Class: XII Session: 2020-21

Subject: Mathematics

Sample Question Paper (Theory)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

1. This question paper contains two parts \mathbf{A} and \mathbf{B}. Each part is compulsory. Part A carries 24 marks and Part B carries 56 marks
2. Part-A has Objective Type Questions and Part -B has Descriptive Type Questions
3. Both Part A and Part B have choices.

Part - A:

1. It consists of two sections-I and II.
2. Section I comprises of 16 very short answer type questions.
3. Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any 4 out of 5 MCQs.

Part - B:

1. It consists of three sections- III, IV and V.
2. Section III comprises of 10 questions of $\mathbf{2}$ marks each.
3. Section IV comprises of 7 questions of $\mathbf{3}$ marks each.
4. Section \mathbf{V} comprises of 3 questions of 5 marks each.
5. Internal choice is provided in $\mathbf{3}$ questions of Section -III, $\mathbf{2}$ questions of SectionIV and $\mathbf{3}$ questions of Section-V. You have to attempt only one of the alternatives in all such questions.

Sr. No.	Part - A	Mark s
	All questions are compulsory. In case of internal choices attempt any one.	
1	Check whether the function $f: R \rightarrow R$ defined as $f(x)=x^{3}$ is one-one or not. 	1

\begin{tabular}{|c|c|c|}
\hline \& How many reflexive relations are possible in a set A whose \(n(A)=3\). \& 1 \\
\hline 2 \& A relation R in \(S=\{1,2,3\}\) is defined as \(R=\{(1,1),(1,2),(2,2),(3,3)\}\). Which element(s) of relation \(R\) be removed to make \(R\) an equivalence relation? \& 1 \\
\hline 3 \& \begin{tabular}{l}
A relation \(\mathbf{R}\) in the set of real numbers \(\mathbf{R}\) defined as \(R=\{(a, b): \sqrt{a}=b\}\) is a function or not. Justify \\
OR \\
An equivalence relation R in A divides it into equivalence classes \(A_{1}, A_{2}, A_{3}\). What is the value of \(A_{1} \cup A_{2} \cup A_{3}\) and \(A_{1} \cap A_{2} \cap A_{3}\)
\end{tabular} \& 1

1

\hline 4 \& If A and B are matrices of order $3 \times n$ and $m \times 5$ respectively, then find the order of matrix $5 \mathrm{~A}-3 \mathrm{~B}$, given that it is defined. \& 1

\hline 5 \& | Find the value of A^{2}, where A is a 2×2 matrix whose elements are given by $a_{i j}=\left\{\begin{array}{lll} 1 & \text { if } \quad i \neq j \\ 0 & \text { if } \quad i=j \end{array}\right.$ |
| :--- |
| OR |
| Given that A is a square matrix of order 3×3 and $\|A\|=-4$. Find $\|\operatorname{adj} A\|$ | \& 1

1

\hline 6 \& | Let $\mathrm{A}=\left[a_{i j}\right]$ be a square matrix of order 3×3 and $\|\mathrm{A}\|=-7$. Find the value of $a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}$ |
| :--- |
| where $A_{i j}$ is the cofactor of element $a_{i j}$ | \& 1

\hline 7 \& | Find $\int e^{x}\left(1-\cot x+\operatorname{cosec}^{2} x\right) d x$ |
| :--- |
| OR |
| Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \sin x d x$ | \& 1

1

\hline 8 \& Find the area bounded by $y=x^{2}$, the x - axis and the lines $x=-1$ and $x=1$. \& 1

\hline 9 \& | How many arbitrary constants are there in the particular solution of the differential equation $\frac{d y}{d x}=-4 x y^{2} ; y(0)=1$ |
| :--- |
| OR |
| For what value of n is the following a homogeneous differential equation: $\frac{d y}{d x}=\frac{x^{3}-y^{n}}{x^{2} y+x y^{2}}$ | \& 1

1

\hline 10 \& Find a unit vector in the direction opposite to $-\frac{3}{4} \hat{\jmath}$ \& 1

\hline 11 \& Find the area of the triangle whose two sides are represented by the vectors $2 \hat{\imath}$ and $-3 \hat{\jmath}$. \& 1

\hline
\end{tabular}

12	Find the angle between the unit vectors \widehat{a} and \hat{b}, given that $\|\hat{a}+\hat{b}\|=1$	1
13	Find the direction cosines of the normal to YZ plane?	1
14	Find the coordinates of the point where the line $\frac{x+3}{3}=\frac{y-1}{-1}=\frac{z-5}{-5}$ cuts the XY plane.	1
15	The probabilities of A and B solving a problem independently are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If both of them try to solve the problem independently, what is the probability that the problem is solved?	1
16	The probability that it will rain on any particular day is 50%. Find the probability that it rains only on first 4 days of the week.	1
	Section II Both the Case study based questions are compulsory. Attempt any 4 sub parts from each question (17-21) and (22-26). Each question carries 1 mark	
17	An architect designs a building for a multi-national company. The floor consists of a rectangular region with semicircular ends having a perimeter of 200 m as shown below: Based on the above information answer the following:	
	(i) If x and y represents the length and breadth of the rectangular region, then the relation between the variables is a) $x+\pi y=100$ b) $2 x+\pi y=200$ c) $\pi x+y=50$ d) $x+y=100$	

(ii)The area of the rectangular region A expressed as a function of x is a) $\frac{2}{\pi}\left(100 x-x^{2}\right)$ b) $\frac{1}{\pi}\left(100 x-x^{2}\right)$ c) $\frac{x}{\pi}(100-x)$ d) $\pi y^{2}+\frac{2}{\pi}\left(100 x-x^{2}\right)$	1
(iii) The maximum value of area A is a) $\frac{\pi}{3200} m^{2}$ b) $\frac{3200}{\pi} m^{2}$ c) $\frac{5000}{\pi} m^{2}$ d) $\frac{1000}{\pi} m^{2}$	1
(iv) The CEO of the multi-national company is interested in maximizing the area of the whole floor including the semi-circular ends. For this to happen the valve of x should be a) 0 m b) 30 m c) 50 m d) 80 m	1
(v) The extra area generated if the area of the whole floor is maximized is : a) $\frac{3000}{\pi} m^{2}$ b) $\frac{5000}{\pi} m^{2}$ c) $\frac{7000}{\pi} m^{2}$ d) No change Both areas are equal	1

18	In an office three employees Vinay, Sonia and lqbal process incoming copies of a certain form. Vinay process 50% of the forms. Sonia processes 20% and Iqbal the remaining 30% of the forms. Vinay has an error rate of 0.06, Sonia has an error rate of 0.04 and Iqbal has an error rate of 0.03 Based on the above information answer the following:	
	(i) The conditional probability that an error is committed in processing given that Sonia processed the form is : a) 0.0210 b) 0.04 c) 0.47 d) 0.06	1
	(ii)The probability that Sonia processed the form and committed an error is : a) 0.005 b) 0.006 c) 0.008 d) 0.68	1
	(iii)The total probability of committing an error in processing the form is a) 0 b) 0.047 c) 0.234	1

	d) 1	
	(iv)The manager of the company wants to do a quality check. During inspection he selects a form at random from the days output of processed forms. If the form selected at random has an error, the probability that the form is NOT processed by Vinay is : a) 1 b) $30 / 47$ c) $20 / 47$ d) $17 / 47$	1
	(v)Let A be the event of committing an error in processing the form and let E_{1}, E_{2} and E_{3} be the events that Vinay, Sonia and Iqbal processed the form. The value of $\sum_{i=1}^{3} P\left(E_{i} \mid \mathrm{A}\right)$ is a) 0 b) 0.03 c) 0.06 d) 1	1
	Part - B	
	Section III	
19	Express $\tan ^{-1}\left(\frac{\cos x}{1-\sin x}\right), \frac{-3 \pi}{2}<x<\frac{\pi}{2}$ in the simplest form.	2
20	If A is a square matrix of order 3 such that $A^{2}=2 A$, then find the value of $\|\mathrm{A}\|$. OR If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, show that $\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}=0$. Hence find A^{-1}.	2 2
21	Find the value(s) of k so that the following function is continuous at $x=0$	2

\begin{tabular}{|c|c|c|}
\hline \& \[
f(x)= \begin{cases}\frac{1-\cos k x}{x \sin x} \& \text { if } x \neq 0 \\ \frac{1}{2} \& \text { if } x=0\end{cases}
\] \& \\
\hline 22 \& Find the equation of the normal to the curve \(\mathrm{y}=x+\frac{1}{x}, x>0\) perpendicular to the line \(3 x-4 y=7\). \& 2 \\
\hline 23 \& \begin{tabular}{l}
Find \(\int \frac{1}{\cos ^{2} x(1-\tan x)^{2}} d x\) \\
OR \\
Evaluate \(\int_{0}^{1} x(1-x)^{n} d x\)
\end{tabular} \& 2

2

\hline 24 \& Find the area of the region bounded by the parabola $y^{2}=8 x$ and the line $x=$ 2. \& 2

\hline 25 \& Solve the following differential equation:

$$
\frac{d y}{d x}=x^{3} \operatorname{cosec} y, \text { given that } y(0)=0 .
$$ \& 2

\hline 26 \& Find the area of the parallelogram whose one side and a diagonal are represented by coinitial vectors $\hat{\imath}-\hat{\jmath}+\hat{k}$ and $4 \hat{\imath}+5 \hat{k}$ respectively \& 2

\hline 27 \& Find the vector equation of the plane that passes through the point $(1,0,0)$ and contains the line $\vec{r}=\lambda \hat{\jmath}$. \& 2

\hline 28 \& | A refrigerator box contains 2 milk chocolates and 4 dark chocolates. Two chocolates are drawn at random. Find the probability distribution of the number of milk chocolates. What is the most likely outcome? |
| :--- |
| OR |
| Given that E and F are events such that $P(E)=0.8, P(F)=0.7, P(E \cap F)=0.6$. Find $P(\overline{\mathrm{E}} \mid \overline{\mathrm{F}})$ | \& 2

2

\hline \& Section IV
All questions are compulsory. In case of internal choices attempt any one. \&

\hline 29 \& Check whether the relation R in the set Z of integers defined as $\mathrm{R}=$ $\{(a, b): a+b$ is "divisible by 2 " $\}$ is reflexive, symmetric or transitive. Write the equivalence class containing 0 i.e. [0]. \& 3

\hline 30 \& $$
\text { If } \mathrm{y}=e^{x \sin ^{2} x}+(\sin x)^{x}, \text { find } \frac{d y}{d x}
$$ \& 3

\hline 31 \& Prove that the greatest integer function defined by $f(x)=[x], 0<x<2$ is not differentiable at $x=1$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
OR \\
If \(x=a \sec \theta, y=b \tan \theta\) find \(\frac{d^{2} y}{d x^{2}}\) at \(x=\frac{\pi}{6}\)
\end{tabular} \& 3 \\
\hline 32 \& \begin{tabular}{l}
Find the intervals in which the function \(f\) given by \(f(x)=\tan x-4 x, \quad x \in\left(0, \frac{\pi}{2}\right)\) is \\
a) strictly increasing \\
b) strictly decreasing
\end{tabular} \& 3 \\
\hline 33 \& Find \(\int \frac{x^{2}+1}{\left(x^{2}+2\right)\left(x^{2}+3\right)} d x\). \& 3 \\
\hline 34 \& \begin{tabular}{l}
Find the area of the region bounded by the curves \(x^{2}+y^{2}=4, y=\sqrt{3} x\) and \(x\)-axis in the first quadrant \\
OR \\
Find the area of the ellipse \(x^{2}+9 y^{2}=36\) using integration
\end{tabular} \& 3

3

\hline 35 \& Find the general solution of the following differential equation: $x d y-\left(y+2 x^{2}\right) d x=0$ \& 3

\hline \& | Section V |
| :--- |
| All questions are compulsory. In case of internal choices attempt any one. | \&

\hline 36 \& | If $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1\end{array}\right]$, find A^{-1}. Hence |
| :--- |
| Solve the system of equations; $\begin{aligned} & x-2 y=10 \\ & 2 x-y-z=8 \\ & -2 y+z=7 \end{aligned}$ |
| OR |
| Evaluate the product $A B$, where $A=\left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{array}\right]$ |
| Hence solve the system of linear equations $x-y=3$ | \& 5

5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& 2 x+3 y+4 z=17 \\
\& y+2 z=7
\end{aligned}
\] \& \\
\hline 37 \& \begin{tabular}{l}
Find the shortest distance between the lines
\[
\begin{aligned}
\& \quad \vec{r}=3 \hat{\imath}+2 \hat{\jmath}-4 \hat{k}+\lambda(\hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \\
\& \text { and } \vec{r}=5 \hat{\imath}-2 \hat{\jmath}+\mu(3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k})
\end{aligned}
\] \\
If the lines intersect find their point of intersection \\
OR \\
Find the foot of the perpendicular drawn from the point \((-1,3,-6)\) to the plane \(2 x+y-2 z+5=0\). Also find the equation and length of the perpendicular.
\end{tabular} \& 5
5 \\
\hline 38 \& \begin{tabular}{l}
Solve the following linear programming problem (L.P.P) graphically. Maximize \(Z=x+2 y\) \\
subject to constraints ;
\[
\begin{aligned}
\& x+2 y \geq 100 \\
\& 2 x-y \leq 0 \\
\& 2 x+y \leq 200 \\
\& x, y \geq 0
\end{aligned}
\] \\
OR \\
The corner points of the feasible region determined by the system of linear constraints are as shown below: \\
Answer each of the following: \\
(i) Let \(Z=3 x-4 y\) be the objective function. Find the maximum and minimum value of \(Z\) and also the corresponding points at which the maximum and minimum value occurs.
\end{tabular} \& 5

5

\hline
\end{tabular}

(ii) Let $Z=p x+q y$, where $p, q>o$ be the objective function. Find the condition on p and q so that the maximum value of Z occurs at $\mathrm{B}(4,10)$ and $\mathrm{C}(6,8)$. Also mention the number of optimal solutions in this case.

