Marking Scheme

Class XII
Mathematics (Code - 041)
Section : A (Multiple Choice Questions- 1 Mark each)

$\begin{array}{\|l\|} \hline \text { Question } \\ \text { No } \\ \hline \end{array}$	Answer	Hints/Solution
1.	(c)	In a skew-symmetric matrix, the (i, j) th element is negative of the (j, i)th element. Hence, the (i, i)th element $=0$
2.	(a)	$\left\|A A^{\prime}\right\|=\|A\|\left\|A^{\prime}\right\|=(-3)(-3)=9$
3.	(b)	The area of the parallelogram with adjacent sides AB and $\mathrm{AC}=$ $\|\overrightarrow{A B} \times \overrightarrow{A C}\|$. Hence, the area of the triangle with vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ $=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|$
4.	(c)	The function f is continuous at $\mathrm{x}=0$ if $\lim _{x \rightarrow 0} f(x)=f(0)$ We have $\mathrm{f}(0)=\mathrm{k}$ and $\begin{aligned} & \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1-\cos }{8 x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} 2 x}{8 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{4 x^{2}} \\ & =\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{2 x}\right)^{2}=1 \end{aligned}$ Hence, $\mathrm{k}=1$
5.	(b)	$\frac{x^{2}}{2}+\log \|x\|+C\left(\because f(x)=\int\left(x+\frac{1}{x}\right) d x\right)$
6.	(c)	The given differential equation is $4\left(\frac{d y}{d x}\right)^{3} \frac{d^{2} y}{d x^{2}}=0$. Here, $\mathrm{m}=2$ and $\mathrm{n}=1$ Hence, $\mathrm{m}+\mathrm{n}=3$
7.	(b)	The strict inequality represents an open half plane and it contains the origin as $(0,0)$ satisfies it.
8.	(a)	Scalar Projection of $3 \hat{\imath}-\hat{\jmath}-2 \hat{k}$ on vector $\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ $=\frac{(3 \hat{\imath}-\hat{\jmath}-2 \hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}-3 \widehat{k})}{\|\hat{\imath}+2 \hat{\jmath}-3 \widehat{k}\|}=\frac{7}{\sqrt{14}}$
9.	(c)	$\begin{aligned} & \int_{2}^{3} \frac{x}{x^{2}+1}=\frac{1}{2}\left[\log \left(x^{2}+1\right)\right]_{2}^{3}=\frac{1}{2}(\log 10-\log 5)=\frac{1}{2} \log \left(\frac{10}{5}\right) \\ & =\frac{1}{2} \log 2 \end{aligned}$
10.	(c)	$\left(A B^{-1}\right)^{-1}=\left(B^{-1}\right)^{-1} A^{-1}=B A^{-1}$
11.	(d)	The minimum value of the objective function occurs at two adjacent corner points $(0.6,1.6)$ and $(3,0)$ and there is no point in the half plane $4 x+6 y<12$ in common with the feasible region. So, the minimum value occurs at every point of the linesegment joining the two points.
12.	(d)	$2-20=2 x^{2}-24 \Rightarrow 2 x^{2}=6 \Rightarrow x^{2}=3 \Rightarrow x= \pm \sqrt{3}$
13.	(b)	$\|\operatorname{adj} A\|=\|A\|^{n-1} \Rightarrow\|\operatorname{adj} A\|=25$
14.	(c)	$\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=P\left(A^{\prime}\right) \times P\left(B^{\prime}\right)$ (As A and B are independent, A^{\prime} and B^{\prime} are also independent.) $=0.7 \times 0.4=0.28$
15.	(c)	$\begin{aligned} & y d x-x d y=0 \Rightarrow y d x-x d y=0 \Rightarrow \frac{d y}{y}=\frac{d x}{x} \\ & \Rightarrow \int \frac{d y}{y}=\int \frac{d x}{x}+\log K, K>0 \Rightarrow \log \|y\|=\log \|x\|+\log K \\ & \Rightarrow \log \|y\|=\log \|x\| K \Rightarrow\|y\|=\|x\| K \Rightarrow y= \pm K x \Rightarrow y=C x \end{aligned}$

16.	(a)	$\begin{aligned} & \mathrm{y}=\sin ^{-1} \mathrm{x} \\ & \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} \Rightarrow \sqrt{1-x^{2}} \cdot \frac{d y}{d x}=1 \end{aligned}$ Again, differentiating both sides w. r. to x , we get $\sqrt{1-x^{2}} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot\left(\frac{-2 x}{2 \sqrt{1-x^{2}}}\right)=0$ Simplifying, we get $\left(1-x^{2}\right) y_{2}=x y_{1}$
17.	(b)	$\begin{aligned} & \|\vec{a}-2 \vec{b}\|^{2}=(\vec{a}-2 \vec{b}) \cdot(\vec{a}-2 \vec{b}) \\ & \|\vec{a}-2 \vec{b}\|^{2}=\vec{a} \cdot \vec{a}-4 \vec{a} \cdot \vec{b}+4 \vec{b} \cdot \vec{b} \\ & =\|\vec{a}\|^{2}-4 \vec{a} \cdot \vec{b}+4\|\vec{b}\|^{2} \\ & =4-16+36=24 \\ & \|\vec{a}-2 \vec{b}\|^{2}=24 \Rightarrow\|\vec{a}-2 \vec{b}\|=2 \sqrt{6} \end{aligned}$
18.	(b)	The line through the points $(0,5,-2)$ and $(3,-1,2)$ is $\begin{aligned} & \frac{x}{3-0}=\frac{y-5}{-1-5}=\frac{z+2}{2+2} \\ & \text { or, } \frac{x}{3}=\frac{y-5}{-6}=\frac{z+2}{4} \end{aligned}$ Any point on the line is $(3 k,-6 k+5,4 k-2)$, where k is an arbitrary scalar. $3 k=6 \Rightarrow k=2$ The z-coordinate of the point P will be $4 \times 2-2=6$
19.	(c)	$\sec ^{-1} x$ is defined if $x \leq-1$ or $x \geq 1$. Hence, $\sec ^{-1} 2 x$ will be defined if $x \leq-\frac{1}{2}$ or $x \geq \frac{1}{2}$. Hence, A is true. The range of the function $\sec ^{-1} x$ is $[0, \pi]-\left\{\frac{\pi}{2}\right\}$ R is false.
20.	(a)	The equation of the x -axis may be written as $\vec{r}=t \hat{l}$. Hence, the acute angle θ between the given line and the x -axis is given by $\cos \theta=\frac{\|1 \times 1+(-1) \times 0+0 \times 0\|}{\sqrt{1^{2}+(-1)^{2}+0^{2}} \times \sqrt{1^{2}+0^{2}+0^{2}}}=\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4}$

SECTION B (VSA questions of 2 marks each)

\begin{tabular}{|c|c|c|}
\hline 21. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \sin ^{-1}\left[\sin \left(\frac{13 \pi}{7}\right)\right]=\sin ^{-1}\left[\sin \left(2 \pi-\frac{\pi}{7}\right)\right] \\
\& =\sin ^{-1}\left[\sin \left(-\frac{\pi}{7}\right)\right]=-\frac{\pi}{7}
\end{aligned}
\] \\
OR \\
Let \(y \in N\) (codomain). Then \(\exists 2 y \in N\) (domain) such that \(f(2 y)=\frac{2 y}{2}=y\). Hence, f is surjective. \\
\(1,2 \in N\) (domain) such that \(f(1)=1=f(2)\) Hence, f is not injective.
\end{tabular} \& .1
1

1
1

\hline 22. \& | Let AB represent the height of the street light from the ground. At any time t seconds, let the man represented as ED of height 1.6 m be at a distance of x m from AB and the length of his shadow EC be y m . |
| :--- |
| Using similarity of triangles, we have $\frac{4}{1.6}=\frac{x+y}{y} \Rightarrow 3 y=2 x$ | \& 1/2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Differentiating both sides w.r.to t , we get \(3 \frac{d y}{d t}=2 \frac{d x}{d t}\)
\[
\frac{d y}{d t}=\frac{2}{3} \times 0.3 \Rightarrow \frac{d y}{d t}=0.2
\] \\
At any time \(t\) seconds, the tip of his shadow is at a distance of \((x+y) \mathrm{m}\) from AB . \\
The rate at which the tip of his shadow moving
\[
=\left(\frac{d x}{d t}+\frac{d y}{d t}\right) \mathrm{m} / \mathrm{s}=0.5 \mathrm{~m} / \mathrm{s}
\] \\
The rate at which his shadow is lengthening
\[
=\frac{d y}{d t} \mathrm{~m} / \mathrm{s}=0.2 \mathrm{~m} / \mathrm{s}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline 23. \& \begin{tabular}{l}
\[
\vec{a}=\hat{\imath}-\hat{\jmath}+7 \hat{k} \text { and } \vec{b}=5 \hat{\imath}-\hat{\jmath}+\lambda \hat{k}
\] \\
Hence \(\vec{a}+\vec{b}=6 \hat{\imath}-2 \hat{\jmath}+(7+\lambda) \hat{k}\) and \(\vec{a}-\vec{b}=-4 \hat{\imath}+(7-\lambda) \hat{k}\) \(\vec{a}+\vec{b}\) and \(\vec{a}-\vec{b}\) will be orthogonal if, \((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0\) \\
i.e., if, \(-24+\left(49-\lambda^{2}\right)=0 \Rightarrow \lambda^{2}=25\) \\
i.e., if, \(\lambda= \pm 5\) \\
OR \\
The equations of the line are \(6 x-12=3 y+9=2 z-2\), which, when written in standard symmetric form, will be
\[
\frac{x-2}{\frac{1}{6}}=\frac{y-(-3)}{\frac{1}{3}}=\frac{z-1}{\frac{1}{2}}
\] \\
Since, lines are parallel, we have \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\) \\
Hence, the required direction ratios are \(\left(\frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right)\) or \((1,2,3)\) and the required direction cosines are \(\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1
1
1
\(1 / 2\)

$1 / 2$
1

\hline 24. \& | $y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1$ |
| :--- |
| Let $\sin ^{-1} x=A$ and $\sin ^{-1} y=B$. Then $\mathrm{x}=\sin \mathrm{A}$ and $\mathrm{y}=\sin \mathrm{B}$ $y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1 \Rightarrow \sin B \cos A+\sin A \cos B=1$ $\begin{aligned} & \Rightarrow \sin (A+B)=1 \Rightarrow A+B=\sin ^{-1} 1=\frac{\pi}{2} \\ & \Rightarrow \sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2} \end{aligned}$ |
| Differentiating w.r.to x , we obtain $\frac{d y}{d x}=-\sqrt{\frac{1-y^{2}}{1-x^{2}}}$ | \& $1 / 2$

$1 / 2$
$1 / 2$

\hline 25. \& Since $\overrightarrow{\boldsymbol{a}}$ is a unit vector, \therefore | $\vec{a} \mid=1$ \& 1/2

\hline
\end{tabular}

	$(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12$.	
$\Rightarrow \vec{x} \cdot \vec{x}+\vec{x} \cdot \vec{a}-\vec{a} \cdot \vec{x}-\vec{a} \cdot \vec{a}=12$		
$\Rightarrow\|\vec{x}\|^{2}-\|\vec{a}\|^{2}=12$.	$1 / 2$	
	$\Rightarrow\|\vec{x}\|^{2}-1=12$	
$\Rightarrow\|\vec{x}\|^{2}=13 \Rightarrow\|\vec{x}\|=\sqrt{13}$	$1 / 2$	

SECTION C

(Short Answer Questions of 3 Marks each)

26.	$\begin{aligned} & \int \frac{d x}{\sqrt{3-2 x-x^{2}}} \\ & =\int \frac{d x}{\sqrt{-\left(x^{2}+2 x-3\right)}}=\int \frac{d x}{\sqrt{4-(x+1)^{2}}} \\ & =\sin ^{-1}\left(\frac{x+1}{2}\right)+C\left[\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+C\right] \end{aligned}$	2
27.	$\mathrm{P}($ not obtaining an odd person in a single round $)=\mathrm{P}($ All three of them throw tails or All three of them throw heads) $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times 2=\frac{1}{4}$ P (obtaining an odd person in a single round) $=1-\mathrm{P}(\text { not obtaining an odd person in a single round })=\frac{3}{4}$ The required probability $=\mathrm{P}$ ('In first round there is no odd person' and 'In second round there is no odd person' and 'In third round there is an odd person') $=\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{3}{64}$ OR Let X denote the Random Variable defined by the number of defective items.$\begin{aligned} & \mathrm{P}(\mathrm{X}=0)=\frac{4}{6} \times \frac{3}{5}=\frac{2}{5} \\ & \mathrm{P}(\mathrm{X}=1)=2 \times\left(\frac{2}{6} \times \frac{4}{5}\right)=\frac{8}{15} \\ & \mathrm{P}(\mathrm{X}=2)=\frac{2}{6} \times \frac{1}{5}=\frac{1}{15} \end{aligned}$$x_{i}$ 0 1 2 p_{i} $\frac{2}{5}$ $\frac{8}{15}$ $\frac{1}{15}$ $p_{i} x_{i}$ 0 $\frac{8}{15}$ $\frac{2}{15}$$\text { Mean }=\sum p_{i} x_{i}=\frac{10}{15}=\frac{2}{3}$	$1+1 / 2$ $1 / 2$ 1 2 $1 / 2$ 1/2
28.	$\begin{equation*} \text { Let } \mathrm{I}=\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \tag{i} \end{equation*}$	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Using \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\)
\[
\begin{aligned}
\& \mathrm{I}=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\cos \left(\frac{\pi}{6}+\frac{\pi}{3}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{6}+\frac{\pi}{3}-x\right)}+\sqrt{\cos \left(\frac{\pi}{6}+\frac{\pi}{3}-x\right)}} d x \\
\& \mathrm{I}=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}} \mathrm{dx} . . \text { (ii). }
\end{aligned}
\] \\
Adding (i) and (ii), we get
\[
\begin{aligned}
\& 2 \mathrm{I}=\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x+\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x}}{\sqrt{\cos x}+\sqrt{\sin x}} \mathrm{dx} \\
\& 2 \mathrm{I}=\int_{\pi / 6}^{\pi / 3} d x \\
\& =[x]_{\frac{\pi}{6}}^{\frac{\pi}{3}}=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}
\end{aligned}
\] \\
Hence, \(\mathrm{I}=\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\tan x}}=\frac{\pi}{12}\) \\
OR
\[
\begin{aligned}
\& \int_{0}^{4}|x-1| d x=\int_{0}^{1}(1-x) d x+\int_{1}^{4}(x-1) d x \\
\& =\left[x-x_{2}^{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4} \\
\& =\left(1-\frac{1}{2}\right)+(8-4)-\left(\frac{1}{2}-1\right) \\
\& =5
\end{aligned}
\]
\end{tabular} \& 1
1
1
1
1
1
1
1
1
1 \\
\hline 29. \& \begin{tabular}{l}
\[
y d x+\left(x-y^{2}\right) d y=0
\] \\
Reducing the given differential equation to the form \(\frac{d x}{d y}+\boldsymbol{P} \boldsymbol{x}=\boldsymbol{Q}\) \\
we get, \(\frac{d x}{d y}+\frac{x}{y}=y\)
\[
\mathrm{I} . \mathrm{F}=e^{\int P d y}=e^{\int \frac{1}{y} d y}=e^{\log y}=y
\] \\
The general solution is given by
\[
x \cdot I F=\int Q \cdot I F d y \Rightarrow x y=\int y^{2} d y
\] \\
\(\Rightarrow x y=\frac{y^{3}}{3}+C\), which is the required general solution \\
OR
\[
x d y-y d x=\sqrt{x^{2}+y^{2}} d x
\] \\
It is a Homogeneous Equation as
\[
\frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}+y}{x}=\sqrt{1+\left(\frac{y}{x}\right)^{2}}+\frac{y}{x}=f\left(\frac{y}{x}\right) .
\] \\
Put \(y=v x\)
\[
\frac{d y}{d x}=v+x \frac{d v}{d x}
\]
\end{tabular} \& \(1 / 2\)
1
1
1
\(1 / 2\)

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
v+x \frac{d v}{d x}=\sqrt{1+v^{2}}+v
\] \\
Separating variables, we get
\[
\frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x}
\] \\
Integrating, we get \(\log \left|v+\sqrt{1+v^{2}}\right|=\log |x|+\log K, K>0\)
\[
\begin{aligned}
\& \log \left|y+\sqrt{x^{2}+y^{2}}\right|=\log x^{2} K \\
\& \Rightarrow y+\sqrt{x^{2}+y^{2}}= \pm K x^{2}
\end{aligned}
\] \\
\(\Rightarrow y+\sqrt{x^{2}+y^{2}}=C x^{2}\), which is the required general solution
\end{tabular} \& \begin{tabular}{l}
\[
1 / 2
\] \\
\(1 / 2\)
\[
1+1 / 2
\]
\end{tabular} \\
\hline \multirow[t]{3}{*}{30.} \& \begin{tabular}{l}
We have \(\mathrm{Z}=400 \mathrm{x}+300 \mathrm{y}\) subject to
\[
\mathrm{x}+\mathrm{y} \leq 200, x \leq 40, x \geq 20, y \geq 0
\] \\
The corner points of the feasible region are \(\mathrm{C}(20,0), \mathrm{D}(40,0)\), \(\mathrm{B}(40,160), \mathrm{A}(20,180)\)
\end{tabular} \& 1 \\
\hline \& \begin{tabular}{|l|l|}
\hline Corner Point \& \(\mathbf{Z}=\mathbf{4 0 0 x}+\mathbf{3 0 0} \mathbf{y}\) \\
\hline \(\mathrm{C}(20,0)\) \& 8000 \\
\hline \(\mathrm{D}(40,0)\) \& 16000 \\
\hline \(\mathrm{~B}(40,160)\) \& 64000 \\
\hline \(\mathrm{~A}(20,180)\) \& 62000 \\
\hline
\end{tabular} \& 1 \\
\hline \& Maximum profit occurs at \(\mathrm{x}=40, \mathrm{y}=160\) and the maximum profit \(=₹ 64,000\) \& 1 \\
\hline 31. \& \begin{tabular}{l}
\[
\int \frac{\left(x^{3}+x+1\right)}{\left(x^{2}-1\right)} d x=\int\left(x+\frac{2 x+1}{(x-1)(x+1)}\right) d x
\] \\
Now resolving \(\frac{2 x+1}{(x-1)(x+1)}\) into partial fractions as
\[
\frac{2 x+1}{(x-1)(x+1)}=\frac{A}{x-1}+\frac{B}{x+1}
\] \\
We get \(\frac{2 x+1}{(x-1)(x+1)}=\frac{3}{2(x-1)}+\frac{1}{2(x+1)}\)
\end{tabular} \& 1

1

\hline
\end{tabular}

| Hence, $\int \frac{\left(x^{3}+x+1\right)}{\left(x^{2}-1\right)} d x=\int\left(x+\frac{2 x+1}{(x-1)(x+1)}\right) d x$ | |
| :--- | :--- | :--- |
| $=\int\left(x+\frac{3}{2(x-1)}+\frac{1}{2(x+1)}\right) d x$ | |
| $=\frac{x^{2}}{2}+\frac{3}{2} \log \|x-1\|+\frac{1}{2} \log \|x+1\|+C$ | |
| $=\frac{x^{2}}{2}+\frac{1}{2}\left(\log \left\|(x-1)^{3}(x+1)\right\|+C\right.$ | 1 |

SECTION D

(Long answer type questions (LA) of 5 marks each)
$\left.\begin{array}{|l|l|l|l|}\hline 32 . & & \\ \text { (Correct } \\ \text { Fig: } 1 \\ \text { Mark) }\end{array}\right]$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(a, b) R (c, d) and (c, d) R (e, f). \\
Then \(\mathrm{ad}=\mathrm{bc}, \mathrm{cf}=\mathrm{de}\)
\[
\begin{aligned}
\& \Rightarrow a d c f=b c d e \\
\& \Rightarrow a f=b e \\
\& \Rightarrow(a, b) R(e, f)
\end{aligned}
\] \\
Hence, R is transitive. \\
Since, R is reflexive, symmetric and transitive, R is an equivalence relation on \(N \times N\). \\
OR \\
Let \(A \in P(X)\). Then \(A \subset A\)
\[
\Longrightarrow(A, A) \in R
\] \\
Hence, R is reflexive. \\
Let \(A, B, C \in P(X)\) such that
\[
\begin{aligned}
\& (A, B),(B, C) \in R \\
\& \Rightarrow A \subset B, B \subset C \\
\& \Rightarrow A \subset C \\
\& \Rightarrow(A, C) \in R
\end{aligned}
\] \\
Hence, R is transitive. \\
\(\emptyset, X \in P(X)\) such that \(\emptyset \subset X\). Hence, \((\varnothing, X) \in R\). But, \(X \not \subset \emptyset\), which implies that \((X, \emptyset) \notin R\). \\
Thus, R is not symmetric.
\end{tabular} \& 2
\(1 / 2\)
1
1

2
2

\hline 34. \& | The given lines are non-parallel lines. There is a unique linesegment PQ (P lying on one and Q on the other, which is at right angles to both the lines. PQ is the shortest distance between the lines. Hence, the shortest possible distance between the insects $=$ PQ |
| :--- |
| The position vector of P lying on the line $\vec{r}=6 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}+\lambda(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})$ |
| is $(6+\lambda) \hat{\imath}+(2-2 \lambda) \hat{\jmath}+(2+2 \lambda) \hat{k}$ for some λ |
| The position vector of Q lying on the line $\vec{r}=-4 \hat{\imath}-\hat{k}+\mu(3 \hat{\imath}-2 \hat{\jmath}-2 \hat{k})$ |
| is $(-4+3 \mu) \hat{\imath}+(-2 \mu) \hat{\jmath}+(-1-2 \mu) \hat{k}$ for some μ $\overrightarrow{P Q}=(-10+3 \mu-\lambda) \hat{\imath}+(-2 \mu-2+2 \lambda) \hat{\jmath}+(-3-2 \mu-2 \lambda) \hat{k}$ |
| Since, PQ is perpendicular to both the lines $\begin{align*} (-10+3 \mu-\lambda)+(-2 \mu-2+2 \lambda)(-2)+(-3-2 \mu-2 \lambda) 2 \\ =0, \\ \text { i.e., } \mu-3 \lambda=4 \tag{i} \end{align*}$ |
| and $(-10+3 \mu-\lambda) 3+(-2 \mu-2+2 \lambda)(-2)+(-3-2 \mu-$ $2 \lambda)(-2)=0$, |
| i.e., $17 \mu-3 \lambda=20$ |
| solving (i) and (ii) for λ and μ, we get $\mu=1, \lambda=-1$. |
| The position vector of the points, at which they should be so that the distance between them is the shortest, are $\left\lvert\, \begin{aligned} & 5 \hat{\imath}+4 \hat{\jmath} \text { and }-\hat{\imath}-2 \hat{\jmath}-3 \hat{k} \\ & \overrightarrow{P Q}=-6 \hat{\imath}-6 \hat{\jmath}-3 \hat{k} \end{aligned}\right.$ |
| The shortest distance $=\|\overrightarrow{P Q}\|=\sqrt{6^{2}+6^{2}+3^{2}}=9$ |
| OR | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
1
$1 / 2$
1

\hline
\end{tabular}

	Eliminating t between the equations, we obtain the equation of the path $\frac{x}{2}=\frac{y}{-4}=\frac{z}{4}$, which are the equations of the line passing through the origin having direction ratios $\langle 2,-4,4\rangle$. This line is the path of the rocket. When $\mathrm{t}=10$ seconds, the rocket will be at the point $(20,-40,40)$. Hence, the required distance from the origin at 10 seconds $=$ $\sqrt{20^{2}+40^{2}+40^{2}} \mathrm{~km}=20 \times 3 \mathrm{~km}=60 \mathrm{~km}$ The distance of the point $(20,-40,40)$ from the given line $\begin{aligned} & =\frac{\left\|\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \times \vec{b}\right\|}{\|\vec{b}\|}=\frac{\|-30 \hat{\jmath} \times(10 \hat{\imath}-20 \hat{\jmath}+10 \hat{k})\|}{\left\|10 \hat{\imath}-20^{\wedge}+10 \hat{k}\right\|} \mathrm{km}=\frac{\|-300 \hat{\imath}+300 \hat{k}\|}{\|10 \hat{\imath}-20 \hat{\jmath}+10 \hat{k}\|} \mathrm{km} \\ & =\frac{300 \sqrt{2}}{10 \sqrt{6}} \mathrm{~km}=10 \sqrt{3} \mathrm{~km} \end{aligned}$	1 $1 / 2$ 1 2 $1 / 2$
35.	$\begin{aligned} & \mathrm{A}=\left[\begin{array}{ccc} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{array}\right] \\ & \|\mathrm{A}\|=2(0)+3(-2)+5(1)=-1 \\ & A^{-1}=\frac{\operatorname{adj} A}{\|A\|} \\ & \operatorname{adj} A=\left[\begin{array}{lll} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right], A^{-1}=\frac{1}{(-1)}\left[\begin{array}{lll} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right] \\ & \mathrm{X}=A^{-1} B \Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{(-1)}\left[\begin{array}{lll} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{array}\right]\left[\begin{array}{c} 11 \\ -5 \\ -3 \end{array}\right] \\ & =\frac{1}{(-1)}\left[\begin{array}{c} 0+5-6 \\ 22+45-69 \\ 11+25-39 \end{array}\right] \\ & \Rightarrow\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\frac{1}{(-1)}\left[\begin{array}{l} -1 \\ -2 \\ -3 \end{array}\right] \Rightarrow x=1, y=2, z=3 . \end{aligned}$	$1 / 2$ 3 $1+1 / 2$

SECTION E(Case Studies/Passage based questions of 4 Marks each)

36. (i) $\mathrm{f}(x)=-0.1 x^{2}+m x+98.6$, being a polynomial function, is differentiable everywhere, hence, differentiable in $(0,12)$
(ii) $f^{\prime}(x)=-0.2 x+m$

Since, 6 is the critical point,
$f^{\prime}(6)=0 \Rightarrow m=1.2$
(iii) $f(x)=-0.1 x^{2}+1.2 x+98.6$
$f^{\prime}(x)=-0.2 x+1.2=-0.2(x-6)$

In the Interval	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	Conclusion
$(0,6)$	+ve	f is strictly increasing in $[0,6]$
$(6,12)$	-ve	f is strictly decreasing in $[6,12]$

| | \quad OR |
| :--- | :--- | :--- |
| (iii) $f(x)=-0.1 x^{2}+1.2 x+98.6$, | |
| $f^{\prime}(x)=-0.2 x+1.2, f^{\prime}(6)=0$, | |
| $f^{\prime \prime}(x)=-0.2$ | |
| $f^{\prime \prime}(6)=-0.2<0$ | |
| Hence, by second derivative test 6 is a point of local maximum. The local | |
| maximum value $=f(6)=-0.1 \times 6^{2}+1.2 \times 6+98.6=102.2$ | |
| We have $f(0)=98.6, f(6)=102.2, f(12)=98.6$ | |
| 6 is the point of absolute maximum and the absolute maximum value of the | |
| function $=102.2$. | |
| 0 and 12 both are the points of absolute minimum and the absolute minimum value | |
| of the function $=98.6$. | $1 / 2$ |
| (i) | $1 / 2$ |

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(iii) \(A=2 x \times 2 \frac{b}{a} \sqrt{a^{2}-x^{2}}, x \in(0, a)\). \\
Squaring both sides, we get
\[
Z=A^{2}=\frac{16 b^{2}}{a^{2}} x^{2}\left(a^{2}-x^{2}\right)=\frac{16 b^{2}}{a^{2}}\left(x^{2} a^{2}-x^{4}\right), x \in(0, a)
\] \\
A is maximum when Z is maximum.
\[
\begin{aligned}
\& \frac{d Z}{d x}=\frac{16 b^{2}}{a^{2}}\left(2 x a^{2}-4 x^{3}\right)=\frac{32 b^{2}}{a^{2}} x(a+\sqrt{2} x)(a-\sqrt{2} x) \\
\& \frac{d Z}{d x}=0 \Rightarrow x=\frac{a}{\sqrt{2}} \\
\& \frac{d^{2} Z}{d x^{2}}=\frac{32 b^{2}}{a^{2}}\left(a^{2}-6 x^{2}\right) \\
\& \left(\frac{d^{2} Z}{d x^{2}}\right)_{x=\frac{a}{\sqrt{2}}}=\frac{32 b^{2}}{a^{2}}\left(a^{2}-3 a^{2}\right)=-64 b^{2}<0
\end{aligned}
\] \\
Hence, by the second derivative test, there is a local maximum value of \(Z\) at the critical point \(x=\frac{a}{\sqrt{2}}\). Since there is only one critical point, therefore, Z is maximum at \(x=\frac{a}{\sqrt{2}}\), hence, A is maximum at \(x=\frac{a}{\sqrt{2}}\). \\
Thus, for maximum area of the soccer field, its length should be \(a \sqrt{2}\) and its width should be \(b \sqrt{2}\).
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\) \\
\hline 38. \& \begin{tabular}{l}
(i)Let P be the event that the shell fired from A hits the plane and Q be the event that the shell fired from B hits the plane. The following four hypotheses are possible before the trial, with the guns operating independently:
\[
E_{1}=P Q, E_{2}=\bar{P} \bar{Q}, E_{3}=\bar{P} Q, E_{4}=P \bar{Q}
\] \\
Let \(\mathrm{E}=\) The shell fired from exactly one of them hits the plane.
\[
\begin{aligned}
\& P\left(E_{1}\right)=0.3 \times 0.2=0.06, P\left(E_{2}\right)=0.7 \times 0.8=0.56, P\left(E_{3}\right)=0.7 \times 0.2 \\
\& \quad=0.14, P\left(E_{4}\right)=0.3 \times 0.8=0.24 \\
\& P\left(\frac{E}{E_{1}}\right)=0, P\left(\frac{E}{E_{2}}\right)=0, P\left(\frac{E}{E_{3}}\right)=1, P\left(\frac{E}{E_{4}}\right)=1 \\
\& P(E)=P\left(E_{1}\right) \cdot P\left(\frac{E}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{E}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{E}{E_{3}}\right)+P\left(E_{4}\right) \cdot P\left(\frac{E}{E_{4}}\right) \\
\& =0.14+0.24=0.38 \\
\& \text { (ii)By Bayes' Theorem, } \mathrm{P}\left(\frac{E_{3}}{E}\right)=\frac{P\left(E_{3}\right) \cdot P\left(\frac{E}{E_{3}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{E}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{E}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{E}{E_{3}}\right)+P\left(E_{4}\right) \cdot P\left(\frac{E}{E_{4}}\right)} \\
\& \qquad=\frac{0.14}{0.38}=\frac{7}{19}
\end{aligned}
\] \\
NOTE: The four hypotheses form the partition of the sample space and it can be seen that the sum of their probabilities is 1 . The hypotheses \(E_{1}\) and \(E_{2}\) are actually eliminated as \(P\left(\frac{E}{E_{1}}\right)=P\left(\frac{E}{E_{2}}\right)=0\) \\
Alternative way of writing the solution: \\
(i)P(Shell fired from exactly one of them hits the plane) \\
\(=\mathrm{P}[(\) Shell from A hits the plane and Shell from B does not hit the plane) or (Shell from A does not hit the plane and Shell from \(B\) hits the plane)] \(=0.3 \times 0.8+0.7 \times 0.2=0.38\) \\
(ii) P (Shell fired from B hit the plane/Exactly one of them hit the plane) \(=\frac{\mathrm{P}(\text { Shell fired from B hit the plane } \cap \text { Exactly one of them hit the plane })}{\mathrm{P}(\text { Exactly one of them hit the plane })}\)
\end{tabular} \& 1
1
1

2
1

1
1
1

\hline
\end{tabular}

| $=\frac{P(\text { Shell from only B hit the plane })}{P(\text { Exactly one of them hit the plane })}$ | 1 |
| :--- | :--- | :--- |
| $=\frac{0.14}{0.38}=\frac{7}{19}$ | 1 |

