SAMPLE PAPER: MATHEMATICS
 CLASS-XII: 2014-15

TYPOLOGY

	VSA (1 M)	LA-I (4 M)	LA-II (6 M)	$\mathbf{1 0 0}$
Remembering	2,5	$11,15,19$	24	20
Understanding	1,4	8,12	23	16
Applications	6	$14,18,13$	21,26	25
HOTS	3	10,17	20,22	21
Evaluation \& MD	-	$7,9,16$	25	18

SECTION-A

Question number 1 to 6 carry 1 mark each.

1. The position vectors of points A and B are \vec{a} and \vec{b} respectively. P divides $A B$ in the ratio $3: 1$ and Q is mid-point of $A P$. Find the position vector of Q.
2. Find the area of the parallelogram, whose diagonals are $\vec{d}_{1}=5 \hat{\imath}$ and $\vec{d}_{2}=2 \hat{\jmath}$
3. If $\mathrm{P}(2,3,4)$ is the foot of perpendicular from origin to a plane, then write the vector equation of this plane.
4. If $\Delta=\left|\begin{array}{rrr}1 & 3 & -2 \\ 4 & -5 & 6 \\ 3 & 5 & 2\end{array}\right|$, Write the cofactor of a_{32} (the element of third row and $2^{\text {nd }}$ column).
5. If m and n are the order and degree, respectively of the differential equation $\mathrm{y}\left(\frac{d y}{d x}\right)^{3}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}-x y=\sin x$, then write the value of $\mathrm{m}+\mathrm{n}$.
6. Write the differential equation representing the curve $y^{2}=4 a x$, where a is an arbitrary constant.

SECTION-B

Question numbers 7 to 19 carry 4 marks each.
7. To raise money for an orphanage, students of three schools A, B and C organized an exhibition in their locality, where they sold paper bags, scrap-books and pastel sheets made by them using recycled paper, at the rate of Rs. 20, Rs. 15 and Rs. 5 per unit respectively. School A sold 25 paper-bags 12 scrap-books and 34 pastel sheets. School B sold 22 paper-bags, 15 scrapbooks and 28 pastel-sheets while school C sold 26 paper-bags, 18 scrap-books and 36 pastel sheets. Using matrices, find the total amount raised by each school.

By such exhibition, which values are inculcated in the students?
8. Let $A=\left(\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right)$, then show that $A^{2}-4 A+7 I=O$.

Using this result calculate A^{3} also.

OR

$$
\text { If } A=\left(\begin{array}{ccc}
1 & -1 & 0 \tag{4}\\
2 & 5 & 3 \\
0 & 2 & 1
\end{array}\right) \text {, find } A^{-1} \text {, using elementary row operations. }
$$

9. If x, y, z are in GP, then using properties of determinants, show that

$$
\left|\begin{array}{ccc}
p x+y & x & y \\
p y+z & y & z \\
0 & p x+y & p y+z
\end{array}\right|=0 \text {, where } x \neq \mathrm{y} \neq \mathrm{z} \text { and } \mathrm{p} \text { is any real number. }
$$

10. Evaluate : $\int_{-1}^{1}|x \cos \pi x| \mathrm{d} x$.
11. Evaluate : $\int \frac{1+\sin 2 x}{1+\cos 2 x} \cdot \mathrm{e}^{2 x} \mathrm{~d} x$.

OR

Evaluate : $\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} \mathrm{d} x$
12. Consider the experiment of tossing a coin. If the coin shows tail, toss it again but if it shows head, then throw a die. Find the conditional probability of the event that 'the die shows a number greater than 3' given that 'there is at least one head'. 4

OR

How many times must a man toss a fair coin so that the probability of having at least one head is more than 90% ?
13. For three vectors \vec{a}, \vec{b} and \vec{c} if $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \times \vec{c}=\vec{b}$, then prove that \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, $|\vec{b}|=|\vec{a}|$ and $|\vec{a}|=1$
14. Find the equation of the line through the point $(1,-1,1)$ and perpendicular to the lines joining the points $(4,3,2),(1,-1,0)$ and $(1,2,-1),(2,1,1)$

Find the position vector of the foot of perpendicular drawn from the point $\mathrm{P}(1,8,4)$ to the line joining $\mathrm{A}(\mathrm{O},-1,3)$ and $\mathrm{B}(5,4,4)$. Also find the length of this perpendicular.
15. Solve for $x: \sin ^{-1} 6 x+\sin ^{-1} 6 \sqrt{3} x=-\frac{\pi}{2}$

OR

Prove that: $2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}=\frac{\pi}{4}$
16. If $x=\sin t, \quad y=\sin k t$, show that
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+k^{2} y=0$
17. If $y^{x}+x^{y}+x^{x}=a^{b}$, find $\frac{d y}{d x}$
18. It is given that for the function $f(x)=x^{3}+b x^{2}+a x+5$ on [1, 3], Rolle's theorem holds with $\mathrm{c}=2+\frac{1}{\sqrt{3}}$.

Find values of a and b.
19. Evaluate : $\int \frac{3 x+1}{\sqrt{5-2 x-x^{2}}} \mathrm{~d} x$

SECTION-C

Question numbers 20 to 26 carry 6 marks each.
20. Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A \times A$ defined by $(a, b) R(c, d)$ if $a+d$ $=b+c$ for $a, b, c, d \in A$.

Prove that R is an equivalence relation. Also obtain the equivalence class $[(2,5)]$. 6 OR

Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$.
Show that $f: \mathrm{N} \rightarrow \mathrm{S}$ is invertible, where S is the range of f. Hence find inverse of f.
21. Compute, using integration, the area bounded by the lines
$x+2 y=2, \quad y-x=1 \quad$ and $\quad 2 x+y=7$
22. Find the particular solution of the differential equation

$$
\begin{aligned}
& x e^{\frac{y}{x}}-y \sin \left(\frac{y}{x}\right)+x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)=0, \text { given that } \\
& y=0, \text { when } x=1
\end{aligned}
$$

OR

Obtain the differential equation of all circles of radius r.
23. Show that the lines $\vec{r}=(-3 \hat{\imath}+\hat{\jmath}+5 \hat{k})+\lambda(-3 \hat{\imath}+\hat{\jmath}+5 \hat{k})$ and $\vec{r}=(-\hat{\imath}+2 \hat{\jmath}+5 \hat{k})+$ $\mu(-\hat{\imath}+2 \hat{\jmath}+5 \hat{k})$ are coplanar. Also, find the equation of the plane containing these lines.
24. 40% students of a college reside in hostel and the remaining reside outside. At the end of year, 50% of the hosteliers got A grade while from outside students, only 30% got A grade in the examination. At the end of year, a student of the college was chosen at random and was found to get A grade. What is the probability that the selected student was a hostelier?
25. A man rides his motorcycle at the speed of $50 \mathrm{~km} / \mathrm{h}$. He has to spend Rs. 2 per km on petrol. If he rides it at a faster speed of $80 \mathrm{~km} / \mathrm{h}$, the petrol cost increases to Rs. 3 per km. He has atmost Rs. 120 to spend on petrol and one hour's time. Using LPP find the maximum distance he can travel.
26. A jet of enemy is flying along the curve $y=x^{2}+2$ and a soldier is placed at the point $(3,2)$. Find the minimum distance between the soldier and the jet.

MARKING SCHEME
 SAMPLE PAPER SECTION-A

1. $\frac{1}{8}(5 \vec{a}+3 \vec{b}) \quad 1$
2. 5 sq. units1
3. $\vec{r} \cdot(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})=29 \quad 1$
4. -141
5. $\mathrm{m}+\mathrm{n}=4$ 1
6. $2 x \frac{d y}{d x}-\mathrm{y}=0$1

SECTION-B

7. Sale matrix for A, B and C is $\quad\left(\begin{array}{lll}25 & 12 & 34 \\ 22 & 15 & 28 \\ 26 & 18 & 36\end{array}\right) \quad 1 / 2$

Price matrix is

School A = Rs 850, school B = Rs 805, school C = Rs 970

Values

- Helping the orphans1
- Use of recycled paper1

8. $\quad \mathrm{A}^{2}=\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)\left(\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right)=\left(\begin{array}{rr}1 & 12 \\ -4 & 1\end{array}\right)$

$$
\begin{align*}
& \therefore A^{2}-4 A+7 I=\left(\begin{array}{cc}
1 & 12 \\
-4 & 1
\end{array}\right)+\left(\begin{array}{cc}
-8 & -12 \\
4 & -8
\end{array}\right)+\left(\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \tag{2}\\
& A^{2}=4 A-7 I \Rightarrow A^{3}=4 A^{2}-7 A=4(4 A-7 I)-7 A \\
& =9 A-28 I=\left(\begin{array}{cc}
18 & 27 \\
-9 & 18
\end{array}\right)+\left(\begin{array}{rr}
-28 & 0 \\
0 & -28
\end{array}\right) \\
& =\left(\begin{array}{cc}
-10 & 27 \\
-9 & -10
\end{array}\right)
\end{align*}
$$

OR
Write A = IA we get $\quad\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 5 & 3 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \cdot \mathrm{A}$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \Rightarrow \quad\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 7 & 3 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \mathrm{A}$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{3} \Rightarrow \quad\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & -3 \\ 0 & 0 & 1\end{array}\right) \mathrm{A}$
$\begin{aligned} & R_{1} \rightarrow R_{1}+R_{2} \\ & R_{3} \rightarrow R_{3}-2 R_{2}\end{aligned} \quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{rrr}-1 & 1 & -3 \\ -2 & 1 & -3 \\ 4 & -2 & 7\end{array}\right) \mathrm{A}$
$\therefore A^{-1}=\left(\begin{array}{ccc}-1 & 1 & -3 \\ -2 & 1 & -3 \\ 4 & -2 & 7\end{array}\right)$
9. $\Delta=\left|\begin{array}{ccc}p x+y & x & y \\ p y+z & y & z \\ 0 & p x+y & p y+z\end{array}\right|$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{pC}_{2}-\mathrm{C}_{3}, \Delta=\left|\begin{array}{ccc}0 & x & y \\ 0 & y & z \\ -p^{2} x-p y-p y-z & p x+y & p y+z\end{array}\right|$

Expanding by R_{3}
$\Delta=\left(-p^{2} x-2 p y-z\right)\left(x z-y^{2}\right)$

Since x, y, z are in GP, $\therefore y^{2}=x z$ or $y^{2}-x z=0$
$\therefore \quad \Delta=0$
10. $\int_{-1}^{1}|x \cdot \cos \pi x| \mathrm{d} x=2 \int_{0}^{1}|x \cos \pi x| d x$
$=2 \int_{0}^{1 / 2}(x \cos \pi x) \mathrm{d} x+2 \int_{1 / 2}^{1}-(x \cos \pi x) \mathrm{d} x$
$=2\left[\frac{x \sin \pi x}{\pi}+\frac{\cos \pi x}{\pi^{2}}\right]_{0}^{\frac{1}{2}}-2\left[\frac{x \sin \pi x}{\pi}+\frac{\cos \pi x}{\pi^{2}}\right]_{\frac{1}{2}}^{1}$
$=2\left[\frac{1}{2 \pi}-\frac{1}{\pi^{2}}\right]-2\left[\frac{-1}{\pi^{2}}-\frac{1}{2 \pi}\right]=\frac{2}{\pi}$
11. $\mathrm{I}=\int \frac{1+\sin 2 x}{1+\cos 2 x} \cdot \mathrm{e}^{2 x} \mathrm{~d} x=\frac{1}{2} \int \frac{1+\sin t}{1+\cos } \cdot \mathrm{e}^{\mathrm{t}} \mathrm{dt}$ (where $2 x=\mathrm{t}$)
$=\frac{1}{2} \int\left(\frac{1}{2 \cos ^{2 t} / 2}+\frac{2 \sin t / 2 \cos t / 2}{2 \cos ^{2 t} / 2}\right) \mathrm{e}^{\mathrm{t}} \mathrm{dt}$
$=\frac{1}{2} \int\left(\frac{1}{2} \sec ^{2} t / 2+\tan t / 2\right) \mathrm{e}^{\mathrm{t}} \mathrm{dt}$
$\tan t / 2=\mathrm{f}(\mathrm{t})$ then $\mathrm{f}^{\prime}(\mathrm{t})=\frac{1}{2} \sec ^{2} t / 2$
Using $\int\left(f(t)+f^{\prime}(t)\right) \mathrm{e}^{\mathrm{t}} \mathrm{dt}=\mathrm{f}(\mathrm{t}) \mathrm{e}^{\mathrm{t}}+\mathrm{C}$, we get
$\mathrm{I}=\frac{1}{2} \tan t / 2 \cdot \mathrm{e}^{\mathrm{t}}+\mathrm{C}=\frac{1}{2} \tan x . \mathrm{e}^{2 x}+\mathrm{C}$

OR
We have

$$
\begin{align*}
\frac{x^{4}}{(x-1)\left(x^{2}+1\right)} & =(x+1)+\frac{1}{x^{3}-x^{2}+x-1} \\
& =(x+1)+\frac{1}{(x-1)\left(x^{2}+1\right)} \tag{1}
\end{align*}
$$

1

Now express $\quad \frac{1}{(x-1)\left(x^{2}+1\right)}=\frac{A}{(x-1)}+\frac{B x+C}{\left(x^{2}+1\right)}$

So,

$$
\begin{aligned}
& 1=A\left(x^{2}+1\right)+(B x+C)(x-1) \\
& =(A+B) x^{2}+(C-B) x+A-C
\end{aligned}
$$

Equating coefficients, $A+B=0, C-B=0$ and $A-C=1$,
Which give $A=\frac{1}{2}, B=C=-\frac{1}{2}$. Substituting values of A, B, and C in (2), we get

$$
\begin{equation*}
\frac{1}{(x-1)\left(x^{2}+1\right)}=\frac{1}{2(x-1)}-\frac{1}{2} \frac{x}{\left(x^{2}+1\right)}-\frac{1}{2\left(x^{2}+1\right)} \tag{3}
\end{equation*}
$$

Again, substituting (3) in (1), we have
$\frac{x^{4}}{(x-1)\left(x^{2}+1\right)}=(x+1)+\frac{1}{2(x-1)}-\frac{1}{2} \frac{x}{\left(x^{2}+1\right)}-\frac{1}{2\left(x^{2}+1\right)}$
Therefore
$\int \frac{x^{4}}{(x-1)\left(x^{2}+1\right)} d x=\frac{x^{2}}{2}+x+\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+C$
12. Let $\mathrm{E}:$ Die shows a number >3

E : \{H4, H5, H6]
and F : there is atleast one head.
$\therefore \mathrm{F}:\{\mathrm{HT}, \mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6\}$
$\mathrm{P}(\mathrm{F})=1-\frac{1}{4}=\frac{3}{4}$
$P(E \cap F)=\frac{3}{12}=\frac{1}{4}$
$\therefore \mathrm{P}(\mathrm{E} / \mathrm{F})=\frac{P(E \cap F)}{P(F)}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}$

OR
$\mathrm{p}=\frac{1}{2^{\prime}} \mathrm{q}=\frac{1}{2}$, let the coin be tossed n times
$\therefore \mathrm{P}(\mathrm{r} \geq 1)>\frac{90}{100}$
or $1-\mathrm{P}(\mathrm{r}=0)>\frac{90}{100}$
$\mathrm{P}(\mathrm{r}=0)<1-\frac{9}{10}=\frac{1}{10}$
${ }^{n} C_{0}\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2}\right)^{0}<\frac{1}{10} \Rightarrow \frac{1}{2^{n}}<\frac{1}{10}$
$\Rightarrow 2^{n}>10, \therefore \mathrm{n}=4$
13. $\left.\begin{array}{l}\vec{a} \times \vec{b}=\vec{c} \Rightarrow \vec{a} \perp \vec{b} \text { and } \vec{b} \perp \vec{c} \\ \vec{a} \times \vec{c}=\vec{b} \Rightarrow \vec{a} \perp \vec{b} \text { and } \vec{c} \perp \vec{b}\end{array}\right\} \Rightarrow \vec{a} \perp \vec{b} \perp \vec{c}$
$|\vec{a} \times \vec{b}|=|\vec{c}|$ and $|\vec{a} \times \vec{c}|=|\vec{b}|$
$\Rightarrow|\vec{a}||\vec{b}| \sin \frac{\pi}{2}=|\vec{c}|$ and $|\vec{a}||\vec{c}| \sin \pi / 2=|\vec{b}|$
$\Rightarrow|\vec{a}||\vec{b}|=|\vec{c}|: \therefore|\vec{a}||\vec{a}||\vec{b}|=|\vec{b}| \Rightarrow|\vec{a}|^{2}=1 \Rightarrow|\vec{a}|=1$
$\Rightarrow 1 .|\vec{b}|=|\vec{c}| \Rightarrow|\vec{b}|=|\vec{c}|$
14. DR's of line (L_{1}) joining $(4,3,2)$ and $(1,-1,0)$ are $<3,4,2>$

DR's of line $\left(L_{2}\right)$ joining $(1,2,-1)$ and $(2,1,1)$ are $<1,-1,2>$
A vector \perp to L_{1} and L_{2} is $\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 4 & 2 \\ 1 & -1 & 2\end{array}\right|=10 \hat{\imath}-4 \hat{\jmath}-7 \hat{k}$
\therefore Equation of the line passing through $(1,-1,1)$ and \perp to L_{1} and L_{2} is
$\vec{r}=(\hat{\imath}-\hat{\jmath}+\hat{k})+\lambda(10 \hat{\imath}-4 \hat{\jmath}-7 \hat{k})$

OR

Equation of line $A B$ is
$\vec{r}=(-\hat{\jmath}+3 \hat{k})+\lambda(5 \hat{\imath}+5 \hat{\jmath}+\hat{k})$
\therefore Point Q is $(5 \lambda,-1+5 \lambda, 3+\lambda)$

$\overrightarrow{P Q}=(5 \lambda-1) \hat{\imath}+(5 \lambda-9) \hat{\jmath}+(\lambda-1) \hat{k}$
$\mathrm{PQ} \perp \mathrm{AB} \Rightarrow 5(5 \lambda-1)+5(5 \lambda-9)+1(\lambda-1)=0$
$51 \lambda=51 \Rightarrow \lambda=1$
\Rightarrow foot of perpendicular (Q) is $(5,4,4)$
Length of perpendicular $\mathrm{PQ}=\sqrt{4^{2}+(-4)^{2}+0^{2}}=4 \sqrt{2}$ units
15. $\sin ^{-1} 6 x+\sin ^{-1} 6 \sqrt{3} x=-\frac{\pi}{2}$

$$
\begin{align*}
& \Rightarrow \sin ^{-1} 6 x=\left(\frac{-\pi}{2}-\sin ^{-1} 6 \sqrt{3 x}\right) \\
& \begin{aligned}
& \Rightarrow 6 x=\sin \left[-\frac{\pi}{2}-\sin ^{-1} 6 \sqrt{3} x\right]=-\sin \left[\frac{\pi}{2}+\sin ^{-1} 6 \sqrt{3} x\right] \\
&=-\cos \left[\sin ^{-1} 6 \sqrt{3} x\right]=-\sqrt{1-108 x^{2}} \\
& \Rightarrow 36 x^{2}= 1-108 x^{2} \Rightarrow 144 x^{2}=1
\end{aligned} \\
& \Rightarrow \quad x= \pm \frac{1}{12}
\end{align*}
$$

since $x=\frac{1}{12}$ does not satisfy the given equation
$\therefore x=-\frac{1}{12}$

OR
LHS $=2 \sin ^{-1} \frac{3}{5}-\tan ^{-1} \frac{17}{31}$

$$
=2 \tan ^{-1} \frac{3}{4}-\tan ^{-1} \frac{17}{31}
$$

$=\tan ^{-1}\left(\frac{2 \cdot \frac{3}{4}}{1-\frac{9}{16}}\right)-\tan ^{-1} \frac{17}{31}$
$=\tan ^{-1}\left(\frac{24}{7}\right)-\tan ^{-1} \frac{17}{31}$
$=\tan ^{-1}\left(\frac{\frac{24}{7}-\frac{17}{31}}{1+\frac{24}{7} \cdot \frac{17}{31}}\right)=\tan ^{-1}(1)=\pi / 4$
16. $x=\sin t$ and $y=\sin k t$
$\frac{d x}{d t}=\cos t$ and $\frac{d y}{d t}=\mathrm{k} \cos \mathrm{kt}$
$\Rightarrow \frac{d y}{d x}=\mathrm{k} \frac{\cos k t}{\cos t}$
or cost. $\frac{d y}{d x}=\mathrm{k} . \cos \mathrm{kt}$
$\cos ^{2} \mathrm{t}\left(\frac{d y}{d x}\right)^{2}=\mathrm{k}^{2} \cos ^{2} \mathrm{kt}$
$\cos ^{2} \mathrm{t}\left(\frac{d y}{d x}\right)^{2}=\mathrm{k}^{2} \cos ^{2} \mathrm{kt}$
$1 / 2$
$\left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=\mathrm{k}^{2}\left(1-\mathrm{y}^{2}\right)$
Differentiating w.r.t. x

$$
\begin{aligned}
& \left(1-x^{2}\right) 2 \frac{d y}{d x} \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}(-2 x)=-2 \mathrm{k}^{2} \mathrm{y} \frac{d y}{d x} \\
& \Rightarrow\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+\mathrm{k}^{2} \mathrm{y}=0
\end{aligned}
$$

17. let $\mathrm{u}=\mathrm{y}^{x}, \quad \mathrm{v}=x^{\mathrm{y}}, \quad \mathrm{w}=x^{x}$
(i) $\log \mathrm{u}=x \log \mathrm{y} \Rightarrow \frac{d u}{d x}=\mathrm{y}^{x}\left[\log \mathrm{y}+\frac{x}{y} \frac{d y}{d x}\right]$
(ii) $\log \mathrm{v}=\mathrm{y} \log x \Rightarrow \frac{d v}{d x}=x^{\mathrm{y}}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]$
(iii) $\log \mathrm{w}=x \log x \Rightarrow \frac{d w}{d x}=x^{x},(1+\log x)$
$\Rightarrow y^{x}\left[\log y+\frac{x}{y} \frac{d y}{d x}\right]+x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+x^{x}(1+\log x)=0$
$\Rightarrow \frac{d y}{d x}=-\frac{x^{x}(1+\log x)+y x^{y-1}+y^{x} \log y}{x \cdot y^{x-1}+\log x}$
18. $f(x)=x^{3}+\mathrm{b} x^{2}+a x+5 \quad$ on $[1,3]$
$f^{\prime}(x)=3 x^{2}+2 \mathrm{~b} x+\mathrm{a}$
$f^{\prime}(\mathrm{c})=0 \Rightarrow 3\left(2+\frac{1}{\sqrt{3}}\right)^{2}+2 \mathrm{~b}\left(2+\frac{1}{\sqrt{3}}\right)+a=0----(\mathrm{i})$
$f(1)=f(3) \Rightarrow b+a+6=32+9 \mathrm{~b}+3 a$
or $a+4 b=-13--------$ (ii)
Solving (i) and (ii) to get $\mathrm{a}=11, \mathrm{~b}=-6$
19. Let $3 x+1=A(-2 x-2)+B \quad \Rightarrow A=-3 / 2, B=-2$
$I=\int \frac{-\frac{3}{2}(-2 x-2)}{\sqrt{5-2 x-x^{2}}} d x-2 \int \frac{1}{\sqrt{(\sqrt{6})^{2}-(x+1)^{2}}} d x$
$=-3 \sqrt{5-2 x-x^{2}}-2 . \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+C$

SECTION-C

20. (i) for all $a, b \in \mathrm{~A}, \quad(a, \mathrm{~b}) \mathrm{R}(\mathrm{a}, \mathrm{b})$, as $a+\mathrm{b}=\mathrm{b}+a$
$\therefore \mathrm{R}$ is reflexive
(ii) for $a, b, c, d \in A$, let $(a, b) \mathrm{R}(\mathrm{c}, \mathrm{d})$
$\therefore a+\mathrm{d}=\mathrm{b}+\mathrm{c} \Rightarrow \mathrm{c}+\mathrm{b}=\mathrm{d}+a \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(a, \mathrm{~b})$
$\therefore \mathrm{R}$ is symmetric
(iii) for $a, b, c, d, e, f, \in A,(a, b) R(c, d)$ and $(c, d) R(e, f)$
$\therefore a+\mathrm{d}=\mathrm{b}+\mathrm{c}$ and $\mathrm{c}+\mathrm{f}=\mathrm{d}+\mathrm{e}$
$\Rightarrow a+\mathrm{d}+\mathrm{c}+\mathrm{f}=\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}$ or $a+\mathrm{f}=\mathrm{b}+\mathrm{e}$
$\Rightarrow(a, \mathrm{~b}) \mathrm{R}(\mathrm{e}, \mathrm{f}) \therefore \mathrm{R}$ is Transitive

Hence R is an equivalence relation and equivalence class $[(2,5)]$ is

$$
\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}
$$

OR

Let $y \in S$, then $\mathrm{y}=4 x^{2}+12 x+15$, for some $x \in \mathrm{~N}$

$$
\begin{equation*}
\Rightarrow y=(2 x+3)^{2}+6 \Rightarrow x=\frac{(\sqrt{y-6})-3}{2}, \text { as } \mathrm{y}>6 \tag{1}
\end{equation*}
$$

Let $g: S \rightarrow N$ is defined by $g(y)=\frac{(\sqrt{y-6})-3}{2}$
$\therefore \operatorname{gof}(x)=\mathrm{g}\left(4 x^{2}+12 x+15\right)=\mathrm{g}\left((2 x+3)^{2}+6\right)=\frac{\sqrt{(2 x+3})^{2}-3}{2}=x$
and $\operatorname{fog}(\mathrm{y})=\mathrm{f}\left(\frac{(\sqrt{y-6})-3}{2}\right)=\left[\frac{2\{(\sqrt{y-6})-3\}}{2}+3\right]^{2}+6=y$
Hence fog $(\mathrm{y})=\mathrm{I}$ and $\operatorname{gof}(x)=\mathrm{I}_{\mathrm{N}}$
$\Rightarrow f$ is invertible and $\mathrm{f}^{-1}=\mathrm{g}$
21. Let the lines be, $A B: x+2 y=2, B C: 2 x+y=7, A C=y-x=1$
\therefore Points of intersection are
$\mathrm{A}(0,1), \mathrm{B}(4,-1)$ and $\mathrm{C}(2,3)$
$A=\frac{1}{2} \int_{-1}^{3}(7-y) d y-\int_{-1}^{1}(2-2 y) d y-\int_{1}^{3}(y-1) d y$
$=\frac{1}{2}\left(7 y-\frac{y^{2}}{2}\right)_{-1}^{3}-\left(2 y-y^{2}\right)_{-1}^{1}-\left(\frac{y^{2}}{2}-y\right)_{1}^{3}$
$=12-4-2=6 s q$. Unit.

22. Given differential equation is homogenous.
\therefore Putting $\mathrm{y}=\mathrm{v} x$ to get $\frac{d y}{d x}=\mathrm{v}+x \frac{d v}{d x}$
$\frac{d y}{d x}=\frac{y \sin \left(\frac{y}{x}\right)-x e^{y / x}}{x \sin \left(\frac{y}{x}\right)} \Rightarrow \mathrm{v}+x \frac{d v}{d x}=\frac{v \sin v-e^{v}}{\sin v}$
$\therefore \mathrm{v}+x \frac{d v}{d x}=\mathrm{v}-\frac{e^{v}}{\sin v}$ or $x \frac{d v}{d x}=-\frac{e^{\mathrm{v}}}{\sin v}$
$\therefore \int \sin v e^{-v} d v=-\int \frac{d x}{x}$ or $I_{1}=-\log x+c_{1}-\cdots--(\mathrm{i})$
$\mathrm{I}_{1}=\sin v . \mathrm{e}^{-v}+\int \cos v e^{-v} d v$
$=-\sin v . e^{-v}-\cos v e^{-v}-\int \sin v \cdot e^{-v} d v$
$\mathrm{I}_{1}=-\frac{1}{2}(\sin \mathrm{v}+\cos \mathrm{v}) e^{-\mathrm{v}}$
Putting (i), $\frac{1}{2}(\operatorname{sinv}+\operatorname{cosv}) e^{-v}=\log x+C_{2}$
$\Rightarrow\left[\sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)\right] e^{\frac{-y}{x}}=\log x^{2}+C$
$x=1, \mathrm{y}=0 \Rightarrow \mathrm{c}=1$

Hence, Solution is $\left[\sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)\right] e^{\frac{-y}{x}}=\log x^{2}+1$

OR

$$
\begin{align*}
& (x-a)^{2}+(y-b)^{2}=r^{2} \tag{i}\\
& \quad \Rightarrow 2(x-a)+2(y-b) \frac{d y}{d x}=0 \tag{ii}\\
& \quad \Rightarrow 1+(y-b) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0 \tag{iii}\\
& \therefore(y-b)=-\frac{\left(1+y_{1}^{2}\right)}{y^{2}}
\end{align*}
$$

From (ii), $(x-a)=\frac{y_{1}\left(1+y_{1}^{2}\right)}{y_{2}}$

Putting these values in (i)

$$
\begin{align*}
& \frac{y_{1}^{2}\left(1+y_{1}^{2}\right)^{2}}{y_{2}^{2}}+\frac{\left(1+y_{1}^{2}\right)^{2}}{y_{2}^{2}}=r^{2} \tag{1}\\
& \text { or } \quad\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2} \tag{1}
\end{align*}
$$

23. Here $\vec{a}_{1}=-3 \hat{i}+\hat{j}+5 \hat{k}, \vec{b}_{1}=3 \hat{i}+\hat{j}+5 \hat{k}$

$$
\vec{a}_{2}=-\hat{i}+2 \hat{j}+5 \hat{k}, \vec{b}_{2}=-\hat{i}+2 \hat{j}+5 \hat{k}
$$

$\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=\left|\begin{array}{ccc}2 & 1 & 0 \\ -3 & 1 & 5 \\ -1 & 2 & 5\end{array}\right|=2(-5)-1(-15+5)$
$=-10+10=0$
\therefore lines are co-planer.
Perpendicular vector $(\overrightarrow{\mathrm{n}})$ to the plane $=\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}$
$\left|\begin{array}{ccc}i & j & \hat{k} \\ -3 & 1 & 5 \\ -1 & 2 & 5\end{array}\right|=-5 \hat{i}+10 \hat{j}-5 \hat{k}$
or $\hat{i}-2 \hat{j}+\hat{k}$
\therefore Eqn. of plane is $\overrightarrow{\mathrm{r}} \cdot(\hat{i}-2 \hat{j}+\hat{k})=(\hat{i}-2 \hat{j}+\hat{k}) \cdot(-3 \hat{i}+\hat{j}+5 \hat{k})=0$

$$
\text { or } x-2 y+z=0
$$

24. Let E_{1} : Student resides in the hostel
E_{2} : Student resides outside the hostel
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{40}{100}=\frac{2}{5}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{3}{5}$

$$
1 / 2+1 / 2
$$

A: Getting A grade in the examination

$$
\mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{1}}\right)=\frac{50}{100}=\frac{1}{2} \quad \mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{2}}\right)=\frac{30}{100}=\frac{3}{10}
$$

$$
\begin{array}{rlr}
\mathrm{P}\left(\frac{\mathrm{E}_{1}}{\mathrm{~A}}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{1}}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\frac{A}{\mathrm{E}_{1}}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\frac{\mathrm{~A}}{\mathrm{E}_{2}}\right)} & 1 \\
& =\frac{2}{5} \cdot \frac{1}{2} \\
\frac{2}{5} \cdot \frac{3}{2}+\frac{3}{5} \cdot \frac{3}{10} & =\frac{10}{19} & 1+1
\end{array}
$$

25. Let the distance travelled @ $50 \mathrm{~km} / \mathrm{h}$ be $x \mathrm{~km}$.
and that @ $80 \mathrm{~km} / \mathrm{h}$ be y km.
\therefore LPP is

$$
\text { Maximize } \mathrm{D}=x+\mathrm{y}
$$

St. $2 x+3 y \leq 120$

$$
\begin{aligned}
& \frac{x}{50}+\frac{y}{80} \leq 1 \text { or } 8 x+5 y \leq 400 \\
& x \geq 0, \mathrm{y} \geq 0
\end{aligned}
$$

Vertices are.

$$
(0,40),\left(\frac{300}{7}, \frac{80}{7}\right),(50,0)
$$

Max. D is at $\left(\frac{300}{7}, \frac{80}{7}\right)$
Max. $\mathrm{D}=\frac{380}{7}=54 \frac{2}{7} \mathrm{~km}$.
26. Let $\mathrm{P}(x, y)$ be the position of the jet and the soldier is placed at $\mathrm{A}(3,2)$
$\Rightarrow \mathrm{AP}=\sqrt{(x-3)^{2}+(y-2)^{2}}$ $1 / 2$

As $y=x^{2}+2 \Rightarrow y-2=x^{2}$
.......(ii) $\Rightarrow \mathrm{AP}^{2}=(x-3)^{2}+x^{4}=\mathrm{z}$ (say)
$\frac{d z}{d x}=2(x-3)+4 x^{3}$ and $\frac{d^{2} z}{d x^{2}}=12 x^{2}+2$
$\frac{d z}{d x}=0 \Rightarrow x=1$ and $\frac{d^{2} z}{d x^{2}} \quad($ at $x=1)>0$
$\therefore \mathrm{z}$ is minimum when $x=1$, when $x=1, \mathrm{y}=1+2=3$
\therefore minimum distance $=\sqrt{(3-1)^{2}+1^{2}}=\sqrt{5}$

