SAMPLE QUESTION PAPER

CLASS-XII (2016-17)
MATHEMATICS (041)

Time allowed: $\mathbf{3}$ hours
Maximum Marks: $\mathbf{1 0 0}$

General Instructions:

(i) All questions are compulsory.
(ii) This question paper contains 29 questions.
(iii) Question 1-4 in Section A are very short-answer type questions carrying 1 mark each.
(iv) Question 5-12 in Section B are short-answer type questions carrying $\mathbf{2}$ marks each.
(v) Question 13-23 in Section C are long-answer-I type questions carrying 4 marks each.
(vi) Question 24-29 in Section D are long-answer-II type questions carrying 6 marks each.

SECTION-A

Questions from 1 to 4 are of 1 mark each.

1. What is the principal value of $\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)$?
2. A and B are square matrices of order 3 each, $|A|=2$ and $|B|=3$. Find $|3 A B|$
3. What is the distance of the point (p, q, r) from the x-axis?
4. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2}-5$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{g}(\mathrm{x})=\frac{x}{x^{2}+1}$. Find g of

SECTION-B

Questions from $\mathbf{5}$ to $\mathbf{1 2}$ are of $\mathbf{2}$ marks each.

5. How many equivalence relations on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,1)$ are there in all ? Justify your answer.
6. Let $l_{i}, m_{i,}, n_{i} ; i=1,2,3$ be the direction cosines of three mutually perpendicular vectors in space. Show that $\mathrm{AA}^{\prime}=I_{3}$, where $\mathrm{A}=\left[\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]$.
7. If $\mathrm{e}^{y}(\mathrm{x}+1)=1$, show that $\frac{d y}{d x}=-e^{y}$
8. Find the sum of the order and the degree of the following differential equations:

$$
\frac{d^{2} y}{d x^{2}}+\sqrt[3]{\frac{d y}{d x}}+(1+\mathrm{x})=0
$$

9. Find the Cartesian and Vector equations of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{8-z}{-6}$
10. Solve the following Linear Programming Problem graphically:

Maximize $Z=3 x+4 y$
subject to $x+y \leq 4, x \geq 0$ and $y \geq 0$
11. A couple has 2 children. Find the probability that both are boys, if it is known that (i) one of them is a boy (ii) the older child is a boy.
12. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which its area increases, when side is 10 cm long.

SECTION-C

Questions from 13 to 23 are of 4 marks each.

13. If $A+B+C=\pi$, then find the value of

$$
\left|\begin{array}{ccc}
\sin (A+B+C) & \sin B & \cos C \\
-\sin B & 0 & \tan A \\
\cos (A+B) & -\tan A & 0
\end{array}\right|
$$

Using properties of determinant, prove that

$$
\left|\begin{array}{lll}
b+c & a-b & a \\
c+a & b-c & b \\
a+b & c-a & c
\end{array}\right|=3 a b c-a^{3}-b^{3}-c^{3}
$$

14. It is given that for the function $f(x)=x^{3}-6 x^{2}+a x+b$ Rolle's theorem holds in [1,3] with c $=2+\frac{1}{\sqrt{3}}$. Find the values of ' a ' and ' b '
15. Determine for what values of x, the function $f(x)=x^{3}+\frac{1}{x^{3}}(x \neq 0)$ is strictly increasing or strictly decreasing

OR

Find the point on the curve $\mathrm{y}=\mathrm{x}^{3}-11 x+5$ at which the tangent is $\mathrm{y}=\mathrm{x}-11$
16. Evaluate $\int_{0}^{2}\left(x^{2}+3\right) \mathrm{dx}$ as limit of sums.
17. Find the area of the region bounded by the y-axis, $y=\cos x$ and $y=\sin x, 0 \leq x \leq \frac{\pi}{2}$
18. Can $\mathrm{y}=\mathrm{ax}+\frac{b}{a}$ be a solution of the following differential equation?

$$
\begin{equation*}
\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\frac{b}{\frac{d y}{d x}} \ldots \ldots \ldots \ldots \ldots \tag{*}
\end{equation*}
$$

If no, find the solution of the D.E.(*).

OR

Check whether the following differential equation is homogeneous or not

$$
x^{2} \frac{d y}{d x}-x y=1+\cos \left(\frac{y}{x}\right), x \neq 0
$$

Find the general solution of the differential equation using substitution $\mathrm{y}=\mathrm{vx}$.
19. If the vectors $\overrightarrow{\mathrm{p}}=\mathrm{a} \hat{\imath}+\hat{\jmath}+\hat{k}, \overrightarrow{\mathrm{q}}=\hat{\imath}+\mathrm{b} \hat{\jmath}+\hat{k}$ and $\overrightarrow{\mathrm{r}}=\hat{\imath}+\hat{\jmath}+\widehat{C K}$ are coplanar, then for a, b, $c \neq 1$ show that

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1
$$

20. A plane meets the coordinate axes in A, B and C such that the centroid of $\triangle A B C$ is the point (α, β, γ). Show that the equation of the plane is $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$
21. If a 20 year old girl drives her car at $25 \mathrm{~km} / \mathrm{h}$, she has to spend $\mathrm{Rs} 4 / \mathrm{km}$ on petrol. If she drives her car at $40 \mathrm{~km} / \mathrm{h}$, the petrol cost increases to Rs $5 / \mathrm{km}$. She has Rs 200 to spend on petrol and wishes to find the maximum distance she can travel within one hour. Express the above problem as a Linear Programming Problem. Write any one value reflected in the problem.
22. The random variable X has a probability distribution $P(X)$ of the following form, where k is some number:

$$
P(X)=\left\{\begin{array}{c}
k, \text { if } x=0 \\
2 k, \text { if } x=1 \\
3 k, \text { if } x=2 \\
0, \text { otherwise }
\end{array}\right.
$$

(i) Find the value of k (ii) Find $\mathrm{P}(\mathrm{X}<2$) (iii) Find $\mathrm{P}(\mathrm{X} \leq 2)$ (iv)Find $\mathrm{P}(\mathrm{X} \geq 2)$
23. A bag contains $(2 n+1)$ coins. It is known that ' n ' of these coins have a head on both its sides whereas the rest of the coins are fair. A coin is picked up at random from the bag and is tossed. If the probability that the toss results in a head is $\frac{31}{42}$, find the value of ' n '.

SECTION-D

Questions from 24 to 29 are of 6 marks each

24. Using properties of integral, evaluate $\int_{0}^{\pi} \frac{x}{1+\sin x} d x$

OR

Find: $\int \frac{\sin x}{\sin ^{3} x+\cos ^{3} x} d x$
25. Does the following trigonometric equation have any solutions? If Yes, obtain the solution(s):

$$
\begin{gathered}
\tan ^{-1}\left(\frac{x+1}{x-1}\right)+\tan ^{-1}\left(\frac{x-1}{x}\right)=-\tan ^{-1} 7 \\
\text { OR }
\end{gathered}
$$

Determine whether the operation * define below on \mathbb{Q} is binary operation or not.

$$
a * b=a b+1
$$

If yes, check the commutative and the associative properties. Also check the existence of identity element and the inverse of all elements in \mathbb{Q}.
26.

Find the value of x, y and z , if $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ satisfies $\mathrm{A}^{\prime}=\mathrm{A}^{-1}$

OR

Verify: $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=|A| \mid \mathrm{I}$ for matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
27. Find $\frac{d y}{d x}$, if $\mathrm{y}=\mathrm{e}^{\sin ^{2} \mathrm{x}}\left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\}$
28. Find the shortest distance between the line $x-y+1=0$ and the curve $y^{2}=x$
29. Define skew lines. Using only vector approach, find the shortest distance between the following two skew lines:

$$
\begin{aligned}
& \vec{r}=(8+3 \lambda) \hat{\imath}-(9+16 \lambda) \hat{\jmath}+(10+7 \lambda) \hat{k} \\
& \vec{r}=15 \hat{\imath}+29 \hat{\jmath}+5 \hat{k}+\mu(3 \hat{\imath}+8 \hat{\jmath}-5 \hat{k})
\end{aligned}
$$

SAMPLE QUESTION PAPER

CLASS-XII (2016-17)

MATHEMATICS (041)
Marking Scheme

1.	$\tan ^{-1}\left(\tan \frac{2 \pi}{3}\right)=\tan ^{-1}\left(-\tan \frac{\pi}{3}\right)=-\frac{\pi}{3}$	1
2.	$\|3 \mathrm{AB}\|=3^{3}\|\mathrm{~A}\|\|\mathrm{B}\|=27 \times 2 \times 3=162$	1
3.	$\begin{aligned} & \text { Distance of the point }(p, q, r) \text { from the } x \text {-axis } \\ & =\text { Distance of the point }(p, q, r) \text { from the point }(p, 0,0) \\ & =\sqrt{q^{2}+r^{2}} \end{aligned}$	1
4.	$\operatorname{gof}(\mathrm{x})=\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=\mathrm{g}\left(3 \mathrm{x}^{2}-5\right)=\frac{3 x^{2}-5}{\left(3 x^{2}-5\right)^{2}+1}=\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$	1
5.	Equivalence relations could be the following: $\begin{align*} & \{(1,1),(2,2),(3,3),(1,2),(2,1)\} \text { and } \tag{1}\\ & \{(1,1),(2,2),(3,3),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)\} \tag{1} \end{align*}$ So, only two equivalence relations.(Ans.)	2
6.	$A A^{\prime}=\left[\begin{array}{lll} l_{1} & m_{1} & n_{1} \tag{1}\\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3} \end{array}\right]\left[\begin{array}{ccc} l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ n_{1} & n_{2} & n_{3} \end{array}\right]=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=l_{3}$ because $\begin{array}{cc} l_{i}^{2}+m_{i}^{2}+n_{i}^{2}=1, \text { for each } \mathrm{i}=1,2,3 \\ l_{i} l_{j}+m_{i} m_{j}+n_{i} n_{j}=0(\mathrm{i} \neq \mathrm{j}) \text { for each } \mathrm{i}, \mathrm{j}=1,2,3 & \longrightarrow 1 / 2 \\ & 1 / 2 \end{array}$	2
7.	On differentiating $\mathrm{e}^{\mathrm{y}}(\mathrm{x}+1)=1$ w.r.t. x , we get $\begin{align*} & \mathrm{e}^{\mathrm{y}}+(\mathrm{x}+1) \mathrm{e}^{\mathrm{y}} \frac{d y}{d x}=0 \tag{1}\\ \Rightarrow & \mathrm{e}^{\mathrm{y}}+\frac{d y}{d x}=0 \\ \Rightarrow & \frac{d y}{d x}=-e^{y} \tag{1} \end{align*}$	2
8.	Here, $\quad\left\{\frac{d^{2} y}{d x^{2}}+(1+x)\right\}^{3}=-\frac{d y}{d x}$ Thus, order is 2 and degree is 3 . So, the sum is 5 \qquad	2
9.	Here, $\frac{x+3}{3}=\frac{y-4}{5}=\frac{8-z}{-6}$ is same as $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z-8}{6}$ Cartesian equation of the line is $\frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}$ Vector equation of the line is $\vec{r}=(-2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k})+\lambda(3 \hat{\imath}+5 \hat{\jmath}+6 \hat{k}) \longrightarrow(1)$	2

10.	The feasible region is a triangle with vertices $\mathrm{O}(0,0), \mathrm{A}(4,0) \text { and } \mathrm{B}(0,4)$ $\begin{equation*} Z_{0}=3 \times 0+4 \times 0=0 \tag{1} \end{equation*}$ $Z_{A}=3 \times 4+4 \times 0=12$ $Z_{B}=3 \times 0+4 \times 4=16$ Thus, maximum of Z is at $B(0,4)$ and the maximum value is 16	2
11.	Sample space $=\left\{B_{1} B_{2}, B_{1} G_{2}, G_{1} B_{2}, G_{1} G_{2}\right\}, B_{1}$ and G_{1} are the older boy and girl respectively. Let $E_{1}=$ both the children are boys; $E_{2}=$ one of the children is a boy; $\mathrm{E}_{3}=$ the older child is a boy Then, (i) $\mathrm{P}\left(\mathrm{E}_{1 /} \mathrm{E}_{2}\right)=\mathrm{P}\left(\frac{E_{1} \cap E_{2}}{E_{2}}\right)=\frac{1 / 4}{3 / 4}=\frac{1}{3}$ (ii) $\quad \mathrm{P}\left(\mathrm{E}_{1 /} \mathrm{E}_{3}\right)=\mathrm{P}\left(\frac{E_{1} \cap E_{3}}{E_{3}}\right)=\frac{1 / 4}{2 / 4}=\frac{1}{2}$ \qquad	2
12.	Here, $\operatorname{Area}(A)=\frac{\sqrt{3}}{4} x^{2}$, where ' x ' is the side of the equilateral triangle $\longrightarrow 1 / 2$ So. $\frac{d A}{d t}=\frac{\sqrt{3}}{2} \times \frac{d x}{d t}$ \qquad (1) $=\frac{\sqrt{3}}{2}(10)(2)=10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{sec} \longrightarrow 1 / 2$	2
13.	As $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, $\begin{array}{r} \left\|\begin{array}{ccc} \sin (\mathrm{A}+\mathrm{B}+\mathrm{C}) & \sin \mathrm{B} & \cos \mathrm{C} \\ -\sin \mathrm{B} & 0 & \tan \mathrm{~A} \\ \cos (\mathrm{~A}+\mathrm{B}) & -\tan \mathrm{A} & 0 \end{array}\right\|=\left\|\begin{array}{ccc} 0 & \sin \mathrm{~B} & \cos \mathrm{C} \\ -\sin \mathrm{B} & 0 & \tan \mathrm{~A} \\ -\cos \mathrm{C} & -\tan \mathrm{A} & 0 \end{array}\right\| \longrightarrow(2) \\ \quad=0 \times\left\|\begin{array}{cc} 0 & \tan A \\ -\tan A & 0 \end{array}\right\|-\sin \mathrm{B} \times\left\|\begin{array}{ll} -\sin B & \tan A \\ -\cos C & 0 \end{array}\right\|+\cos \mathrm{C} \times \\ \left\|\begin{array}{rl} -\sin B & 0 \\ -\cos C & -\tan A \end{array}\right\| \\ \\ =0-\sin \mathrm{B} \tan \mathrm{~A} \cos \mathrm{C}+\cos \mathrm{C} \sin \mathrm{~B} \tan \mathrm{~A}=0 \text { (Ans.) } \longrightarrow \text { (2) } \end{array}$	4

	Let $\Delta=\left\|\begin{array}{lll}b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c\end{array}\right\|$ Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3}$, we get $\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left\|\begin{array}{lll}1 & a-b & a \\ 1 & b-c & b \\ 1 & c-a & c\end{array}\right\| \quad \longrightarrow$ Applying $R_{2} \rightarrow R_{2}-R_{1}$, and $R_{3} \rightarrow R_{3}-R_{1}$, we get $\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left\|\begin{array}{ccc} 1 & a-b & a \tag{1}\\ 0 & 2 b-a-c & b-a \\ 0 & 2 a+b+c & c-a \end{array}\right\|$ \qquad Expanding Δ along first column, we have the result \qquad	4
14.	Since Rolle's theorem holds true, $f(1)=f(3)$ i.e., $(1)^{3}-6(1)^{2}+a(1)+b=(3)^{3}-6(3)^{2}+a(3)+b$ i.e., $\quad a+b+22=3 a+b$ $\begin{equation*} \Rightarrow a=11 \longrightarrow \tag{2} \end{equation*}$ Also, $f^{\prime}(x)=3 x^{2}-12 x+a$ or $3 x^{2}-12 x+11$ As $f^{\prime}(c)=0$, we have $3\left(2+\frac{1}{\sqrt{3}}\right)^{2}-12\left(2+\frac{1}{\sqrt{3}}\right)+11=0$ As it is independent of b, b is arbitrary. \qquad	4
15.	Here, $\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-3 \mathrm{x}^{-4}=\frac{3\left(x^{6}-1\right)}{x^{4}} \longrightarrow$ $\begin{equation*} =\frac{3\left(x^{4}+x^{2}+1\right)}{x^{4}}(x+1)(x-1) \tag{1} \end{equation*}$ Critical points are - 1 and 1 $\Rightarrow f^{\prime}(x)>0$ if $x>1$ or $x<-1$; and $f^{\prime}(x)<0$ if $-1<x<1$ $\left\{\because \frac{3\left(x^{4}+x^{2}+1\right)}{x^{4}} \text { always }+ \text { ive }\right\}$ Hence, $f(x)$ is strictly increasing for $x>1$ \qquad or $\mathrm{x}<-1$; and strictly decreasing for $\begin{equation*} (-1,0) u(0,1)[1] \tag{1} \end{equation*}$ \qquad OR Here, $\frac{d y}{d x}=3 x^{2}-11 \longrightarrow 1 / 2$ So, slope of the tangent is $3 x^{2}-11$	4 4

	Slope of the given tangent line is 1. Thus, $3 x^{2}-11=1$ \qquad that gives $x= \pm 2$ When $x=2, y=2-11=-9$ When $\mathrm{x}=-2, \mathrm{y}=-2-11=-13$ Out of the two points $(2,-9)$ and $(-2,-13)$ \qquad only the point $(2,-9)$ lies on the curve $\text { Thus, the required point is }(2,-9) \longrightarrow 1 / 2$	
16.	Here, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+3, \mathrm{a}=0, \mathrm{~b}=2$ and $\mathrm{nh}=\mathrm{b}-\mathrm{a}=2$ $\begin{align*} \int_{0}^{2}\left(x^{2}+1\right) \mathrm{dx} & =\lim _{h \rightarrow 0} h[f(a)+f(a+h)+f(a+2 h)+\ldots . .+f(a+\overline{n-1} h)] \longrightarrow(1) \tag{1}\\ & =\lim _{h \rightarrow 0} h\left[3+1^{2} h^{2}+3+2^{2} h^{2}+3+\cdots \ldots+(n-1)^{2} h^{2}+3\right] \\ & =\lim _{h \rightarrow 0} h\left[3 n+h^{2}\left\{1^{2}+2^{2}+3^{2}+\cdots \ldots(n-1)^{2}\right\}\right] \\ & =\lim _{h \rightarrow 0}\left[3 n h+h^{3}\left\{\frac{(n-1) n(2 n-1)}{6}\right\}\right] \\ & =\lim _{h \rightarrow 0}\left[3 n h+\left\{\frac{(n h-h) n h(2 n h-h)}{6}\right\}\right] \longrightarrow \text { (1) } \tag{1}\\ & =\lim _{h \rightarrow 0}\left[3 \times 2+\left\{\frac{(2-h) 2(4-h)}{6}\right\}\right] \\ & =6+\frac{16}{6}, \text { i.e., } \frac{26}{3} \tag{1} \end{align*}$	4
17.	The rough sketch of the bounded region is shown on the right. \qquad Required area $=\int_{0}^{\pi / 4} \cos x d x-\int_{0}^{\pi / 4} \sin x d x$ $\begin{equation*} =(\sin x+\cos x)] \underset{0}{\pi / 4} \tag{1} \end{equation*}$ $=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}-\sin 0-\cos 0$ $\begin{equation*} =\frac{2}{\sqrt{2}}-1 \text {, i.e, }(\sqrt{2}-1) \text { sq units } \tag{1} \end{equation*}$	4
18.	$\mathrm{y}=\mathrm{ax}+\frac{b}{a} \ldots \text { (1) }$ gives $\quad \frac{d y}{d x}=\mathrm{a}$ Substituting this value of ' a ' in (1), we get	4

	$\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\frac{b}{d y} \quad \longrightarrow \quad\left(1 \frac{1}{d x}\right)$ Thus, $\mathrm{y}=\mathrm{ax}+\frac{b}{a}$ is a solution of the following differential equation $\mathrm{y}=\mathrm{x} \frac{d y}{d x}+\frac{b}{\frac{d y}{d x}} \longrightarrow 1$ OR Given differential equation can be written as $\begin{equation*} \frac{d y}{d x}=\frac{1+x y+\cos \left(\frac{y}{x}\right)}{x^{2}}=\frac{y}{x}+\left[\frac{1+\cos \left(\frac{y}{x}\right)}{x^{2}}\right] . \tag{1} \end{equation*}$ Let $\mathrm{F}(\mathrm{x}, \mathrm{y})=\frac{y}{x}+\left[\frac{1+\cos \left(\frac{y}{x}\right)}{x^{2}}\right]$. Then $\mathrm{F}(\lambda x, \lambda y)=\frac{\lambda y}{\lambda x}+\left[\frac{1+\cos \left(\frac{\lambda y}{2 x}\right)}{(\lambda x)^{2}}\right]$ $\begin{equation*} =\frac{y}{x}+\left[\frac{1+\cos \left(\frac{y}{x}\right)}{\lambda^{2} x^{2}}\right] \neq F(x, y) \tag{1} \end{equation*}$ Hence, the given D.E. is not a homogeneous equation. Putting $\mathrm{y}=\mathrm{vx}$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$ in (1), we get $\begin{align*} & v+x \frac{d v}{d x}=v+\frac{1+\cos v}{x^{2}} \\ & \Rightarrow \quad \frac{d v}{1+\cos v}=\frac{1}{x^{3}} \mathrm{dx} \\ & \Rightarrow \quad \boldsymbol{\operatorname { s e c }}^{2}\left(\frac{v}{2}\right) d v=\frac{2}{x^{3}} \mathrm{dx} \tag{1} \end{align*}$ Integrating both sides, we get $\begin{array}{lll} 2 \tan \frac{v}{2}=-\frac{1}{x^{2}}+\mathrm{C} \\ \text { or } 2 \tan \frac{y}{2 x}=-\frac{1}{x^{2}}+\mathrm{C} & \longrightarrow & 1 \frac{1}{2} \\ \frac{1}{2} \end{array}$	4
19.	Since the vector $\vec{p}, \overrightarrow{\mathrm{q}}$ and $\overrightarrow{\mathrm{r}}$ are coplanar $\begin{equation*} \therefore[\vec{p}, \overrightarrow{\mathrm{q}}, \overrightarrow{\mathrm{r}}]=0 \tag{1} \end{equation*}$ $\left[\begin{array}{lll}\overrightarrow{\mathrm{p}} & \overrightarrow{\mathrm{q}} & \overrightarrow{\mathrm{r}}\end{array}\right]=0$ i.e., $\left\|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right\|=0$ $R_{2} \rightarrow R_{2}-R_{1}$ $\begin{equation*} R_{3} \longrightarrow R_{3}-R_{1} \tag{1} \end{equation*}$ or $\quad\left\|\begin{array}{ccc}a & 1 & 1 \\ 1-a & b-1 & 0 \\ 1-a & 0 & c-1\end{array}\right\|=0$	4

	$\Rightarrow \quad a(b-1)(c-1)-1(1-a)(c-1)-1(1-a)(b-1)=0$ $\begin{equation*} \text { i.e., } a(1-b)(1-c)+(1-a)(1-c)+(1-a)(1-b)=0 \tag{1} \end{equation*}$ Dividing both the sides by $(1-a)(1-b)(1-c)$, we get $\begin{array}{ll} & \frac{a}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=0 \\ \text { i.e., } & -\left(1-\frac{1}{1-a}\right)+\frac{1}{1-b}+\frac{1}{1-c}=0 \\ \text { i.e., } \quad \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1 \tag{1} \end{array}$	
20.	We know that the equation of the plane having intercepts a, b and c on the three coordinate axes is $\frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}+\frac{z}{\mathrm{c}}=1$ Here, the coordinates of A, B and C are $(a, 0,0),(0, b, 0)$ and $(0,0, c)$ respectively. The centroid of $\triangle \mathrm{ABC}$ is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$. Equating $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ to (α, β, γ), we get $\mathrm{a}=3 \alpha, \mathrm{~b}=3 \beta$ and $\mathrm{c}=3 \gamma$ \qquad Thus, the equation of the plane is $\frac{x}{3 \alpha}+\frac{y}{3 \beta}+\frac{z}{3 \gamma}=1$ or $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$ \qquad	4
21.	Let the distance covered with speed of $25 \mathrm{~km} / \mathrm{h}=\mathrm{xkm}$ and the distance covered with speed of $40 \mathrm{~km} / \mathrm{h}=\mathrm{y} \mathrm{km}$ Total distance covered $=\mathrm{zkm}$ The L.P.P. of the above problem, therefore, is \qquad (1) Maximize $z=x+y$ subject to constraints $\left.\begin{array}{c}4 \mathrm{x}+5 \mathrm{y} \leq 200 \\ \frac{\boldsymbol{x}}{\mathbf{2 5}}+\frac{\mathbf{y}}{\mathbf{4 0}} \leq \mathbf{1}\end{array}\right\}$ \qquad $\mathrm{x} \geq 0, y \geq 0$ \qquad Any one value	4
22.	Here, (i) Since $P(0)+P(1)+P(2)=1$, we have	4

	$\begin{equation*} k+2 k+3 k=1 \tag{1} \end{equation*}$ i.e., $6 k=1$, or $k=\frac{1}{6}$ (ii) $P(X<2)=P(0)+P(1)=k+2 k=3 k=\frac{1}{2}$; (iii) $P(X \leq 2)=P(0)+P(1)+P(2)=k+2 k+3 k=6 k=1 \longrightarrow$ (iv) $P(X \geq 2)=P(2)=3 k=\frac{1}{2}$	
23.	Let the events be described as follows: E_{1} : a coin having head on both sides is selected. E_{2} : a fair coin is selected. A : head comes up in tossing a selected coin $\begin{equation*} \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{n}{2 n+1} ; \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{n+1}{2 n+1} ; \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{1}\right)=1 ; \quad \mathrm{P}\left(\mathrm{~A} / \mathrm{E}_{2}\right)=\frac{1}{2} \tag{2} \end{equation*}$ It is given that $P(A)=\frac{31}{42}$. So, $\begin{align*} & P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)=\frac{31}{42} \\ \Rightarrow & \frac{n}{2 n+1} \times 1+\frac{n+1}{2 n+1} \times \frac{1}{2}=\frac{31}{42} \longrightarrow \tag{1}\\ \Rightarrow & \frac{1}{2 n+1}\left[n+\frac{n+1}{2}\right]=\frac{31}{42} \\ \Rightarrow & 42(3 n+1)=62(2 n+1) \\ \Rightarrow & 2 n=20, \text { or } n=10 \longrightarrow \tag{1} \end{align*}$	4
24.	$\begin{align*} \mathrm{I}= & \int_{0}^{\pi} \frac{\mathrm{x}}{1+\sin \mathrm{x}} \mathrm{dx}=\int_{0}^{\pi} \frac{\pi-\mathrm{x}}{1+\sin (\pi-\mathrm{x})} \mathrm{dx} \tag{1}\\ & =\pi \int_{0}^{\pi} \frac{1}{1+\sin \mathrm{x}} \mathrm{dx}-\int_{0}^{\pi} \frac{\mathrm{x}}{1+\sin \mathrm{x}} \mathrm{dx} \\ & \Rightarrow \quad 2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{1}{1+\sin \mathrm{x}} \mathrm{dx} \tag{1}\\ & \Rightarrow \quad \frac{\pi}{2} \int_{0}^{\pi} \frac{1}{1+\cos \left(\frac{\pi}{2}-x\right)} \mathrm{dx} \\ & \Rightarrow \quad \frac{\pi}{2} \int_{0}^{\pi} \frac{1}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)} \mathrm{dx} \\ & \Rightarrow \quad \frac{\pi}{4} \int_{0}^{\pi} \sec ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right) \mathrm{dx} \tag{1}\\ & \Rightarrow \quad \mathrm{I}=\frac{\pi}{4}\left[-2 \tan \left[\left(\frac{\pi}{4}-\frac{x}{2}\right)\right]_{0}^{\pi}\right. \tag{2}\\ & \Rightarrow \quad \mathrm{I}=\frac{\pi}{4}[2-(-2)]=\pi \tag{1} \end{align*}$	6

	Let $\mathrm{I}=\int \frac{\sin \mathrm{x}}{\sin ^{3} \mathrm{x}+\cos ^{3} \mathrm{x}} \mathrm{dx}=\int \frac{\tan \mathrm{x} \sec ^{2} \mathrm{x}}{\tan ^{3} \mathrm{x}+1} \mathrm{dx}$ On substituting $\tan x=t$ and $\sec ^{2} x d x=d t$, we get $\begin{aligned} & I=\int \frac{t}{t^{3}+1} d t=\int \frac{t}{(t+1)\left(t^{2}-t+1\right)} d t \\ &=-\frac{1}{3} \int \frac{1}{\mathrm{t}+1} \mathrm{dt}+\frac{1}{3} \int \frac{\mathrm{t}+1}{\mathrm{t}^{2}-\mathrm{t}+1} \mathrm{dt} \\ &=-\frac{1}{3} \log \|\mathrm{t}+1\|+\frac{1}{6} \int \frac{(2 \mathrm{t}-1)+3}{\mathrm{t}^{2}-\mathrm{t}+1} \mathrm{dt} \\ &=-\frac{1}{3} \log \|\mathrm{t}+1\|+\frac{1}{6} \int \frac{2 \mathrm{t}-1}{\mathrm{t}^{2}-\mathrm{t}+1} \mathrm{dt}+\frac{1}{2} \int \frac{1}{\mathrm{t}^{2}-\mathrm{t}+1} \mathrm{dt} \\ &=-\frac{1}{3} \log \|\mathrm{t}+1\|+\frac{1}{6} \log \left\|\mathrm{t}^{2}-\mathrm{t}+1\right\|+\frac{1}{2} \int \frac{1}{\left(\mathrm{t}-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \mathrm{dt} \\ &=-\frac{1}{3} \log \|\mathrm{t}+1\|+\frac{1}{6} \log \left\|\mathrm{t}^{2}-\mathrm{t}+1\right\|+\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \mathrm{t}-1}{\sqrt{3}}\right) \\ &=-\frac{1}{3} \log \|\tan \mathrm{x}+1\|+\frac{1}{6} \log \left\|\tan ^{2} \mathrm{x}-\tan \mathrm{x}+1\right\|+\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \tan x-1}{\sqrt{3}}\right)+\mathrm{c} \end{aligned}$	(1/2) (1) (1/2) (1) (2) (1)	6
25.	$\begin{aligned} & \tan ^{-1}\left(\frac{x+1}{x-1}\right)+\tan ^{-1}\left(\frac{x-1}{x}\right)=-\tan ^{-1} 7 \\ & \Rightarrow \tan ^{-1}\left[\frac{\left(\frac{x+1}{x-1}\right)+\left(\frac{x-1}{x}\right)}{1-\left(\frac{x+1}{x-1}\right)\left(\frac{x-1}{x}\right)}\right]=-\tan ^{-1} 7 \quad, \text { if }\left(\frac{x+1}{x-1}\right)\left(\frac{x-1}{x}\right)<1 \\ & \\ & \Rightarrow \tan ^{-1}\left[\frac{x(x+1)+(x-1)^{2}}{(x-1) x-(x+1)(x-1)}\right]=-\tan ^{-1} 7 \\ & \\ & \Rightarrow \quad \frac{\left(x^{2}+x\right)+\left(x^{2}+1-2 x\right)}{\left(x^{2}-x\right)-\left(x^{2}-1\right)}=\tan \left[-\tan ^{-1} 7\right] \\ & \\ & \Rightarrow \quad \frac{2 x^{2}-x+1}{-x+1}=-7 \\ & \\ & \Rightarrow \quad 2 x^{2}-8 x+8=0 \\ & \\ & \Rightarrow(x-2)^{2}=0 \\ & \end{aligned} \quad \Rightarrow x=2$ Let us now verify whether $\mathrm{x}=2$ satisfies the condition (*) For $\mathrm{x}=2$, $\left(\frac{x+1}{x-1}\right)\left(\frac{x-1}{x}\right)=3 \times \frac{1}{2}=\frac{3}{2} \text { which is not less than } 1$ Hence, this value does not satisfy the condition (*) i.e., there is no solution to the given trigonometric equation. OR Given * on Q, defined by $a * b=a b+1$ Let, $a \in Q, b \in Q$ then $a b \in Q$	(2) (1) (1) (1) (1)	6

	$\begin{gather*} \text { and }(a b+1) \in \mathrm{Q} \\ \Rightarrow \mathrm{a} * \mathrm{~b}=\mathrm{ab}+1 \text { is defined on } \mathrm{Q} \\ \therefore * \text { is a binary operation on } \mathrm{Q} \tag{1} \end{gather*}$ Commutative: $a * b=a b+1$ $\begin{align*} & b * a=b a+1 \\ &=a b+1 \quad(\because b a=a b \text { in } Q) \\ & \Rightarrow a * b=b * a \tag{1} \end{align*}$ So * is commutative on Q Associative: $(a * b) * c=(a b+1) * c=(a b+1) c+1$ $\left.\left.\begin{array}{rl} = & a b c+c+1 \\ a *(b * c) & =a *(b c+1) \\ & =a(b c+1)+1 \\ & =a b c+a+1 \end{array}\right] \begin{array}{l} \therefore(a * b) * c \end{array}\right)=a *(b * c)$ So $*$ is not associative on \mathbb{Q} Identity Element : Let $\mathrm{e} \in \mathbb{Q}$ be the identity element, then for every $\mathrm{a} \in \mathbb{Q}$ $\begin{gather*} \mathrm{a} * \mathrm{e}=\mathrm{a} \text { and } \mathrm{e} * \mathrm{a}=\mathrm{a} \\ \mathrm{a}+1=\mathrm{a} \text { and } \mathrm{ea}+1=\mathrm{a} \\ \Rightarrow \mathrm{e}=\frac{a-1}{a} \text { and } \mathrm{e}=\frac{a-1}{a} \tag{1} \end{gather*}$ e is not unique as it depend on 'a' , hence identity element does not exist for * Inverse: since there is no identity element hence, there is no inverse.	6
26.	The relation $\mathrm{A}^{\prime}=\mathrm{A}^{-1}$ gives $\mathrm{A}^{\prime} \mathrm{A}=\mathrm{A}^{-1} \mathrm{~A}=I$ Thus, $\left[\begin{array}{ccc}0 & x & x \\ 2 y & y & -y \\ z & -z & z\end{array}\right]\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ $\Rightarrow\left[\begin{array}{ccc} 0+x^{2}+x^{2} & 0+x y-x y & 0-x z+x z \tag{1}\\ 0+x y-x y & 4 y^{2}+y^{2}+y^{2} & 2 y z-y z-y z \\ 0-z x+z x & 2 y z-y z-y z & z^{2}+z^{2}+z^{2} \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$ $\Rightarrow\left[\begin{array}{ccc}2 x^{2} & 0 & 0 \\ 0 & 6 y^{2} & 0 \\ 0 & 0 & 3 z^{2}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ $\Rightarrow 2 x^{2}=1 ; 6 y^{2}=1$ and $3 z^{2}=1$ $\Rightarrow \mathrm{x}= \pm \frac{1}{\sqrt{2}} ; \quad \mathrm{y}= \pm \frac{1}{\sqrt{6}} ; \quad \mathrm{z}= \pm \frac{1}{\sqrt{3}}$ OR	6

	Here, $\|A\|=\left\|\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right\|=1(0+0)+1(9+2)+2(0-0)=11$ $\Rightarrow\|A\| I=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$ $\operatorname{adj} A=\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]$ Now, $A(\operatorname{adj} A)=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$ and $(\operatorname{adj} A) A=\left[\begin{array}{ccc} 0 & 3 & 2 \tag{1}\\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{array}\right]\left[\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{array}\right]=\left[\begin{array}{ccc} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{array}\right]$ Thus, it is verified that $\mathrm{A}(\operatorname{adj} \mathrm{A})=(\operatorname{adj} \mathrm{A}) \mathrm{A}=\|\mathrm{A}\| \mathrm{I}$	6
27.	Putting $x=\cos 2 \theta$ in $\left\{2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right\}$, we get $\begin{equation*} 2 \tan ^{-1} \sqrt{\frac{1-\cos 2 \theta}{1+\cos 2 \theta}} \tag{1} \end{equation*}$ $\begin{equation*} \text { i.e., } \quad 2 \tan ^{-1} \sqrt{\frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta}}=2 \tan ^{-1}(\tan \theta)=2 \theta=\cos ^{-1} x \tag{2} \end{equation*}$ Hence, $\mathrm{y}=\mathrm{e}^{\sin ^{2} \mathrm{x}} \cos ^{-1} x$ $\begin{align*} & \Rightarrow \log \mathrm{y}=\sin ^{2} \mathrm{x}+\log \left(\cos ^{-1} x\right) \\ & \Rightarrow \quad \frac{1}{y} \times \frac{d y}{d x}=2 \sin \mathrm{x} \cos \mathrm{x}+\frac{1}{\cos ^{-1} x} \times \frac{-1}{\sqrt{1-x^{2}}}=\sin 2 \mathrm{x}-\frac{1}{\cos ^{-1} x \sqrt{1-x^{2}}} \tag{2}\\ & \quad \Rightarrow \frac{d y}{d x}=\mathrm{e}^{\sin ^{2} \mathrm{x}} \cos ^{-1} x\left[\sin 2 \mathrm{x}-\frac{1}{\cos ^{-1} x \sqrt{1-x^{2}}}\right] \tag{1} \end{align*}$	6
28.	Let $\left(\mathrm{t}^{2}, \mathrm{t}\right)$ be any point on the curve $\mathrm{y}^{2}=\mathrm{x}$. Its distance (S) from the $\begin{align*} & \text { line } \mathrm{x}-\mathrm{y}+1=0 \text { is given by } \\ & \quad \mathrm{S}=\left\|\frac{t-t^{2}-1}{\sqrt{1+1}}\right\| \\ & =\frac{t^{2}-t+1}{\sqrt{2}} \quad\left\{\because t^{2}-t+1=\left(t-\frac{1}{2}\right)^{2}+\frac{3}{4}>0\right\} \\ & \quad \Rightarrow \frac{d S}{d t}=\frac{1}{\sqrt{2}}(2 \mathrm{t}-1) \\ & \quad \text { and } \frac{d^{2} S}{d t^{2}}=\sqrt{2}>0 \tag{1}\\ & \text { Now, } \frac{\mathrm{dS}}{\mathrm{dt}}=0 \Rightarrow \frac{1}{\sqrt{2}}(2 \mathrm{t}-1)=0 \text {,i.e., } \mathrm{t}=\frac{1}{2} \tag{1}\\ & \text { Thus, } \mathrm{S} \text { is minimum at } \mathrm{t}=\frac{1}{2} \tag{1} \end{align*}$	6

	So, the required shortest distance is $\frac{\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)+1}{\sqrt{2}}=\frac{3}{4 \sqrt{2}}$, or $\frac{3 \sqrt{2}}{8}$ Fig. 1	(1)	
29.	1) the line which are neither intersecting nor parallel. 2) The given equations are $\begin{align*} & \vec{r}=8 \hat{\imath}-9 \hat{\jmath}+10 \hat{k}+\mu(3 \hat{\imath}-16 \hat{\jmath}+7 \hat{k}) \tag{1}\\ & \vec{r}=15 \hat{\imath}+29 \hat{\jmath}+5 \hat{k}+\mu(3 \hat{\imath}+8 \hat{\jmath}-5 \hat{k}) \tag{2} \end{align*}$ Here, $\overrightarrow{a_{1}}=8 \hat{\imath}-9 \hat{\jmath}+10 \hat{k} ; \quad \overrightarrow{a_{2}}=15 \hat{\imath}+29 \hat{\jmath}+5 \hat{k}$ $\overrightarrow{b_{1}}=3 \hat{\imath}-16 \hat{\jmath}+7 \hat{k} ; \quad \overrightarrow{b_{2}}=3 \hat{\imath}+8 \hat{\jmath}-5 \hat{k}$ Now, $\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(15-8) \hat{\imath}+(29+9) \hat{\jmath}+(5-10) \hat{k}=7 \hat{\imath}+38 \hat{\jmath}-5 \hat{k}$ and $\begin{aligned} & \qquad \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left\|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & -16 & 7 \\ 3 & 8 & -5 \end{array}\right\|=24 \hat{\imath}+36 \hat{\jmath}+72 \hat{k} \\ & \Rightarrow\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=(24 \hat{\imath}+36 \hat{\jmath}+72 \hat{k}) \cdot(7 \hat{\imath}+38 \hat{\jmath}-5 \hat{k})=1176 \\ & \text { Shortest distance }=\left\|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}} \overrightarrow{a_{1}}\right) \mid}{\left\|\overrightarrow{b_{2}} \times \overrightarrow{b_{2}}\right\|}\right\| \\ & =\left\|\frac{1176}{\sqrt{24^{2}+36^{2}+72^{2}} \mid}\right\|=\frac{1176}{\sqrt{7056}}=\frac{1176}{84}=\frac{98}{7} \end{aligned}$	(1) (1/2) (1/2) (1) (1) (1) (1)	

