MARKING SCHEME- CHEMISTRY (043)

SAMPLE PAPER (CLASS - XII)

$\begin{array}{\|l\|} \hline \text { Q.N } \\ \text { O. } \\ \hline \end{array}$	Value Points	Mar ks
1.	T1 < T2 < T3	1
2.	XeF_{2}	1
3.	It strengthens the bond between CO and the metal.	1
4.	The oxidation state of P in PCl_{5} is +5 it cannot increase its oxidation state beyond +5 but it can decrease from +5 to +3 .	1
5.	Iodobenzene	1
6.	Schottky defect It is shown by ionic substances in which the cation and anion are of almost similar sizes. / ionic substances having high coordination number.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
7.	The plot is nearly a straight line and can be extrapolated to zero concentration(i.e. from the intercept) to find the value of $\lambda_{m}^{0}=150.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ $\begin{aligned} & {\left[\Lambda_{\mathrm{m}}^{\mathrm{c}}=\Lambda_{\mathrm{m}}{ }^{0}-\mathrm{A} \sqrt{\mathrm{C}}\right]} \\ & \mathrm{A}= \\ & =- \text { slope }=\frac{\Delta y}{\Delta x} \\ & \\ & =\frac{\mathbf{1 5 0 . 0 - 1 4 7 . 0}}{\mathbf{0 . 0 3 4}} \\ & \\ & =88.23 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{aligned}$	1 $11 / 2$ $1 / 2$
8.	$\begin{aligned} & \mathrm{r}=125 \mathrm{pm}, \mathrm{a}=? \\ & \text { for fcc structure } r=\frac{a}{2 \sqrt{\mathbf{2}}} \\ & \begin{aligned} a & =\mathbf{1 2 5} \times \mathbf{2} \times \mathbf{1 . 4 1 4} \\ & =353.5 \mathrm{pm} \end{aligned} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2+$

\begin{tabular}{|c|c|c|}
\hline \& \& 1/2 \\
\hline \begin{tabular}{l}
9. \\
(i) \\
(ii)
\end{tabular} \& \& 1
1 \\
\hline \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
OR
\[
3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}
\]
\[
2 \mathrm{Fe}_{3+}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}
\] \\
(\(1 / 2\) mark to be deducted for an unbalanced chemical equation)
\end{tabular} \& 1 \\
\hline 10. \& \begin{tabular}{l}
KCI is an electrolyte, it undergoes dissociation
\[
\begin{aligned}
\& \Delta T_{f}=i K_{f} m \\
\& i=\frac{\Delta T_{f}}{K_{f} m} \\
\& \Delta T_{f}=0-(-0.24)=0.24^{0}
\end{aligned}
\] \\
Molar mass of \(\mathrm{KCl}=39+35.5=74.5 \mathrm{u}\) substituting the values
\[
\begin{aligned}
\& i=\frac{0.24 \times 74.5 \times 100}{1.86 \times 0.5 \times 1000} \\
\& i=1.92
\end{aligned}
\] \\
\(\alpha\) is the degree of dissociation
\[
\mathrm{i}=1+\alpha
\]
\[
\alpha=1.92-1=0.92
\] \\
Percentage dissociation \(=92 \%\) \\
(or any other suitable method)
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$

\hline | 11. |
| :--- |
| (i) |
| (ii) | \& | Hydraulic washing: |
| :--- |
| Principle involved: differences in gravities of the ore and the gangue particles e.g.oxide ores (haematite), native ores Au, Ag (any one example) |
| Zone refining: |
| Principle involved: the impurities are more soluble in the melt than in the solid state of the metal. |
| e.g. germanium, silicon, boron, gallium and indium (any one example) | \& 1

$1 / 2$
1
$1 / 2$

\hline 12. \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline (i) \& \begin{tabular}{l}
A warm solution is obtained on mixing the two liquids \(A\) and \(B\) indicate that the process of mixing is exothermic. (\(\Delta \mathrm{H}_{\text {mixing }}=-\mathrm{ve}\)). So the solution shows a negative deviation from the Raoult's law. \\
The forces of interaction between A and B molecules are more than in the A-A and B-B molecules. So the partial vapour pressure of each component will be less and the partial vapour pressure of the solution will also be less than that from the Raoult's law.
```
For \(\mathrm{CH}_{3} \mathrm{OH}\) ( non electrolyte)
\(\mathrm{i}=0\)
\(\mathrm{KCl} \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}\)
\(i=2\)
\(\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{Na}^{+}+\mathrm{PO}_{4}{ }^{3-}\)
\(\mathrm{i}=4\)
\(\mathrm{CH}_{3} \mathrm{OH}<\mathrm{KCl}<\mathrm{Na}_{3} \mathrm{PO}_{4}\)
```
\end{tabular} \& \(1 / 2\)

$1 / 2$
1
$11 / 2$
1

\hline 13. \& | Nernst equation: $\begin{aligned} & E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.0591}{2} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\ & E_{\text {cell }}=2.71-\frac{0.0591}{2} \log \frac{\left[10^{-3}\right]}{\left[10^{-4}\right]} \\ & E_{\text {cell }}=2.68 \mathrm{~V} \end{aligned}$ |
| :--- |
| $\mathrm{E}_{\text {cell }}$ increases with the increase in the concentration of Cu^{2+} ions and decrease in the concentration of Mg^{2+} ions. | \& $1 / 2$

$1 / 2$
$1 / 2+$
$1 / 2$
1

\hline (i) 14. \& Decomposition of ozone into oxygen is an exothermic process ($\Delta \mathrm{H}=-\mathrm{ve}$) and results in an increase in entropy $(\Delta S=+v e)$, resulting in large negative Gibbs energy change $(\Delta \mathbf{G}=-$ ve). Decomposition of ozone to oxygen is a spontaneous process. \& 1

\hline (ii) \& As we move down the group, the size of the central atom increases and the electronegativity decreases. therefore the bond pair of electrons lie away from the central atom, the force of repulsion between the adjacent bond pairs decreases. So the bond angle decreases. \& 1

\hline (iii) \& | The bleaching action of Cl_{2} is due to the oxidation of coloured substance to colourless by nascent oxygen. $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+[\mathrm{O}]$ |
| :--- |
| Nascent oxygen | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline (iii) \& \begin{tabular}{l}
 \\
has the highest melting point as compared to their ortho- and metaisomers. \\
The para-isomer is more symmetrical and fits into the crystal lattice better, as a result intermolecular forces are stronger, higher temperature required to melt the paraisomer. \\
\(\mathrm{CH}_{2} \mathrm{Cl}_{2}<\mathrm{CHCl}_{3}<\mathrm{CCl}_{4}\) (increasing order of density) \\
The density increases with the increase in the number of the halogen atoms.
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$

\hline 18. \& | (A) undergoes disproportionation in presence of an alkali (Cannizzaro reaction) so there is no α hydrogen. |
| :--- |
| (C) undergoes decarboxylation. |
| A |
| B |
| C |
| D | \&

\hline
\end{tabular}

	 4-Methoxybenzoic acid < Benzoic acid < 4-Nitrobenzoic acid	1
$\begin{aligned} & \hline 21 . \\ & \text { (i) } \end{aligned}$	```Buta-1,3diene : \(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\) and Acrylonitrile : \(\mathrm{CH}_{2}=\mathrm{CH}(\mathrm{CN})\) (either name or structure)```	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
(ii)	Neoprene is classified as an Elastomer. (the polymeric chain are held together by weakest intermolecular forces)	1
(iii)	Yes a co-polymer can be formed in addition and condensation polymerization.	1
22.		
(i)	Keratin is insoluble in water. It is a fibrous protein in which the polypeptide chains are held together by strong intermolecular forces, hence insoluble in water.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
(ii)	α-D-Glucopyranose	
		1
(iii)	The sequence in the complimentary strand is ATGCTTGA	1
23. (a)		
	Cimetidine is an antihistamine, but it is an antacid and not an antiallergic drug.Antacid and antiallergic drugs work on different receptors. Therefore cimetidine cannot be used to treat nasal congestion.	$1 \text { ½ }$
	Critical thinking Social responsibility (or any other two reasons)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
24. (a)	Mechanism of hydration of ethene to ethanol by acid catalysed hydration:	

	The mechanism of the reaction involves the following three steps: Step 1: Protonation of alkene to form carbocation by electrophilic attack of $\mathrm{H}_{3} \mathrm{O}^{+}$. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$ Step 2: Nucleophilic attack of water on carbocation. Step 3: Deprotonation to form an alcohol.	1 $1 / 2$
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$		$1 / 2$ 1
(ii)		1/2
(c)		1/2
(a)	OR The mechanism of the reaction of HI with methoxymethane involves the following steps: Step I : protonation of ether molecule	1/2

\begin{tabular}{|c|c|c|}
\hline (b)
(i)

(ii)

(c) \& | Step II : nucleophilic attack by I' by $\mathrm{S}_{\mathrm{N}} 2$ mechanism |
| :--- |
| Iodomethane methanol |
| Step III : when HI is in excess and the reaction is carried out at high temperature, methanol formed in the second step reacts with another molecule of HI and is converted to methyl iodide. |
| A |
| B |
| A : $\mathrm{CH}_{3} \mathrm{CHO}$ |
| B : $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$ |
| 1- Ethoxy-4-nitrobenzene | \& 1/2

\hline | 25. |
| :--- |
| (a) | \& | A : MnO_{2} |
| :--- |
| B : $\mathrm{K}_{2} \mathrm{MnO}_{4}$ |
| C : KMnO_{4} | \& $1 / 2$

$1 / 2$
$1 / 2$

\hline
\end{tabular}

