Marking Scheme Class XII Mathematics (Code – 041) Section : A (Multiple Choice Questions- 1 Mark each)

Question No	Answer	Hints/Solution
1.	(c)	In a skew-symmetric matrix, the (i, j) th element is negative of the (j, i) th element. Hence, the (i, i) th element = 0
2.	(a)	AA' = A A' = (-3)(-3) = 9
3.	(b)	The area of the parallelogram with adjacent sides AB and $AC =$
		$ \overrightarrow{AB} \times \overrightarrow{AC} $. Hence, the area of the triangle with vertices A, B, C
		$\left \frac{-1}{2} \right AB \times AC \right $
4.	(c)	The function f is continuous at $x = 0$ if $\lim_{x\to 0} f(x) = f(0)$ We have $f(0) = k$ and
		$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos}{8x^2} = \lim_{x \to 0} \frac{2\sin^2 2x}{8x^2} = \lim_{x \to 0} \frac{\sin^2 2x}{4x^2}$
		$= lim_{x \to 0} \left(\frac{sin2x}{2x}\right)^2 = 1$ Hence k =1
5.	(b)	$\frac{x^2}{x^2} + \log x + C\left(::f(x) = \int \left(x + \frac{1}{x}\right) dx\right)$
		$\frac{2}{2} + \log x + O(1)(x) + \int (x + x) dx$
6.	(c)	The given differential equation is $4\left(\frac{dy}{dx}\right)^3 \frac{d^2y}{dx^2} = 0$. Here, m = 2
		and $n = 1$
_		Hence, $m + n = 3$
7.	(b)	The strict inequality represents an open half plane and it contains the origin as $(0, 0)$ satisfies it.
8.	(a)	Scalar Projection of $3\hat{\imath} - \hat{\jmath} - 2\hat{k}$ on vector $\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$
		$ (3\hat{\imath} - \hat{\jmath} - 2\hat{k}) (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) - 7 $
		$\frac{ \hat{\imath}+2\hat{\jmath}-3\hat{k} }{\sqrt{14}}$
9.	(c)	$\int_{2}^{3} \frac{x}{x^{2}+1} = \frac{1}{2} [log(x^{2}+1)]_{2}^{3} = \frac{1}{2} (log10 - log5) = \frac{1}{2} log\left(\frac{10}{5}\right)$
		$=\frac{1}{2}\log 2$
10.	(c)	$(AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$
11.	(d)	The minimum value of the objective function occurs at two
		adjacent corner points $(0.6, 1.6)$ and $(3, 0)$ and there is no point
		in the half plane $4x + 6y < 12$ in common with the feasible
		region. So, the minimum value occurs at every point of the line-
12	(d)	segment joining the two points. $\sqrt{2}$
12.	(u) (t)	$2 - 20 = 2x^2 - 24 \Longrightarrow 2x^2 = 6 \Longrightarrow x^2 = 3 \Longrightarrow x = \pm \sqrt{3}$
13.	(b)	$ adjA = A ^{n-1} \Rightarrow adjA = 25$
14.	(C)	$P(A' \cap B') = P(A') \times P(B')$ (As A and B are independent, A' and B' are she independent)
		A and B are also independent.) $-0.7 \times 0.4 - 0.28$
15		$-0.7 \times 0.4 - 0.28$
13.	(0)	$ydx - xdy = 0 \implies ydx - xdy = 0 \implies \frac{dy}{y} = \frac{dx}{x}$
		$\Rightarrow \int \frac{dy}{y} = \int \frac{dx}{x} + \log K, K > 0 \Rightarrow \log y = \log x + \log K$
		$ \Rightarrow \log y = \log x K \Rightarrow y = x K \Rightarrow y = \pm Kx \Rightarrow y = Cx$

16.	(a)	$v = \sin^{-1}x$				
		$dy \qquad 1 \qquad $				
		$\left \frac{1}{dx}\right = \frac{1}{\sqrt{1-x^2}} \Longrightarrow \sqrt{1-x^2} \cdot \frac{1}{dx} = 1$				
		Again, differentiating both sides w. r. to x, we get				
		$\int \frac{1}{\sqrt{1-x^2}} d^2y dy (-2x) = 0$				
		$\sqrt{1-x^2}\frac{dx^2}{dx^2} + \frac{dx}{dx} \cdot \left(\frac{1}{2\sqrt{1-x^2}}\right) = 0$				
1.7		Simplifying, we get $(1 - x^2)y_2 = xy_1$				
17.	(b)	$ \vec{a} - 2\vec{b} ^2 = (\vec{a} - 2\vec{b}).(\vec{a} - 2\vec{b})$				
		$\left \vec{a} - 2\vec{b} \right ^2 = \vec{a} \cdot \vec{a} - 4\vec{a} \cdot \vec{b} + 4\vec{b} \cdot \vec{b}$				
		$= \vec{a} ^2 - 4\vec{a}.\vec{b} + 4 \vec{b} ^2$				
		= 4 - 16 + 36 = 24				
		$\left \vec{a} - 2\vec{b}\right ^2 = 24 \implies \left \vec{a} - 2\vec{b}\right = 2\sqrt{6}$				
18.	(b)	The line through the points $(0, 5, -2)$ and $(3, -1, 2)$ is				
		$\frac{x}{3-0} = \frac{y-3}{-1-5} = \frac{z+2}{2+2}$				
		$or, \frac{x}{2} = \frac{y-5}{z} = \frac{z+2}{z}$				
		3 - 6 4 Any point on the line is $(3k, -6k + 5.4k - 2)$, where k	is an			
		arbitrary scalar.				
		$3k = 6 \Longrightarrow k = 2$				
		The z-coordinate of the point P will be $4 \times 2 - 2 = 6$				
19.	(c)	$sec^{-1}x$ is defined if $x \le -1$ or $x \ge 1$. Hence, $sec^{-1}2x$	will be			
		defined if $x \le -\frac{1}{2}$ or $x \ge \frac{1}{2}$.				
	Hence, A is true. The sum of the function $x = -1$ is $[0, -1, -1]$					
		The range of the function $\sec^{-1}x$ is $[0, \pi] - \{\frac{\pi}{2}\}$				
20	(a)	K is false. The equation of the x axis may be written as $\vec{r} = t\hat{i}$ He	nce the			
20.	(a) The equation of the x-axis may be written as $r = tt$. Hence, the acute angle θ between the given line and the x-axis is given by					
	$ 1 \times 1 + (-1) \times 0 + 0 \times 0 \qquad 1 \qquad \pi$					
		$cos\theta = \frac{1}{\sqrt{1^2 + (-1)^2 + 0^2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow$	$\theta = \frac{\pi}{4}$			
		$\sqrt{1}$				
	SE	CTION B (VSA questions of 2 marks each)				
21.	sin ⁻¹ [sin	$\left(\frac{13\pi}{2}\right) = \sin^{-1}\left[\sin\left(2\pi - \frac{\pi}{2}\right)\right]$.1			
	$-ain^{-1}$	$\binom{\pi}{1} = \frac{\pi}{1}$	1			
	-sin [si	$n\left(-\frac{1}{7}\right) = -\frac{1}{7}$	-			
	Let $v \in N$	(codomain). Then $\exists 2v \in N(\text{domain})$ such that				
	$f(2y) = \frac{2}{3}$	$\frac{y}{y} = y$. Hence, f is surjective.	1			
	$1, 2 \in N(d$	omain) such that $f(1) = 1 = f(2)$	1			
	Hence, f i	s not injective.	1			
22.	Let AB rep	present the height of the street light from the ground. At				
	any time t	seconds, let the man represented as ED of height 1.6 m				
	be at a dist	cance of x m from AB and the length of his shadow EC				
	Ue y III.	ilarity of triangles, we have $\frac{4}{x-x+y} \rightarrow 3y - 2x$	1/2			
		$\frac{1}{1.6} \xrightarrow{y} 3y = 2x$				

	B	
	A E C	
	x y	
	Differentiating both sides w.r.to t, we get $3\frac{dy}{dt} = 2\frac{dx}{dt}$	
	$\frac{dy}{dt} = \frac{2}{3} \times 0.3 \Rightarrow \frac{dy}{dt} = 0.2$	1/2
	At any time t seconds, the tip of his shadow is at a distance of $(x + y)$ m from AB.	
	The rate at which the tip of his shadow moving $(dx dy)$	
	$= \left(\frac{1}{dt} + \frac{1}{dt}\right)m/s = 0.5 m/s$	1/2
	dy = 0.2 m/s	
22	$= \frac{1}{dt} m/s = 0.2 m/s$	1/2
23.	$\vec{a} = \hat{\imath} - \hat{\jmath} + 7k \text{ and } b = 5\hat{\imath} - \hat{\jmath} + \lambda k$ Hence $\vec{a} + \vec{b} = 6\hat{\imath} - 2\hat{\jmath} + (7 + \lambda)\hat{k}$ and $\vec{a} - \vec{b} = -4\hat{\imath} + (7 - \lambda)\hat{k}$	1/2
	$\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ will be orthogonal if, $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$	1/2
	i.e., if, $-24 + (49 - \lambda^2) = 0 \implies \lambda^2 = 25$ i.e., if, $\lambda = \pm 5$	1
	OP	
	The equations of the line are $6x - 12 = 3y + 9 = 2z - 2$, which, when written in standard symmetric form, will be	
	$\frac{x-2}{\frac{1}{2}} = \frac{y-(-3)}{\frac{1}{2}} = \frac{z-1}{\frac{1}{2}}$	1/2
	Since, lines are parallel, we have $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
	Hence, the required direction ratios are $\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right)$ or (1,2,3)	1/2
	and the required direction cosines are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$	1
24.	$y\sqrt{1-x^2} + x\sqrt{1-y^2} = 1$	
	Let $sin^{-1}x = A$ and $sin^{-1}y = B$. Then $x = sinA$ and $y = sinB$	1/2
	$y_{\sqrt{1}} - x^2 + x_{\sqrt{1}} - y^2 = 1 \Longrightarrow sinbcosA + sinAcosB = 1$	
	$\Rightarrow \sin(A+B) = 1 \Rightarrow A+B = \sin^{-1}1 = \frac{\pi}{2}$	
	$\implies \sin^{-1}x + \sin^{-1}y = \frac{\pi}{2}$	1/2
	Differentiating w.r.to x, we obtain $\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}$	1
25.	Since \vec{a} is a unit vector, $\therefore \vec{a} = 1$	1/2

$(\vec{x} - \vec{a}).(\vec{x} + \vec{a}) = 12.$	
$\Rightarrow \vec{x}.\vec{x} + \vec{x}.\vec{a} - \vec{a}.\vec{x} - \vec{a}.\vec{a} = 12$	1/2
$\Rightarrow \vec{x} ^2 - \vec{a} ^2 = 12.$	1/2
$\Rightarrow \vec{x} ^2 - 1 = 12$ $\Rightarrow \vec{x} ^2 = 13 \Rightarrow \vec{x} = \sqrt{13}$	1/2
SECTION C	

(Short Answer Questions of 3 Marks each)

26.	$\int \frac{dx}{\sqrt{3 - 2x - x^2}}$	
	$= \int \frac{dx}{\sqrt{-(x^2+2x-3)}} = \int \frac{dx}{\sqrt{4-(x+1)^2}}$	2
	$= \sin^{-1}\left(\frac{x+1}{2}\right) + C \left[\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C\right]$	1
27.	P(not obtaining an odd person in a single round) = $P(All three of$	
	them throw tails or All three of them throw heads) $1 \cdot 1 \cdot 1 \cdot 2 = 1$	1+1/2
	$= \frac{-1}{2} \times \frac{-1}{2} \times \frac{-1}{2} \times \frac{-1}{4}$	
	P(obtaining an odd person in a single round) $1 - P(-1) + \frac{1}{2} + \frac{1}{2$	
	$= 1 - P(\text{not obtaining an odd person in a single round}) = -\frac{1}{4}$	1/2
	The required probability $= P(\cdot) \ln first round there is no odd person' and 'In second round$	
	there is no odd person' and 'In third round there is an odd person')	
	$=\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{3}{44}$	1
	4 4 4 64 OR	
	Let X denote the Random Variable defined by the number of defective items.	
	$P(X=0) = \frac{4}{6} \times \frac{3}{5} = \frac{2}{5}$	
	$P(X=1) = 2 \times \left(\frac{2}{6} \times \frac{4}{5}\right) = \frac{8}{15}$	
	$P(X=2) = \frac{2}{6} \times \frac{1}{5} = \frac{1}{15}$	2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	p_i $\frac{2}{8}$ $\frac{1}{1}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/2
	$ P_i x_i = 0$ $ \frac{0}{15} \frac{1}{15} $	1/2
	Mean = $\sum p_i x_i = \frac{10}{15} = \frac{2}{3}$	1/2
28.	Let I = $\int_{\pi/3}^{\pi/3} \frac{dx}{1 + \sqrt{\pi m x}} = \int_{\pi/3}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\cos x}} dx$ (i)	
1	$/6 + \sqrt{2} + $	

Using
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos(\frac{\pi}{6} + \frac{\pi}{2} - x)}}{\sqrt{\sin(\frac{\pi}{6} + \frac{\pi}{2} - x)}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx . (ii).$$

$$I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\sqrt{\sin x + \sqrt{\cos x}}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x}} dx + \int_{\pi/2}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sqrt{\sin x} + \sqrt{\sin x}}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$2I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\cos x} + \sqrt{\sin x}} dx$$

$$I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{2}} dx$$

$$I = \int_{\pi/3}^{\pi/3} \frac{dx}{1 + \sqrt{2}} dx$$

	$v + x \frac{dv}{dt} = \sqrt{1 + v^2} + v$		1/2
	dx		
	$\frac{du}{dr}$ $\frac{dr}{dr}$		1/2
	$\frac{dv}{\sqrt{du}} = \frac{dx}{du}$		72
	$\sqrt{1+v^2}$ x		
	Integrating, we get $\log v + \sqrt{1} + \sqrt{1}$	$ v^2 = \log x + \log K, K > 0$	
	$\log \left y + \sqrt{x^2 + y^2} \right = \log x^2 K$		
	$\Rightarrow y + \sqrt{x^2 + y^2} = \pm Kx^2$		
	$\Rightarrow y + \sqrt{x^2 + y^2} = Cx^2$, which is	the required general solution	1 + 1 /2
			1+1/2
30.	We have $Z=400x + 300y$ subject t	0	
	$ x + y \le 200, x \le 40, x \ge 20, y \ge$	0	
	The corner points of the feasible re	egion are C(20,0), D(40,0),	
	B(40,160), A(20,180)		
	У	× = 40	
	x + y = 200	x = 40	
	200 1 7	A ² (20, 180)	
		B = (40, 160)	
	100		
	C = (20, 0	D = (40, 0) x .	
	-200 -100 0	100 200	
			1
	- 100-		
		• • • • • • • • • • • • • •	
	Corner Point	Z = 400x + 300y	
	C(20,0)	8000	
	D(40,0)	16000	
	B(40,160)	64000	
	A(20,180)	62000	1
	Maximum profit occurs at $x = 40$,	y=160	1
	and the maximum profit =₹ 64,00)0	1
31.	$\int \frac{(x^3 + x + 1)}{(x^3 + x + 1)} dx = \int \left(x + \frac{2x + 1}{(x^3 + x + 1)} \right)^{1/2} dx$	dx	1
	$x^{(x^2-1)}$ $x^{(x-1)(x+1)}$		
	Now resolving $\frac{1}{(x-1)(x+1)}$ into par	tial fractions as	
	$\boxed{\begin{array}{c}2x+1\\$		
	(x-1)(x+1) $x-1$ $x+1$		
	2r+1 2	1	
	We get $\frac{2x+1}{(x-1)(x+1)} = \frac{3}{2(x-1)} + \frac{3}{2(x-1)}$	$\frac{1}{x+1}$	1

Hence,
$$\int \frac{(x^3 + x + 1)}{(x^2 - 1)} dx = \int \left(x + \frac{2x + 1}{(x - 1)(x + 1)} \right) dx$$
$$= \int \left(x + \frac{3}{2(x - 1)} + \frac{1}{2(x + 1)} \right) dx$$
$$= \frac{x^2}{2} + \frac{3}{2} \log|x - 1| + \frac{1}{2} \log|x + 1| + C$$
$$= \frac{x^2}{2} + \frac{1}{2} (\log|(x - 1)^3(x + 1)| + C)$$

SECTION D (Long answer type questions (LA) of 5 marks each)

	(a b) R (c d) and (c d) R (e f)	
	Then $ad = bc$ $cf = de$	
	$\rightarrow adcf - bcde$	
	$\Rightarrow af - be$	
	$\rightarrow u_j - be$ $\rightarrow (a, b) R(a, f)$	
	$ (u, b) \Lambda(e, f) $ Hence D is transitive	2
	Since, R is utilisitive.	2
	Since, K is relievive, symmetric and transitive, K is an	1/
	equivalence relation on $N \times N$.	72
	UR UR	
	Let $A \in P(X)$. Then $A \subset A$	
	\Rightarrow (A, A) $\in R$	1
	Hence, R is reflexive.	1
	Let $A, B, C \in P(X)$ such that	
	$(A,B), (B,C) \in R$	
	$\Rightarrow A \subset B, B \subset C$	
	$\Rightarrow A \subset C$	
	\Rightarrow (A, C) \in R	
	Hence, R is transitive.	2
	$\emptyset, X \in P(X)$ such that $\emptyset \subset X$. Hence, $(\emptyset, X) \in R$. But, $X \not\subset \emptyset$.	
	which implies that $(X, \emptyset) \notin R$.	
	Thus, R is not symmetric.	2
34	The given lines are non-parallel lines. There is a unique line-	
5 11	segment PO (P lying on one and O on the other which is at right	
	angles to both the lines PO is the shortest distance between the	
	lines. Hence, the shortest possible distance between the insects =	
	PO	
	The position vector of P lying on the line	
	$\vec{x} = (\hat{x} + 2\hat{x} + 2\hat{y} + 1(\hat{x} - 2\hat{y} + 2\hat{y}))$	
	$I = 0l + 2j + 2k + \lambda(l - 2j + 2k)$	1/2
	1s $(6 + \lambda)\hat{i} + (2 - 2\lambda)\hat{j} + (2 + 2\lambda)k$ for some λ	72
	The position vector of Q lying on the line	
	$\vec{r} = -4\hat{\imath} - \hat{k} + \mu(3\hat{\imath} - 2\hat{\jmath} - 2\hat{k})$	17
	is $(-4 + 3\mu)\hat{i} + (-2\mu)\hat{j} + (-1 - 2\mu)\hat{k}$ for some μ	72
	$\overrightarrow{PO} = (-10 + 3u - \lambda)\hat{i} + (-2u - 2 + 2\lambda)\hat{i} + (-3 - 2u - 2\lambda)\hat{k}$	17
	Since PO is perpendicular to both the lines	1/2
	$(-10 + 3u - \lambda) + (-2u - 2 + 2\lambda)(-2) + (-3 - 2u - 2\lambda)^2$	
	-0	17
	-0,	1/2
	$\mu = 3\lambda = 4$ (1)	
	and $(-10 + 5\mu - \lambda)5 + (-2\mu - 2 + 2\lambda)(-2) + (-5 - 2\mu - 2)$	
	$(2\lambda)(-2) = 0,$ ('')	1/2
	$l.e., 1/\mu - 3\lambda = 20 \qquad \dots(1)$	
	solving (1) and (11) for λ and μ , we get $\mu = 1, \lambda = -1$.	1
	The position vector of the points, at which they should be so that	
	the distance between them is the shortest, are	
	$5\hat{\imath} + 4\hat{\jmath}$ and $-\hat{\imath} - 2\hat{\jmath} - 3k$	1/2
	$\overline{PQ} = -6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$	
	The shortest distance = $ \overrightarrow{PO} = \sqrt{6^2 + 6^2 + 3^2} = 9$	1
	OR	
1		1

	Eliminating t between the equations, we obtain the equation of the	
	path $\frac{x}{2} = \frac{y}{-4} = \frac{z}{4}$, which are the equations of the line passing	
	through the origin having direction ratios <2, -4, 4>. This line is	
	the path of the rocket.	1
	When $t = 10$ seconds, the rocket will be at the point (20, -40, 40).	1/2
	Hence, the required distance from the origin at 10 seconds =	
	$\sqrt{20^2 + 40^2 + 40^2} km = 20 \times 3 km = 60 km$ The distance of the point (20, 40, 40) from the given line	1
	$ (\vec{a}_2 - \vec{a}_4) \times \vec{b} = -301 \times (101 - 201 + 10 \hat{k}) = -3001 + 300 \hat{k} $	2
	$=\frac{ (u_2 - u_1)/b }{ \vec{b} } = \frac{ -50/(10t-20)(10t) }{ 10t-20^2+10\hat{k} } km = \frac{ -500t+500t }{ 10t-20^2+10\hat{k} } km$	2
	$=\frac{300\sqrt{2}}{10\sqrt{6}} km = 10\sqrt{3} km$	1/2
35.	[2 -3 5]	
	$\mathbf{A} = \begin{bmatrix} 3 & 2 & -4 \end{bmatrix}$	
	l1 1 –2J	
	$ \Delta = 2(0) + 3(-2) + 5(1) = -1$	1/2
	A = 2(0) + 3(-2) + 3(1) = -1 adiA	
	$A^{-1} = \frac{\cos(1)}{ A }$	
	$\begin{bmatrix} 1 & 1 \\ 0 & -1 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & -1 & 2 \end{bmatrix}$	
	$adjA = \begin{bmatrix} 2 & -9 & 23 \end{bmatrix}, A^{-1} = \frac{1}{(-1)} \begin{bmatrix} 2 & -9 & 23 \end{bmatrix}$	3
	$\begin{bmatrix} 1 & -5 & 13 \end{bmatrix}$ $\begin{bmatrix} (-1) \\ 1 & -5 & 13 \end{bmatrix}$	-
	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & -1 & 2 \\ 2 & 0 & 22 \end{bmatrix} \begin{bmatrix} 11 \\ 5 \end{bmatrix}$	
	$X = A \xrightarrow{r} B \Longrightarrow \begin{bmatrix} y \\ z \end{bmatrix} = \frac{1}{(-1)} \begin{bmatrix} 2 & -9 & 23 \\ 1 & 5 & 12 \end{bmatrix} \begin{bmatrix} -5 \\ 2 \end{bmatrix}$	
	$\begin{bmatrix} 0+5-6 \end{bmatrix}$	
	$=\frac{1}{(1)}$ 22 + 45 - 69	
	(-1) [11 + 25 - 39]	
	$[x_1] = [-1]$	
	$ \Rightarrow _{y} = \frac{1}{(x+y)} = \frac{1}{-2} \Rightarrow x = 1, y = 2, z = 3.$	1+1/2
	$\begin{bmatrix} z \end{bmatrix}$ $(-1)\begin{bmatrix} -3 \end{bmatrix}$	

SECTION E(Case Studies/Passage based questions of 4 Marks each)

(ii)f'(x) = -0.2x + m			
Since, 6 is the critical po	int,		
$f'(6) = 0 \Longrightarrow m = 1.2$			
(iii) $f(x) = -0.1x^2 + 1$	$2x \pm 0.06$		
$(111) / (\lambda) = -0.1\lambda + 1$	$.2\lambda + 90.0$		
f'(x) = -0.2x + 1.2 =	(x-0.2(x-6))		
f'(x) = -0.2x + 1.2 =	-0.2(x-6)		
f'(x) = -0.2x + 1.2 = In the Interval	$\frac{1}{f'(x)} = -0.2(x-6)$	Conclusion	
f'(x) = -0.2x + 1.2 = In the Interval (0, 6)	$\frac{f'(x)}{f'(x)}$	Conclusion f is strictly increasing	
f'(x) = -0.2x + 1.2 = In the Interval (0, 6)	$\frac{f'(x)}{f'(x)}$	Conclusion f is strictly increasing in [0, 6]	
f'(x) = -0.2x + 1.2 = In the Interval (0, 6) (6, 12)	$\frac{f'(x)}{+ve}$	Conclusion f is strictly increasing in [0, 6] f is strictly decreasing	

	(iii) $A = 2x \times 2^{\frac{b}{2}} \sqrt{a^2 - x^2}, x \in (0, a).$	
	Squaring both sides, we get	
	$Z = A^{2} = \frac{16b^{2}}{a^{2}}x^{2}(a^{2} - x^{2}) = \frac{16b^{2}}{a^{2}}(x^{2}a^{2} - x^{4}), x \in (0, a).$	
	A is maximum when Z is maximum.	
	$\frac{dZ}{dz} = \frac{16b^2}{(2ra^2 - 4r^3)} = \frac{32b^2}{r(a + \sqrt{2}r)(a - \sqrt{2}r)}$	
	$dx = a^2 (2xu = 1x)^2 a^2 a^2 a^2$	
	$\frac{dx}{dx} = 0 \Rightarrow x = \frac{dx}{\sqrt{2}}.$	
	$\frac{d^2Z}{d^2} = \frac{32b^2}{a^2-6x^2}$	
	dx^2 a^2 a^{2} $a^{2}b^2$	
	$\left(\frac{d^2 L}{dx^2}\right)_{x=\frac{a}{c}} = \frac{32b}{a^2} (a^2 - 3a^2) = -64b^2 < 0$	1
	Hence, by the second derivative test, there is a local maximum value of Z at the	1
	critical point $x = \frac{a}{\sqrt{2}}$. Since there is only one critical point, therefore, Z is	
	maximum at $x = \frac{a}{a}$ hence, A is maximum at $x = \frac{a}{a}$.	1/2
	Thus, for maximum area of the soccer field, its length should be $a\sqrt{2}$ and its width	
	should be $b\sqrt{2}$.	1/2
38.	(i)Let P be the event that the shell fired from A hits the plane and Q be the event	
	that the shell fired from B hits the plane. The following four hypotheses are	
	$E_4 = PO E_2 = \overline{P}\overline{O} E_2 = \overline{P}O E_4 = P\overline{O}$	
	Let $E =$ The shell fired from exactly one of them hits the plane.	
	$P(E_1) = 0.3 \times 0.2 = 0.06, P(E_2) = 0.7 \times 0.8 = 0.56, P(E_3) = 0.7 \times 0.2$	
	$= 0.14, P(E_4) = 0.3 \times 0.8 = 0.24$	
	$P\left(\frac{L}{E_1}\right) = 0, P\left(\frac{L}{E_2}\right) = 0, P\left(\frac{L}{E_2}\right) = 1, P\left(\frac{L}{E_4}\right) = 1$	1
	$P(E) = P(E) P\left(\frac{E}{E}\right) + P(E) P\left(\frac{E}{E}\right) + P(E) P\left(\frac{E}{E}\right) + P(E) P\left(\frac{E}{E}\right)$	
	$T(E) = T(E_1) \cdot T(\overline{E_1}) + T(E_2) \cdot T(\overline{E_2}) + T(E_3) \cdot T(\overline{E_3}) + T(E_4) \cdot T(\overline{E_4})$	1
	= 0.14 + 0.24 = 0.38	1
	(ii) By Bayes' Theorem, $P\left(\frac{E_3}{E}\right) = \frac{P(E_3)P\left(\frac{E}{E_3}\right)}{P(E_3)P\left(\frac{E}{E}\right) + P(E_3)P\left(\frac{E}{E}\right) + P(E_3)P\left(\frac{E}{E}\right) + P(E_3)P\left(\frac{E}{E}\right)}$	
	$(E) \qquad P(E_1).P(\overline{E_1}) + P(E_2).P(\overline{E_2}) + P(E_3).P(\overline{E_3}) + P(E_4).P(\overline{E_4})$	
	0.14 7	2
	$=\frac{1}{0.38}=\frac{1}{19}$	
	NOTE: The four hypotheses form the partition of the sample space and it can be	
	seen that the sum of their probabilities is 1. The hypotheses E_1 and E_2 are actually	
	eliminated as $P\left(\frac{E}{E_1}\right) = P\left(\frac{E}{E_2}\right) = 0$	
	Alternative way of writing the solution:	
	(i)P(Shell fired from exactly one of them hits the plane) = P[(Shell from A bits the plane and Shell from P does not bit the plane) or (Shell	
	from A does not hit the plane and Shell from B hits the plane) or (Shell	1
	$= 0.3 \times 0.8 + 0.7 \times 0.2 = 0.38$	1
	(ii)P(Shell fired from B hit the plane/Exactly one of them hit the plane)	T
	$= \frac{P(\text{Snell fired from B hit the plane} \cap \text{Exactly one of them hit the plane})}{P(\text{Exactly one of them hit the plane})}$	
	P(Exactly one of them hit the plane)	

P(Shell from only B hit the plane)	1
$\begin{array}{c} \hline P(Exactly one \ of \ them \ hit \ the \ plane) \\ 0.14 7 \end{array}$	1
$=\frac{1}{0.38}=\frac{1}{19}$	1