MARKING SCHEME
SAMPLE PAPER 1
SECTION A

Q.No.	Value Point	Marks
1 (i)	D	1
(ii)	B OR A	1
(iii)	A	1
(iv)	C	1
$2(i)$	B	1
(ii)	A	1
(iii)	A	1
(iv)	A OR B	1
3	C	O OR C
4	C	
5	OR B	1
6	B OR D	1
7	A OR A	1
9	C	1
10	A	1
11	A	1
12	A	1
13	D	1
14	B OR B	1
15	B	1
16	A	1
		1

SECTION B, C, D

\begin{tabular}{|c|c|c|}
\hline Q.No. \& VALUE POINTS \& MARKS \\
\hline \multicolumn{3}{|c|}{SECTION B} \\
\hline 17 \& \begin{tabular}{l}
Nitro group at ortho position withdraws the electron density from the benzene ring and thus facilitates the attack of the nucleophile on haloarene. \\
(i) \\
(ii) \(\xrightarrow{\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\text { alc } \mathrm{KOH}} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{HBr} \text {, organic peroxide }}\)
\end{tabular} \& 2

1
1
1

\hline 18 \& ```
$\Delta \mathrm{Tb}=\mathrm{K}_{\mathrm{b}} \mathrm{m} \quad \Delta \mathrm{Tb}=101.04-100=1.04{ }^{\circ} \mathrm{C}$
or $\mathrm{m}=1.04 / 0.52=2 \mathrm{~m}$
2 m solution means 2 moles of solute in 1 kg of solvent.
2 m aq solution of urea means 2 moles of urea in 1 kg of water.
No. of moles of water $=1000 / 18=55.5$
Relative lowering of $\mathrm{VP}=\mathrm{x}_{2}$ (where x_{2} is mole fraction of solute)
Relative lowering of $\mathrm{VP}=\mathrm{n}_{2} / \mathrm{n}_{1}+\mathrm{n}_{2}$ (n_{2} is no. of moles of solute, n_{1} is no. of moles
of solvent)
$=2 / 2+55.5=2 / 57.5=0.034$

``` & 1
\(1 / 2\)
\(1 / 2\) \\
\hline 19 & \begin{tabular}{l}
(i) \(\mathrm{t}_{\mathrm{g}}{ }^{4} \mathrm{eg}_{\mathrm{g}}{ }^{2}\) Paramagentic \\
(ii)Dichloridobis(ethane-1,2-diamine)cobalt(III)nitrate OR \\
(i)Square planar \\
(ii) \(\mathrm{Cu}^{2+}=3 \mathrm{~d}^{9} 1\) unpaired electron so \(\sqrt{ } 1(3)=1.73 \mathrm{BM}\)
\end{tabular} & \[
\begin{aligned}
& 1 / 2,1 / 2 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline 20 & \begin{tabular}{l}
Reaction is a complex reaction. \\
Order of reaction is 1.5 . \\
Molecularity cannot be 1.5 , it has no meaning for this reaction. The reaction occurs in steps, so it is a complex reaction. \\
(ii) units of k are \(\mathrm{mol}^{-1 / 2} \mathrm{~L}^{1 / 2} \mathrm{~s}^{-1}\)
\end{tabular} & \(1 / 2\)

\(1 / 2\)
1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
Ans: let the rate law expression be Rate \(=k[P]^{x}[Q]^{y}\) from the table we know that \\
Rate \(1=3.0 \times 10^{-4}=\mathrm{k}(0.10)^{\mathrm{x}}(0.10)^{\mathrm{y}}\) \\
Rate \(2=9.0 \times 10^{-4}=\mathrm{k}(0.30)^{\mathrm{x}}(0.30)^{\mathrm{y}}\) \\
Rate \(3=3.0 \times 10^{-4}=\mathrm{k}(0.10)^{\mathrm{x}}(0.30)^{\mathrm{y}}\) \\
Rate \(1 /\) Rate \(3=(1 / 3)^{y}\) or \(1=(1 / 3)^{y}\) \\
So y \(=0\) \\
Rate \(2 /\) Rate \(3=(3)^{x}\) or \(3=(3)^{x}\) \\
So \(\mathrm{x}=1\) \\
Rate \(=\mathrm{k}[\mathrm{P}]\)
\end{tabular} & \(1 / 2\)
\(1 / 2\)
1 \\
\hline 21 & \[
\begin{aligned}
& \mathrm{k}=0.693 / \mathrm{t}_{1 / 2} \\
& \mathrm{k}=0.693 / 5730 \text { years }^{-1} \\
& \mathrm{t}=\underline{2.303} \log \underline{\mathrm{Co}} \\
& \mathrm{kt} \\
& \text { let } \mathrm{Co}=1 \mathrm{Ct}=3 / 10 \quad \text { so } \mathrm{Co} / \mathrm{Ct}=1 /(3 / 10)=10 / 3 \\
& \mathrm{t}=\underline{2.303} \times 5730 \log \frac{10}{3} \\
& \mathrm{t}=19042 \times(1-0.4771)=9957 \text { years }
\end{aligned}
\] & \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline 22 &  & \(1 / 2\)
\(1 / 2\)

\(1 / 2\)
\(1 / 2\)

\(1 / 2\) \\
\hline 23 & \begin{tabular}{l}
\(\mathrm{XeF}_{6}\) \\
Central atom Xe has 8 valence electrons, it forms 6 bonds with \(F\) and has 1 lone pair. According to VSEPR theory, presence of 6 bp and 1 lp results in distorted octahedral geometry
\end{tabular} & 1
1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline &  & \\
\hline 24. & \begin{tabular}{l}
Racemic mixture will be given by 2 chlorobutane as it is an optically active compound. \\
When 2 chlorobutane undergoes \(\mathrm{S}_{\mathrm{N}}{ }^{1}\) reaction, both front and rear attack are possible, resulting in a racemic mixture
\end{tabular} & 1
1 \\
\hline 25 & \begin{tabular}{l}
Let no. of Atoms of element \(P\) be \(x\) \\
No. of tetrahedral voids \(=2 \mathrm{x}\) \\
No. Of octahedral voids \(=x\)
\[
\begin{aligned}
& \text { Atoms of } \mathrm{Q}=1 / 3(2 \mathrm{x})+\mathrm{x}=5 \mathrm{x} / 3 \\
& \mathrm{P}_{\mathrm{x}} \mathrm{Q}_{5 \times / 3} \\
& \mathrm{P}_{3} \mathrm{Q}_{5}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
1
\end{tabular} \\
\hline \multicolumn{3}{|c|}{SECTION C} \\
\hline 26 & \begin{tabular}{l}
(i)Due to large surface area and ability to show variable oxidation states \\
(ii)Due to high value of third ionisation enthalpy \\
(iii) \(\mathrm{Mo}(\mathrm{VI})\) and \(\mathrm{W}(\mathrm{VI})\) are more stable than \(\mathrm{Cr}(\mathrm{VI})\). \\
OR \\
(i) The general trend towards less negative \(E^{o} \quad \mathrm{~V}\) values across the series is related to the general increase in the sum of the first and second ionisation enthalpies. \\
(ii) The high energy to transform \(\mathrm{Cu}(\mathrm{s})\) to \(\mathrm{Cu}^{2+}(\mathrm{aq})\) is not balanced by its hydration enthalpy. \\
(iii) The stability of the half-filled \(d\) sub-shell in \(\mathrm{Mn}^{2+}\) and the completely filled \(d^{10}\) configuration in \(\mathrm{Zn}^{2+}\) are related to their more negative \(E^{o} \mathrm{~V}\) values
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
1 \\
1 \\
1
\end{tabular} \\
\hline 27 & \begin{tabular}{l}
(i) Aniline, \(N\)-ethylethanamine, Etanamine \\
(ii)Ethanamine, ethanol, ethanoic acid \\
(iii) \(\mathrm{N}, \mathrm{N}\) dimethylmethanamine, methanamine, N -methylmethanamine \\
OR \\
(i) N -methyletahnamine is a secondary amine. When it reacts with benzenesulphonyl chloride, it forms N - Ethyl - N methyl sulphonamide while and
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
\(\mathrm{N}, \mathrm{N}\)-dimethyl etahnanmine is a tertiary amine it does not react with benzenesulphonyl chloride. \\
(ii) \\
(iii)Butan-1-ol \\
Alcohol forms stronger hydrogen bonds with water than formed by amine due to higher electronegativity of O in alcohol than N in amine
\end{tabular} & 1


\(1 / 2\)
\(1 / 2\) \\
\hline 28 & \begin{tabular}{l}
We know that \(\mathrm{d}=\mathrm{zM} / \mathrm{Na}_{\mathrm{a}} \mathrm{a}^{3}\) \\
For fcc, \(\mathrm{z}=4\) therefore \(\mathrm{d}=4 \times \mathrm{x} / \mathrm{Na}\left(3.5 \times 10^{-8}\right)^{3} \mathrm{~g} / \mathrm{cm}^{3}\) \\
For bcc, \(\mathrm{z}=2\) therefore \(\mathrm{d}^{\prime}=2 \times \mathrm{M} / \mathrm{Na}\left(3.0 \times 10^{-8}\right)^{3} \mathrm{~g} / \mathrm{cm}^{3}\)
\[
\mathrm{d} / \mathrm{d}^{\prime}=4 /\left(3.5 \times 10^{-8}\right)^{3} / 2 /\left(3.0 \times 10^{-8}\right)^{3}=1.26: 1
\]
\end{tabular} & \[
\begin{array}{|l}
\hline 1 / 2 \\
1 \\
1 \\
1 / 2 \\
\hline
\end{array}
\] \\
\hline 29 & \begin{tabular}{l}

 \\
(ii)
\end{tabular} & 1
1
1 \\
\hline 30 & \begin{tabular}{l}
i. Arrange the following in decreasing order of bond dissociation enthalpy
\[
\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}
\] \\
ii. Bi does not form \(\mathrm{p} \pi-\mathrm{p} \pi\) bonds as its atomic orbitals are large and diffuse so effective overlapping is not possible \\
iii.Due to small size of oxygen, it has greater elecrton electron repulsions
\end{tabular} & 1
1
1 \\
\hline & SECTION D & \\
\hline 31. & \begin{tabular}{l}
(i) \\
(a) \(3 \mathrm{Cu}+8 \mathrm{HNO}_{3}\) (dilute) \(\rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}\) \\
(b)
\end{tabular} & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & 1 \\
(ii)' X ' is Helium \\
It is used as a diluent for oxygen in modern diving apparatus because of its very \\
low solubility in blood. \\
It monoatomic having no interatomic forces except weak dispersion forces and has \\
second lowest mass therefore bp is lowest.
\end{tabular}
(i)
```

