
6.	Encysted <i>Amoeba</i> divides by multiple fission / produces amoeba or pseudopodiospores /cyst wall bursts out/spores are liberated to grow as amoebae(sporulation) OR Gemmule-asexual reproductive structure in sponges Conidia-asexual reproductive structure in <i>Penicillium</i> .(or any other correct example) $(\frac{1}{2}+\frac{1}{2}=1 \text{ Mark})$	2
7.	CuT,Cu7,Multiload 375 (Any two) ($\frac{1}{2}$ and $\frac{1}{2}$ =1Mark) Cu ions released suppresses sperm motility and the fertilizing capacity of sperms. ($\frac{1}{2} + \frac{1}{2} = 1$ Mark)	2
8.	Control crosses cannot be performed in human beings, Alternate method-Pedigree analysis (study of the traits in several generations of a family). (1+1=2 Marks)	2
9.	A is more reactive 2'-OH group present in the pentose sugar Makes it more labile/ catalytic and easily degradable. 1/2 Mark 1/2 Mark 1/2 Mark	2
10.	 Tissue culture Meristem apical or axillary is excised. Explant grown in a test tube under sterile condition/special nutrient medium ½+½=1 Mark 	2

11.	 RNA interference silencing of a specific mRNA due to a complementary RNA dsRNA/Introduction of DNA was such that it produced both sense/ and anti-sense RNA in the host cells/these two RNAs formed dsRNA that initiated RNAi 1 Mark 	2
12.	T ₃ Fishes Zooplanktons Pyramid of biomass The pyramid is inverted because the biomass of fishes is much more than that of the zooplankton and phytoplankton. 1+1= 2 Marks	2
	Section C	
13.	Pollen tube Antipodal Polar nuclei Egg cell Synergid (Diagram =1 Mark) (Any four labellings ½ x 4=2)	
14.	Failure of segregation of chromatids during cell division cycle results in the gain or loss of a chromosome(s) (aneuploidy) (1 Mark) Autosomes:- Down's Syndrome: The cause is the presence of an additional copy of the chromosome number 21 (trisomy of 21). (½ Mark) The affected individual is • short statured with small round head, • furrowed tongue and partially open mouth • Palm is broad with characteristic palm crease. • Physical, psychomotor and mental development is retarded. (Any one symptom ½ Mark) Sex chromosomes:- Klinefelter's Syndrome: This is caused due to the presence of an additional copy of X-chromosome resulting into a karyotype of 47, XXY. ½ Mark	3

	Such an individual has overall masculine development					
	has overall masculine development					
	• feminine development is also expressed by the development of breast/ Gynaecomastia).					
	Such individuals are sterile.					
	(Any one symptom ½ Mark)					
	If students give the example of Turner's Syndrome, it should be considered and marks given.					
	OR					
	a) i. point mutation/ single base substitution ½ Mark					
	ii. point mutation/ single base deletion ½ Mark					
	b) i 4 aminoacids 1 Mark					
	ii 4 aminoacids 1 Mark					
15.	In some species, the diploid egg cell is formed without reduction division and develops into the	3				
	embryo without fertilization. 1 Mark					
	In many Citrus and Mango varieties some of the nucellar cells surrounding the embryo sac start					
	dividing, protrudes into the embryo sac and develops into the embryos. In such species each ovule					
	contains many embryos. 2 Mark					
16.	a.) Chemical evolution – First form of life originated from pre-existing non-living organic	3				
	molecules.					
	b.) Amino acids					
	c.) H_2 1x3 = 3 Mark					
17.	a.)	3				
	Amino acid Phe Val					
	DNA Code in Gene AAA CAC Codon in mRNA i)UUU ii)GUG					
	Anticodon in tRNA iii)AAA iv)CAC					
	1Mark					
	b.)					
	i) A polypeptide containing 14 different amino acid = 14x3=42 base pairs. 1Mark					
	ii) 14 different types of RNA are needed for the synthesis of polypeptide. 1Mark					
18.	Advantages:-Inbreeding is necessary if we want to evolve a pure line in any animal.	3				
	 It helps in accumulation of superior genes and elimination of less desirable genes 					
	 Inbreeding exposes harmful recessive genes that are to be eliminated by selection. 					
	 Where there is selection at each step, it increases the productivity of inbred population. 					
	(Any two 1 Mark each)					
	Disadvantages:-					
	• reduces fertility					
	decreases productivity.					
	(Any two $\frac{1}{2}$ x2=1 Mark)					
19.	Specific Bt toxin genes isolated from <i>Bacillus thuringiensis</i> is incorporated into cotton is coded	3				
	by the genes $cryIAc$ and $cryIIAb$ that control the cotton bollworms $(\frac{1}{2} + \frac{1}{2} = 1 \text{ Mark})$					
	• Bacillus forms protein crystals that contain a toxic insecticidal protein.					
	• once an insect ingest the inactive toxin, it is converted into an active form					
	 The toxin in the form of crystals gets solubilised due to alkaline pH in the gut 					
	The activated toxin binds to the surface of gut epithelial cells and perforate the walls					
	causing the death of insect larva (½ x2=2 Marks)					
	b.) i) A polypeptide containing 14 different amino acid = 14x3=42 base pairs. 1Mark ii) 14 different types of RNA are needed for the synthesis of polypeptide. 1Mark Advantages:-Inbreeding is necessary if we want to evolve a pure line in any animal. • It helps in accumulation of superior genes and elimination of less desirable genes • Inbreeding exposes harmful recessive genes that are to be eliminated by selection. • Where there is selection at each step, it increases the productivity of inbred population. (Any two 1 Mark each) Disadvantages:- • reduces fertility • decreases productivity. (Any two ½ x2=1 Mark) Specific Bt toxin genes isolated from Bacillus thuringiensis is incorporated into cotton is coded by the genes crylAc and crylIAb that control the cotton bollworms (½ + ½ = 1 Mark) • Bacillus forms protein crystals that contain a toxic insecticidal protein. • once an insect ingest the inactive toxin, it is converted into an active form • The toxin in the form of crystals gets solubilised due to alkaline pH in the gut • The activated toxin binds to the surface of gut epithelial cells and perforate the walls					

20.	criteria for determining biodiversity hot spots are: –	3			
20.	• high levels of species richness (1 Mark)	J			
	• High degree of endemism. (1 Mark)				
	hotspots In India - Western Ghats, Himalaya (Indo-Burma/Sunderland to be accepted)				
	notspots in India - western Gnats, Himaiaya (Indo-Burma/Sunderland to be accepted) (Any 2) $(\frac{1}{2} + \frac{1}{2} = 1 \text{Mark})$				
OR					
In-situ Conservation— Threatened /endangered plants and animals are provided with urgent measures to save from extinction within their natural habitat and they are protected and allowed to grow naturally.					
	Example- wildlife sanctuaries/ national parks /biosphere reserves/ sacred groves				
	(Any one example) (½ Mark, 1 Mark for difference)				
	Ex-situ Conservation – Threatened animals and plants are taken out from their natural				
	habitat and placed in a setting where they can be protected and given care				
	Example- in botanical gardens/ zoological gardens/ seed/pollen/gene banks				
	(Any one example) (½ Mark, 1 Mark for difference)				
21.	(a) To maintain the cells in their physiologically most active log/exponential phase. 1 Mark	3			
	(b) Temperature, pH, substrate, salts, vitamins, oxygen (Any 4) (½ x4 = 2 Mark)				
	Section D				
22.	a.) Each primary spermatocyte will undergo meiosis-I and meiosis-2 which will result in 4	3			
	spermatozoa				
	300 million/4=75 million 1 Mark				
	b) Since replication has occurred by this stage				
	46x2 = 92 chromatids 1 Mark				
	Meiosis –I is completed by this time 92/2 =46 chromatids - 1 Mark				
23.	a) Vigorous growth of useful aerobic microbes into flocs. 1 Mark	3			
	b) Activated sludge – some of it is pumped back into the aeration tank to serve as the inoculum 1/2 + 1/2 Mark				
	c) During this digestion, a mixture of gases such as methane, hyrogensulphide is made and carbon				
	dioxide. These gases form biogas.				
24.	Platinum-pallidium Rhodium (Any two $\frac{1}{2} + \frac{1}{2} = 1$ Mark)	3			
	CO_2,H_20 and CO [any 2] $\frac{1}{2} + \frac{1}{2} = 1$ Mark				
	Nitric oxide 1 Mark				
Section E					
25.	Polygenic inheritance 1 Mark	5			
	• If we assume skin colour is controlled by three genes A, B, C				
	• Dominant forms (A,B,C) are responsible for dark skin colour and recessive form (a, b, c) for				
	light skin colour 1 Mark				
	• The genotype with all dominant alleles (AABBCC) will be darkest skin colour and with				
	recessive alleles will be light test skin colour (aabbcc) (1+1=2 Marks)				

	• The genotypes (AaBbCc) will be of intermediate skin colour i.e. with three dominant alleles and three recessive alleles 1 Mark						
	OR						
	 The sequences were arranged based on some overlapping regions present in them (Alignment of these sequences was not humanly possible) Therefore, specialized computer based programme was developed. These sequences were subsequently annotated and were assigned to each chromosome-1Mark Chromosome 1 						
	Caenorhabditis elegans		l Mark				
	<u> </u>						
26.	a) Inducing mutation artificially using chen desirable characters Mung Bean Yellow mosaic virus	$\frac{1}{2} \times 2 =$					
	b) AQUACULTURE	PISCICULTURE					
		Production and culturing of fishes is	called				
	11	_	2 Mark				
		1	2 IVIGIR				
	О	R					
	a) AIDS caused by the Human Immuno deficien	cy Virus $(\frac{1}{2} + \frac{1}{2} = 1)$	Mark)				
	b) Vaccines prevent microbial infections by initiating production of antibodies against these antigens to neutralise the pathogenic agents during later actual infection. (1/2)						
	The vaccines also generate memory – B and T-cells that recognize the pathogen quickly subsequent exposure. (1/2)						
	c) Normal cells show a property called contact inhibition by virtue of which contact with other cells inhibits their uncontrolled growth. Cancer cells appear to have lost this property.(1) These cells grow very rapidly, invading and damaging the surrounding normal tissues. Cells sloughed from such tumors reach distant sites through blood, and wherever they get lodged in the body, they start a new tumor there. This property called metastasis . (1) 2 Marks						
	d) Physiological barriers : Acid in the stomach	and saliva in the mouth	½ Mark				
27	a) i nysiologicai varriers. Acid ili tile stolliacii	and sanva in the mount.	5 5				
27. N2O 6% CFCs 14% 20% Methane Carbon dioxide							
	(Marks to be given only if relative contribution is	correct) $(\frac{1}{2} \times 4 = 2 \text{ N})$	farks)				
	5		<u> </u>				

Pie chart - ½ Marks to be detected if not given in form of pie chart

Clouds and gases reflect one-fourth of incoming solar radiation/absorb some of it/but almost half of incoming solar radiation falls on Earth's surface heating it/while a small is reflected backs/Earth's surface re-emits heat in the form of infra red radiation/but part of this does not escape into space as atmospheric gases absorb a major fraction of it.

 $(\frac{1}{2} \times 6 \text{ points} = 3 \text{ Marks})$

OR

(a) – Amensalism (1 Mark)

(b) – Predation (1 Mark)

Justifications-

- Nature's way of transferring energy fixed by plants to higher trophic levels/conduits for energy transfer.
- Keep prey population under control
- Predators help in maintaining species diversity in a community, by reducing the intensity of competition among competing prey species.

(1x3 Points = 3 Marks)