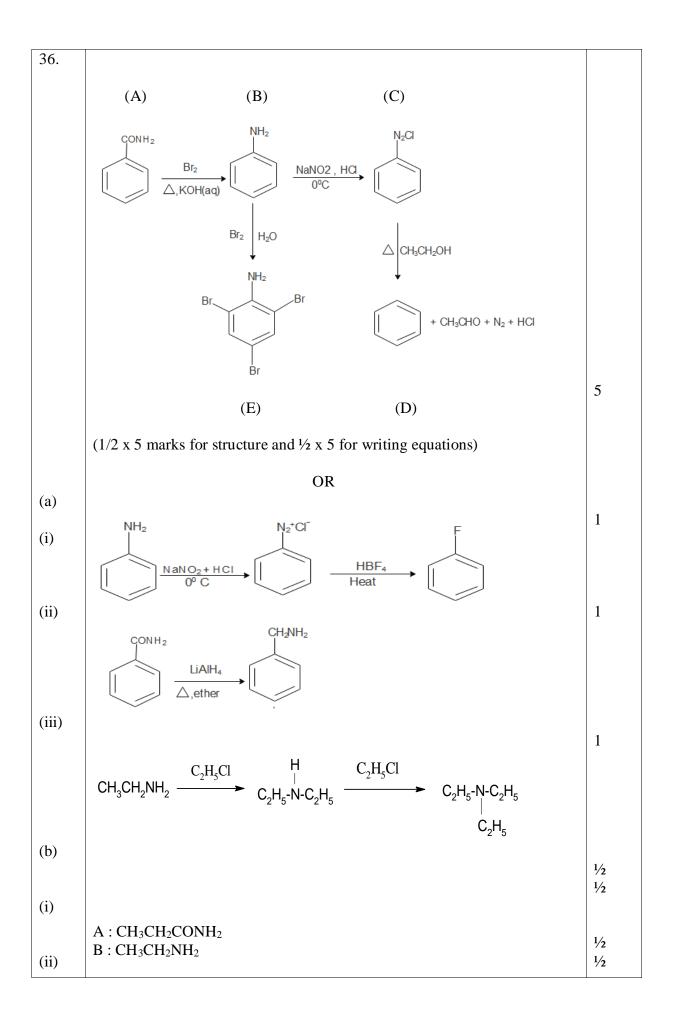
Q.No.	Value points	Marks
	SECTION:A	
1.	Reaction taking place at cathode when the battery is in use:	
	$PbO_{2}(s) + SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow PbSO_{4}(s) + 2H_{2}O(l)$	1
2.	2 F	1
3.	$Molarity = \frac{38 \times 1.294 \times 1000}{98 \times 100} = 5.02M$	1
4.	It can be recharged after use.	1
5.	At anode: O ₂ (g) At cathode: H ₂ (g)	1/2 1/2
6.	Sodium cyanide.	1
7.	Nucleotide	1
8.	Zwitterion / dipolar ion	1
9.	Condensation	1
10.	Benzaldehyde	1
11.	(c)	1
12.	(b)	1
13.	(b)	1
14.	(a)	1
15.	(b)	1
16.	(c)	1
17.	(a)	1
18.	(d)	1
<u>19.</u>	(d) (1)	1
20.	(d) SECTION:B	1
21.	Lone pairs : 2	1
21.	Geometry : Square planar	1
22.		1
(i)	$Slope = -\frac{E_a}{2.303 R}$	
(ii)	k 1> k2	1
23.	When there is dissociation of solute into ions, in dilute solutions (ignoring interionic attractions) the number of particles increases. As the value of colligative properties depends on the number of particles of the solute , the experimentally observed value of colligative property will be higher than the true value, therefore the experimentally determined (observed) molar mass is always lower than the true value.	1
	For KCl(electrolyte) the experimentally determined molar mass is always	1⁄2

MS CLASS XII CHEMISTRY 2019-20

	lower than the true value when water is used as solvent. Glucose (non-electrolyte) does not show a large variation from the true value.	1⁄2
24. (a)	CH ₃ -CH(CI)-COOH	1
(b)	C ₆ H₅CHO	1
25.	Cl trans-[Pt(en) ₂ Cl ₂] ²⁺ IUPAC Name of the entity:	1
	Dichloridobis(ethane-1,2-diamine)platinum(IV) ion	1
	OR Bonding in $[CO(NH_3)_6]^{3+}$	
	$d^{2}sp^{3} hybridisation$ <i>ii)</i> Atomic orbitals of Co (III) ion $d^{2}sp^{3} hybridised$ $t \downarrow t \uparrow t \uparrow t$ $d^{2}sp^{3} hybridised$	1/2
	$d sp$ hybridised orbitals of Co (III) ion $f \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$ Formation of $[Co(NH_3)_6]^{3+}$ $f \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow \chi X \chi X$ $3d$ d^2sp^3 hybrid $3d$ $f \downarrow \uparrow \downarrow \uparrow \downarrow \chi X \chi X$ $3d$ Six pairs of electrons from six NH3 molecules	1/2
	Geometry: Octahedral	1⁄2
		1⁄2
	Diamagnetic	
26.	Vapour phase refining: It is a refining method in which the metal is converted into its volatile compound and collected elsewhere. It is then decomposed to give pure metal	1
	decomposed to give pure metal. Example:Mond's Process for refining of Nickel / van Arkel method for refining of Zirconium	1


Equations involved:	
$Ni + 4CO \xrightarrow{330-350K} Ni(CO)_4$	1/2
$Ni(CO)_4 \xrightarrow{450-470K} Ni + 4CO$	1/2
OR Extraction of gold involves leaching the metal with CN ⁻	1/2
Oxidation reaction: 4 Au (s) + 8 CN- (aq.) + 2H ₂ O (aq.) + O ₂ (g) \rightarrow 4[Au(CN) ₂] ⁻ (aq	
The metal is recovered by displacement method: 2[Au(CN) ₂]- (aq.) + Zn (s) \rightarrow 2 Au (s) + [Zn(CN) ₄] ²⁻ (aq.)	1/2
Zinc acts as a reducing agent.	1⁄2
27. The following compound will undergo S_N1 faster:	
CH ₂ CI	1/2
Greater the stability of the carbocation, greater will be its ease of from the corresponding halide and faster will be the rate of reac The benzylic carbocation formed gets stabilised through resonat	ction. $\frac{1}{2}$
$\stackrel{\oplus CH_2}{\longleftrightarrow} \longleftrightarrow \stackrel{\bigoplus CH_2}{\longleftrightarrow} \longleftrightarrow \stackrel{CH_2}{\longleftrightarrow} \longleftrightarrow \stackrel{CH_2}{\longleftrightarrow} \longleftrightarrow \stackrel{CH_2}{\longleftrightarrow} \longleftrightarrow \stackrel{CH_2}{\longleftrightarrow} $	1/2
$(i)' \qquad (ii) \qquad (iii) \qquad (iv) \\ \xleftarrow{CH_2} = \begin{bmatrix} \overset{CH_2}{\vdots \vdots \vdots} \end{bmatrix}^{\oplus}$	
(v) $(vi)CH3CH2CH2Cl forms a 1o carbocation, which is less stable than carbocation.$	n benzylic
SECTION :C	
28. $ KC1 \rightarrow K^+ + Cl^- $ n = 2 $ i = 1 - \alpha + n\alpha $	1⁄2
$i = 1 + \alpha$ $i = 1 + \alpha$	1/2 1/2

$= (1+0.92) \mathbf{x} 1.86 \mathbf{x} \frac{0.5 \mathbf{x} 1000}{74.5 \mathbf{x} 100}$	1/2
$\Delta T_f = 0.24$	
$\Delta T_f = T_f^0 - T_f'$	1/2
$T_{f}^{'} = -0.24 \ ^{0}C$	
29. $rate = k [A]^{x} [B]^{y}$	
$0.05 = k [0.1]^{x} [0.1]^{y} \dots (i)$	
$0.10 = k[0.2]^{x}[0.1]^{y} \qquad \dots \dots (ii)$	
$0.05 = k[0.1]^{x}[0.2]^{y} \dots (iii)$	
$(ii) \div (i)$	
$\frac{0.10}{0.05} = (2)^x$	
x = 1	
$(iii) \div (i)$	
$\frac{0.05}{0.05} = (2)^{y}$	
y = 0	1⁄2
$rate = k[A]^{1}[B]^{0}$	
It is a first order reaction.	
$k = \frac{rate}{[A]} = 0.5 s^{-1}$	1⁄2
	1⁄2
$t_{\frac{1}{2}} = \frac{0.693}{k} = \frac{0.693}{0.5}$	
$t_{\frac{1}{2}} = 1.386 \ s$	1⁄2
OR	
$t_{\frac{1}{2}} = \frac{0.693}{k}$	1⁄2
	1/2
$k_2 = \frac{0.693}{25}$ 350K	
$k_{1} = \frac{0.693}{50} \qquad 300K$ $\frac{k_{2}}{k_{1}} = 2$	1⁄2
k_2	
$\frac{-}{k_1} = 2$	
	1/2

	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$ $\log 2 = \frac{E_a}{2.303 \mathbf{x} 8.314} \left[\frac{350 - 300}{350 \mathbf{x} 300} \right]$	1/2 1/2
	Ea = 12.104 kJ / mol.	(1/2 +1/2)
30.		,
(a)	$K_4[Fe(CN)_6]$	1
(b)	$Fe(OH)_3$ is converted into colloidal state by preferential adsorption of Fe^{3+} ions.	1
(c)	Proteins	1
31.	Moist subbur diovide behaves as a reducing egent reduces $MnO = to Mn^{2+}$	1
(a)	Moist sulphur dioxide behaves as a reducing agent, reduces MnO_4^- to Mn^{2+} . X –X' bond in interhalogens is weaker than X-X bond in halogensexcept F-	
(b)	F bond.	1
(c)	Due to the ease with which it liberates atoms of nascent oxygen.	1
32.	1-Propoxypropane is formed. Mechanism involved:	1
	Step 1 :Formation of protonated alcohol	1⁄2
	$\begin{array}{c} CH_{3}CH_{2}CH_{2}OH + H^{*} \xrightarrow{H_{2}SO_{4}} CH_{3}CH_{2}CH_{2} \xrightarrow{H_{4}} H \\ Propan-1-ol \end{array}$	
	Step 2: Nucleophilic attack	1
	$CH_3CH_2CH_2 - \ddot{O}_1 + CH_3 - CH_2 - CH_2 - CH_2 + CH_3CH_2CH_2 - \ddot{O}_1 + CH_3CH_2CH_2 - \ddot{O}_1 + CH_3CH_2CH_2 + CH_3CH_2CH_3 + CH_3CH_2CH_2 + CH_3CH_2 + CH_3CH_2CH_2 + CH_3CH_2 + CH_3CH_3 + $	
	Step 3: Deprotonation	1/
	$\begin{array}{c} CH_3CH_2CH_2 - \overset{o}{} - CH_3CH_2CH_2 & \longrightarrow CH_3CH_2CH_2 - O - CH_2CH_2CH_3 + H^+ \\ H & 1 - Propoxypropane \end{array}$	1⁄2
22		
33. (a)		
(i)		

	Experiment	Ethanal	Propanone	
	1.Tollens Test:			
	Warm the organic	A bright silver mirror	No silver mirror is	
	compound with	is produced	formed.	
	freshly prepared	F		
	ammonical silver			
	nitrate			
	solution(Tollen's			
	reagent).			
	2.Fehlings Test:			1
	Heat the organic	A reddish bown	No precipitate is	
	compound with	precipitate is	obtained	
(ii)	Fehling's reagent.	obtained.	obtained	
(/	Any one test	obtained.		
	They one test			
	Experiment	Pentan-2-one	Pentan-3-one	
	IodoformTest:			
	The organic	A yellow precipitate	No yellow precipitate	
	compound is heated	is obtained.	is obtained.	
	with iodine in			
	presence of sodium			
	hydroxide solution.			
(b)				
	Or any other suitable tes	st.		1
	4- Methoxybenzoic acid <benzoic acid<4-="" acid<<br="" nitrobenzoic="">3,4-Dinitrobenzoic acid OR The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon atom of the carbonyl group present in ethanal. The polarity of the carbonyl group is reduced in benzaldehyde due to resonance hence less reactive than ethanal. $\begin{array}{r} \downarrow \\ \downarrow$</benzoic>			1 1 1
34.				1
(a)	Broad spectrum antibiot	ics:		1
	-		Gram-positive and Gram-	
1	negative bacteria.	6	-	
	negative bacteria.			
	e.g. Chloramphenicol.			1⁄2
	0	ple.		1⁄2

	Reduce or abolish pain without causing impairement of consciousness,	
	mental confusion, incoordination or paralysis or some other disturbances of nervous system.	
	e.g. Aspirin / paracetamol etc. any other suitable example.	1
		1⁄2
	SECTION:D	
35. (a)	$Fe + 2H^+ \rightarrow H_2 + Fe^{2+}$	
	$E_{cell} = E_{cell}^{0} - \frac{2.303RT}{nF} \log \frac{Fe^{2+}}{[H^{+}]^{2}}$	1
	$E_{cell}^{0} = E_{H^{+}/H_{2}}^{0} - E_{Fe^{2+}/Fe}^{0}$	
	= 0 - (-0.44) = 0.44V	1/2
	$0.1745 = 0.44 - \frac{0.0591}{2} \log \frac{[0.1]}{[r]^2}$	
	$2 \qquad [x]^2$ $\log x = -5$	1⁄2
	Log X = -5 $Log[H^+] = -5$	
	$[H^+] = 10^{-5}$	1⁄2
(b)	The mass of copper and silver deposited at the cathode will be different. The amount of different substances deposited by the same quantity of	1
	electricity passing through the electrolytic solution are directly proportional to their chemical equivalents.	1
	OR	
(a)	$\Lambda^{o}(CH_{3}COOH) = \lambda^{o}_{H^{+}} + \lambda^{o}_{CH_{3}COO^{-}}$	1⁄2
	$= 349.6 + 40.9 = 390.5 \text{ S cm}^2 \text{ mol}^{-1}$	1/2
	$\Lambda_m = \frac{\kappa \times 1000}{c}$	1⁄2
	$\Lambda_m = \frac{8.0 \times 10^{-5} S cm^{-1} \times 1000 cm^3 L^{-1}}{0.0024 mol L^{-1}} = 33.33 S cm^2 mol^{-1}$	1⁄2
	$\alpha = \frac{\Lambda_m}{\Lambda_m^o}$	1⁄2
	$\alpha = \frac{33.33 \ S \ cm^2 \ mol^{-1}}{390.5 \ S \ cm^2 \ mol^{-1}} = 0.085$	1/
		1/2
(b)	Electrolyte B is a strong electrolyte. Limiting molar conductivity increases only to a smaller extent for a strong	1
	electrolyte, as on dilution the interionic interactions are overcome. Limiting molar conductivity increases to alarger extent for a weak	1⁄2
	electrolyte, as on dilution the degree of dissociation increases, therefore the number of ions in total volume of solution increases.	1⁄2
L		L

	A: CH ₃ CH ₂ CH ₂ NH ₂	
	B:CH ₃ CH ₂ CH ₂ OH	
37.		(1/2 _v
(a)	$ \begin{array}{ll} A = & FeCr_2O_4 \\ D = & K_2Cr_2O_7 \end{array} \\ \end{array} \\ B = & Na_2CrO_4 \\ C = & Na_2Cr_2O_7 \end{array} $	(1/2x 2)
(b)		
(i)	5f, 6d and 7s levels in actinoids are of comparable energies.	1
(ii)	This is due to poorer shielding by 5f electrons in actinoids as compared to shielding by 4f electrons in lanthanoids.	1
(iii)	In actinoids, 5f electrons are more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanoids. Since the outer electrons are less firmly held, they are available for bonding in the actinoids.	1
	OR	
(a)		
(i)	MnO_4^{2-} ions disproportionate in acidic medium to give Permanganate ions and Manganese(IV) oxide.	1⁄2
	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	1⁄2
(ii)	Lanthanum sulphide if formed.	1⁄2
	$2La + 3S \xrightarrow{heat} La_2S_3$	1⁄2
	(Deduct overall ¹ / ₂ mark if equation not balanced/ statements not written)	
(b)		
(i)	Copper has high enthalpy of atomisation and low enthalpy of hydration. Since the high energy to transform Cu(s) to Cu ²⁺ (aq) is not balanced by hydration enthalpy, therefore $E^{o}(M^{2+}/M)$ value for copper is positive(+0.34 V).	1
(ii)	Cr^{2+} is reducing as its configuration changes from d^4 to d^3 , the latter having more stable half filled t_{2g} level. On the other hand, the change from Mn^{3+} to Mn^{2+} results in extra stable d^5 configuration.	1

(iii)	This is due to the increasing stability of the species of lower oxidation state to which they are reduced.	1