SAMPLE QUESTION PAPER
 MARKING SCHEME

 CLASS XII

 CLASS XII
 MATHEMATICS (CODE-041)

SECTION: A (Solution of MCQs of 1 Mark each)

Q no.	ANS	HINTS/SOLUTION
1	(d)	$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], A^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
2	(d)	$(A+B)^{-1}=B^{-1}+A^{-1}$.
3	(b)	Area $\left.=\left\|\frac{\mathbf{1}}{\mathbf{2}}\right\| \begin{array}{ccc}-\mathbf{3} & \mathbf{0} & \mathbf{1} \\ \mathbf{3} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & k & \mathbf{1}\end{array} \right\rvert\,$, given that the area $=\mathbf{9}$ sq unit. $\Rightarrow \pm \mathbf{9}=\frac{\mathbf{1}}{\mathbf{2}}\left\|\begin{array}{ccc}-\mathbf{3} & \mathbf{0} & \mathbf{1} \\ \mathbf{3} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \boldsymbol{k} & \mathbf{1}\end{array}\right\|$, expanding along \boldsymbol{C}_{2}, we get $\Rightarrow \boldsymbol{k}= \pm \mathbf{3}$.
4	(a)	Since, \boldsymbol{f} is continuous at $\boldsymbol{x}=\mathbf{0}$, therefore, L. $\boldsymbol{H} \cdot \boldsymbol{L}=\boldsymbol{R} \cdot \boldsymbol{H} \cdot \boldsymbol{L}=\boldsymbol{f}(\mathbf{0})=$ a finite quantity. $\begin{aligned} & \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0) \\ & \Rightarrow \lim _{x \rightarrow 0^{-}} \frac{-k x}{x}=\lim _{x \rightarrow 0^{+}} 3=3 \Rightarrow k=-3 . \end{aligned}$
5	(d)	Vectors $\mathbf{2} \hat{\boldsymbol{i}}+\mathbf{3} \hat{\boldsymbol{j}}-\mathbf{6} \hat{\boldsymbol{k}} \boldsymbol{\&} \hat{\boldsymbol{6}}+\mathbf{9} \hat{\boldsymbol{j}}-\mathbf{1 8} \hat{\boldsymbol{k}}$ are parallel and the fixed point $\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}$ on the line $\overrightarrow{\boldsymbol{r}}=\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}+\lambda(2 \hat{\boldsymbol{i}}+\mathbf{3} \hat{\boldsymbol{j}}-\mathbf{6} \hat{\boldsymbol{k}})$ does not satisfy the other line $\vec{r}=2 \hat{i}-\hat{\boldsymbol{j}}-\hat{\boldsymbol{k}}+\mu(\mathbf{6} \hat{\boldsymbol{i}}+\mathbf{9} \hat{\boldsymbol{j}}-\mathbf{1 8} \hat{\boldsymbol{k}}) ;$ where $\lambda \& \mu$ are scalars.
6	(c)	The degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$ is 2
7	(b)	$Z=p x+q y---(i)$ At $(\mathbf{3 , 0}), \boldsymbol{Z}=\mathbf{3 p}---(i i)$ and at $(\mathbf{1 , 1}), \boldsymbol{Z}=\boldsymbol{p}+\boldsymbol{q}----(i i i)$ From $(i i) \&(i i i), \mathbf{3} \boldsymbol{p}=\boldsymbol{p}+\boldsymbol{q} \Rightarrow \mathbf{2} \boldsymbol{p}=\boldsymbol{q}$.

8	(a)	Given, $\boldsymbol{A B C D}$ is a rhombus whose diagonals bisect each other. $\|\overrightarrow{\boldsymbol{E A}}\|=\|\overrightarrow{\boldsymbol{E C}}\|$ and $\|\overrightarrow{\boldsymbol{E B}}\|=\|\overrightarrow{\boldsymbol{E D}}\|$ but since they are opposite to each other so they are of opposite signs $\Rightarrow \overrightarrow{\boldsymbol{E A}}=-\overrightarrow{\boldsymbol{E C}}$ and $\overrightarrow{\boldsymbol{E B}}=-\overrightarrow{\boldsymbol{E D}}$. $\Rightarrow \overrightarrow{E A}+\overrightarrow{E C}=\overrightarrow{\boldsymbol{O}} \ldots(i) \text { and } \overrightarrow{E B}+\overrightarrow{E D}=\overrightarrow{\boldsymbol{O}} \ldots(i i)$ Adding (i) and (ii), we get $\overrightarrow{\boldsymbol{E A}}+\overrightarrow{\boldsymbol{E} \boldsymbol{B}}+\overrightarrow{\boldsymbol{E C}}+\overrightarrow{\boldsymbol{E D}}=\overrightarrow{\boldsymbol{O}}$.
9	(b)	$\begin{aligned} & f(x)=e^{\cos ^{2} x} \sin ^{3}(2 n+1) x \\ & f(-x)=e^{\cos ^{2}(-x)} \sin ^{3}(2 n+1)(-x) \\ & f(-x)=-e^{\cos ^{2} x} \sin ^{3}(2 n+1) x \\ & \because f(-x)=-f(x) \\ & \text { So, } \int_{-\pi}^{\pi} e^{\cos ^{2} x} \sin ^{3}(2 n+1) x d x=0 \end{aligned}$
10	(b)	Matrix \boldsymbol{A} is a skew symmetric matrix of odd order. $\therefore\|\boldsymbol{A}\|=\mathbf{0}$.
11	(c)	We observe, $(0,0)$ does not satisfy the inequality $x-y \geq 1$ So, the half plane represented by the above inequality will not contain origin therefore, it will not contain the shaded feasible region.
12	(b)	Vector component of \vec{a} along $\vec{b}=\left(\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^{2}}\right) \vec{b}=\frac{\mathbf{1 8}}{\mathbf{2 5}}(3 \hat{j}+4 \hat{k})$.
13	(d)	$\|\operatorname{adj}(2 A)\|=\|(2 A)\|^{2}=\left(2^{3}\|A\|\right)^{2}=2^{6}\|A\|^{2}=2^{6} \times(-2)^{2}=2^{8}$.
14	(d)	Method 1: Let A, B, C be the respective events of solving the problem. Then, $P(A)=\frac{\mathbf{1}}{\mathbf{2}}, \boldsymbol{P}(\boldsymbol{B})=\frac{\mathbf{1}}{\mathbf{3}}$ and $\boldsymbol{P}(\boldsymbol{C})=\frac{\mathbf{1}}{\mathbf{4}}$. Here, $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ are independent events. Problem is solved if at least one of them solves the problem. Required probability is $=\boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B} \cup \boldsymbol{C})=\mathbf{1}-\boldsymbol{P}(\overline{\boldsymbol{A}}) \boldsymbol{P}(\overline{\boldsymbol{B}}) \boldsymbol{P}(\overline{\boldsymbol{C}})$

		$=1-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)=1-\frac{1}{4}=\frac{3}{4}$ Method 2: The problem will be solved if one or more of them can solve the problem. The probability is $\begin{aligned} & P(A \bar{B} \bar{C})+P(\bar{A} B \bar{C})+P(\bar{A} \bar{B} C)+P(A B \bar{C})+P(A \bar{B} C)+P(\bar{A} B C)+P(A B C) \\ & =\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{4}+\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{4}+\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}=\frac{3}{4} \end{aligned}$ Method 3: Let us think quantitively. Let us assume that there are 100 questions given to $\boldsymbol{A} \boldsymbol{A}$ solves $\frac{\mathbf{1}}{\mathbf{2}} \times \mathbf{1 0 0}=\mathbf{5 0}$ questions then remaining $\mathbf{5 0}$ questions is given to \boldsymbol{B} and \boldsymbol{B} solves $\mathbf{5 0} \times \frac{\mathbf{1}}{\mathbf{3}}=\mathbf{1 6 . 6 7}$ questions. Remaining $\mathbf{5 0} \times \frac{\mathbf{2}}{\mathbf{3}}$ questions is given to C and C solves $\mathbf{5 0} \times \frac{\mathbf{2}}{\mathbf{3}} \times \frac{\mathbf{1}}{\mathbf{4}}=8.33$ questions. Therefore, number of questions solved is $\mathbf{5 0}+\mathbf{1 6 . 6 7}+\mathbf{8 . 3 3}=\mathbf{7 5}$. So, required probability is $\frac{\mathbf{7 5}}{\mathbf{1 0 0}}=\frac{\mathbf{3}}{4}$.
15	(c)	Method 1: $y d x-x d y=0 \Rightarrow \frac{y d x-x d y}{y^{2}}=0 \Rightarrow d\left(\frac{x}{y}\right)=0 \Rightarrow x=\frac{1}{c} y \Rightarrow y=c x .$ Method 2: $y d x-x d y=0 \Rightarrow y d x=x d y \Rightarrow \frac{d y}{y}=\frac{d x}{x} ;$ on integrating $\int \frac{d y}{y}=\int \frac{d x}{x}$ $\log _{e}\|y\|=\log _{e}\|x\|+\log _{e}\|c\|$ since $x, y, c>0$, we write $\log _{e} y=\log _{e} x+\log _{e} c \Rightarrow y=c x$.
16	(d)	Dot product of two mutually perpendicular vectors is zero. $\Rightarrow 2 \times 3+(-1) \lambda+2 \times 1=0 \Rightarrow \lambda=8 .$
17	(c)	Method 1: $f(x)=x+\|x\|=\left\{\begin{array}{r} 2 x, x \geq 0 \\ 0, x<0 \end{array}\right.$ There is a sharp corner at $\boldsymbol{x}=\mathbf{0}$, so $\boldsymbol{f}(\boldsymbol{x})$ is not differentiable at $\boldsymbol{x}=\mathbf{0}$. Method 2:

		$\boldsymbol{L} \boldsymbol{f}^{\prime}(\mathbf{0})=\mathbf{0} \& \boldsymbol{R} \boldsymbol{f}^{\prime}(\mathbf{0})=\mathbf{2}$; so, the function is not differentiable at $\boldsymbol{x}=\mathbf{0}$ For $\boldsymbol{x} \geq \mathbf{0}, \boldsymbol{f}(\boldsymbol{x})=\mathbf{2 x}$ (linear function) \& when $\boldsymbol{x}<\mathbf{0}, \boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$ (constant function) Hence $\boldsymbol{f}(\boldsymbol{x})$ is differentiable when $\boldsymbol{x} \in(-\infty, \mathbf{0}) \cup(\mathbf{0}, \infty)$.
18	(d)	We know, $l^{2}+m^{2}+n^{2}=1 \Rightarrow\left(\frac{1}{c}\right)^{2}+\left(\frac{1}{c}\right)^{2}+\left(\frac{1}{c}\right)^{2}=1 \Rightarrow 3\left(\frac{1}{c}\right)^{2}=1 \Rightarrow c= \pm \sqrt{3}$.
19	(a)	$\frac{d}{d x}(f(x))=(x-1)^{3}(x-3)^{2}$ Assertion : $\boldsymbol{f}(\boldsymbol{x})$ has a minimum at $\boldsymbol{x}=\mathbf{1}$ is true as $\frac{d}{d x}(f(x))<0, \forall x \in(1-h, 1)$ and $\frac{d}{d x}(f(x))>0, \forall x \in(1,1+h) ;$ where, ' \boldsymbol{h} ' is an infinitesimally small positive quantity, which is in accordance with the Reason statement.
20	(d)	Assertion is false. As element 4 has no image under f, so relation f is not a function. Reason is true. The given function $f:\{1,2,3\} \rightarrow\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{p}\}$ is one - one, as for each $\boldsymbol{a} \in\{\mathbf{1 , 2 , 3}\}$, there is different image in $\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{p}\}$ under \boldsymbol{f}.

Section-B

[This section comprises of solution of very short answer type questions (VSA) of $\mathbf{2}$ marks each]

21	$\begin{aligned} & \sin ^{-1}\left(\cos \left(\frac{33 \pi}{5}\right)\right)=\sin ^{-1} \cos \left(6 \pi+\frac{3 \pi}{5}\right)=\sin ^{-1} \cos \left(\frac{3 \pi}{5}\right)=\sin ^{-1} \sin \left(\frac{\pi}{2}-\frac{3 \pi}{5}\right) \\ & =\frac{\pi}{2}-\frac{3 \pi}{5}=-\frac{\pi}{10} . \end{aligned}$	1 1
21 OR	$\begin{aligned} & -1 \leq\left(x^{2}-4\right) \leq 1 \Rightarrow 3 \leq x^{2} \leq 5 \Rightarrow \sqrt{3} \leq\|x\| \leq \sqrt{5} \\ & \Rightarrow x \in[-\sqrt{5},-\sqrt{3}] \cup[\sqrt{3}, \sqrt{5}] . \text { So, required domain is }[-\sqrt{5},-\sqrt{3}] \cup[\sqrt{3}, \sqrt{5}] . \end{aligned}$	1 1
22	$f(x)=x e^{x} \Rightarrow f^{\prime}(x)=e^{x}(x+1)$ When $x \in[-1, \infty),(x+1) \geq 0 \& e^{x}>\mathbf{0} \Rightarrow f^{\prime}(x) \geq \mathbf{0} \therefore f(x)$ increases in this interval. or, we can write $f(x)=x e^{x} \Rightarrow f^{\prime}(x)=e^{x}(x+1)$ For $\boldsymbol{f}(\boldsymbol{x})$ to be increasing, we have $f^{\prime}(\boldsymbol{x})=\boldsymbol{e}^{\boldsymbol{x}}(\boldsymbol{x}+\mathbf{1}) \geq \mathbf{0} \Rightarrow \boldsymbol{x} \geq-\mathbf{1}$ as $\boldsymbol{e}^{\boldsymbol{x}}>\mathbf{0}, \forall x \in \mathbb{R}$ Hence, the required interval where $\boldsymbol{f}(\boldsymbol{x})$ increases is $[-1, \infty)$.	1 1 1 $\frac{1}{2}$ 1 $\frac{1}{2}$
23	Method 1: $f(x)=\frac{1}{4 x^{2}+2 x+1}$	

Let $g(x)=4 x^{2}+2 x+1=4\left(x^{2}+2 x \frac{1}{4}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x+\frac{1}{4}\right)^{2}+\frac{3}{4} \geq \frac{3}{4}$
\therefore maximum value of $f(x)=\frac{4}{3}$.
Method 2: $f(x)=\frac{1}{4 x^{2}+2 x+1}$, let $g(x)=4 x^{2}+2 x+1$
$\Rightarrow \frac{d}{d x}(g(x))=g^{\prime}(x)=8 x+2$ and $g^{\prime}(x)=0$ at $x=-\frac{1}{4}$ also $\frac{d^{2}}{d x^{2}}(g(x))=g^{\prime \prime}(x)=8>0$
$\Rightarrow \boldsymbol{g}(\boldsymbol{x})$ is minimum when $\boldsymbol{x}=-\frac{\mathbf{1}}{\mathbf{4}}$ so , $\boldsymbol{f}(\boldsymbol{x})$ is maximum at $\boldsymbol{x}=-\frac{\mathbf{1}}{\mathbf{4}}$

Method 4: $f(x)=\frac{1}{4 x^{2}+2 x+1}$
On differentiating w.r.t x, we get $f^{\prime}(x)=\frac{-(8 x+2)}{\left(4 x^{2}+2 x+1\right)^{2}}$
For maxima or minima, we put $f^{\prime}(x)=\mathbf{0} \Rightarrow \mathbf{8 x + 2}=\mathbf{0} \Rightarrow x=-\frac{\mathbf{1}}{\mathbf{4}}$.
When $\boldsymbol{x} \in\left(-\boldsymbol{h}-\frac{\mathbf{1}}{\mathbf{4}},-\frac{\mathbf{1}}{\mathbf{4}}\right)$, where ' \boldsymbol{h} ' is infinitesimally small positive quantity.
$4 x<-1 \Rightarrow 8 x<-2 \Rightarrow 8 x+2<0 \Rightarrow-(8 x+2)>0$ and $\left(4 x^{2}+2 x+1\right)^{2}>0 \Rightarrow f^{\prime}(x)>0$

	and when $x \in\left(-\frac{1}{4},-\frac{1}{4}+h\right), 4 x>-1 \Rightarrow 8 x>-2 \Rightarrow 8 x+2>0 \Rightarrow-(8 x+2)<0$ and $\left(4 x^{2}+\mathbf{2 x + 1}\right)^{2}>\mathbf{0} \Rightarrow f^{\prime}(x)<\mathbf{0}$. This shows that $\boldsymbol{x}=-\frac{\mathbf{1}}{\mathbf{4}}$ is the point of local maxima.	$\frac{1}{2}$ $\frac{1}{2}$
23 OR	For maxima and minima, $\boldsymbol{P}^{\prime}(\boldsymbol{x})=\mathbf{0} \Rightarrow \mathbf{4 2 - 2 \boldsymbol { x }}=\mathbf{0}$ $\Rightarrow x=21 \text { and } P^{\prime \prime}(x)=-2<0$ So, $\boldsymbol{P}(\boldsymbol{x})$ is maximum at $\boldsymbol{x}=\mathbf{2 1}$. The maximum value of $\boldsymbol{P}(\boldsymbol{x})=\mathbf{7 2}+(\mathbf{4 2} \times \mathbf{2 1})-(\mathbf{2 1})^{2}=\mathbf{5 1 3}$ i.e., the maximum profit is ₹ $\mathbf{5 1 3}$.	$\frac{1}{2}$ $\frac{1}{2}$ 1
24	Let $f(x)=\log \left(\frac{2-x}{2+\boldsymbol{x}}\right)$ We have, $f(-x)=\log \left(\frac{2+x}{2-x}\right)=-\log \left(\frac{2-x}{2+x}\right)=-f(x)$ So, $f(x)$ is an odd function. $\therefore \int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x=0$.	1 1
25	$f(x)=x^{3}+x, \quad$ for all $x \in \mathbb{R}$. $\frac{d}{d x}(f(x))=f^{\prime}(x)=3 x^{2}+1 ;$ for all $x \in \mathbb{R}, x^{2} \geq 0 \Rightarrow f^{\prime}(x)>0$ Hence, no critical point exists.	$1 \frac{1}{2}$ $\frac{1}{2}$
	Section-C [This section comprises of solution short answer type questions (SA) of $\mathbf{3} \mathbf{m a r k s}$ each]	
26	We have, $\frac{2 x^{2}+3}{x^{2}\left(x^{2}+9\right)}$. Now, let $x^{2}=\boldsymbol{t}$ So, $\frac{2 t+3}{\boldsymbol{t}(\boldsymbol{t}+9)}=\frac{\boldsymbol{A}}{\boldsymbol{t}}+\frac{\boldsymbol{B}}{\boldsymbol{t}+\boldsymbol{9}}$, we get $\boldsymbol{A}=\frac{1}{\mathbf{3}} \& \boldsymbol{B}=\frac{\mathbf{5}}{\mathbf{3}}$ $\int \frac{2 x^{2}+3}{x^{2}\left(x^{2}+9\right)} d x=\frac{1}{3} \int \frac{d x}{x^{2}}+\frac{5}{3} \int \frac{d x}{x^{2}+9}$ $=-\frac{\mathbf{1}}{\mathbf{3 x}}+\frac{\mathbf{5}}{\mathbf{9}} \boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{\boldsymbol{x}}{\mathbf{3}}\right)+\boldsymbol{c}$, where ' \boldsymbol{c} ' is an arbitrary constant of integration.	$\frac{1}{2}$ 1 $\frac{1}{2}$ 1
27	We have, (i) $\sum \boldsymbol{P}\left(X_{i}\right)=\mathbf{1} \Rightarrow \boldsymbol{k}+\mathbf{2} \boldsymbol{k}+\mathbf{3 k}=\mathbf{1} \Rightarrow \boldsymbol{k}=\frac{1}{\mathbf{6}}$.	1 1

	(ii) $P(X<2)=P(X=0)+P(X=1)=k+2 k=3 k=3 \times \frac{1}{6}=\frac{1}{2}$. (iii) $P(X>2)=0$.	1
28	Let $x^{\frac{3}{2}}=t \Rightarrow d t=\frac{3}{2} x^{\frac{1}{2}} d x$ $\begin{aligned} & \int \sqrt{\frac{x}{1-x^{3}}} d x=\frac{2}{3} \int \frac{d t}{\sqrt{1-t^{2}}} \\ & =\frac{2}{3} \sin ^{-1}(t)+c \\ & =\frac{2}{3} \sin ^{-1}\left(x^{\frac{3}{2}}\right)+c, \text { where ' } c^{\prime} \text { ' is an arbitrary constant of integration. } \end{aligned}$	$\frac{1}{2}$ $\frac{1}{2}$ 1 1
28 OR	$\begin{align*} & \text { Let } I=\int_{0}^{\frac{\pi}{4}} \log _{e}(1+\tan x) d x \cdots-\cdots \text { (i) } \tag{i}\\ & =\int_{0}^{\frac{\pi}{4}} \log _{e}\left(1+\tan \left(\frac{\pi}{4}-x\right)\right) d x, \text { Using, } \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log _{e}\left(1+\frac{1-\tan x}{1+\tan x}\right) d x=\int_{0}^{\frac{\pi}{4}} \log _{e}\left(\frac{2}{1+\tan x}\right) d x=\int_{0}^{\frac{\pi}{4}} \log _{e} 2 d x-I \text { (Using } \ldots-- \text { (i) } \\ & =\frac{\pi}{4} \log _{e} 2 \Rightarrow I=\frac{\pi}{8} \log _{e} 2 . \end{align*}$	1 1 1
29	Method 1: $y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y^{2}\right) d y \Rightarrow e^{\frac{x}{y}}(y d x-x d y)=y^{2} d y \Rightarrow e^{\frac{x}{y}}\left(\frac{y d x-x d y}{y^{2}}\right)=d y$ $\Rightarrow e^{\frac{x}{y}} d\left(\frac{x}{y}\right)=d y$ $\Rightarrow \int e^{\frac{x}{y}} d\left(\frac{x}{y}\right)=\int d y \Rightarrow e^{\frac{x}{y}}=y+c$, where ' c ' is an arbitrary constant of integration. Method 2: We have, $\frac{d x}{d y}=\frac{x e^{\frac{x}{y}}+y^{2}}{y \cdot e^{\frac{x}{y}}}$ $\begin{equation*} \Rightarrow \frac{d x}{d y}=\frac{x}{y}+\frac{y}{e^{\frac{x}{y}}} . \tag{i} \end{equation*}$ Let $x=v y \Rightarrow \frac{d x}{d y}=v+y \cdot \frac{d v}{d y} ;$	1 1 1 1 $\frac{1}{2}$ $\frac{1}{2}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
So equation (i) becomes \(v+y \frac{d v}{d y}=v+\frac{y}{e^{v}}\)
\[
\begin{aligned}
\& \Rightarrow y \frac{d v}{d y}=\frac{y}{e^{v}} \\
\& \Rightarrow e^{v} d v=d y
\end{aligned}
\] \\
On integrating we get, \(\int e^{v} d \boldsymbol{v}=\int d y \Rightarrow e^{v}=y+c \Rightarrow e^{x / y}=y+c\) where ' \(c\) ' is an arbitrary constant of integration.
\end{tabular} \& \[
\begin{aligned}
\& \frac{1}{2} \\
\& \frac{1}{2} \\
\& \frac{1}{2} \\
\& \frac{1}{2}
\end{aligned}
\] \\
\hline 29 OR \& \begin{tabular}{l}
The given Differential equation is
\[
\left(\cos ^{2} x\right) \frac{d y}{d x}+y=\tan x
\] \\
Dividing both the sides by \(\cos ^{2} \boldsymbol{x}\), we get
\[
\begin{align*}
\& \frac{d y}{d x}+\frac{y}{\cos ^{2} x}=\frac{\tan x}{\cos ^{2} x} \\
\& \frac{d y}{d x}+y\left(\sec ^{2} x\right)=\tan x\left(\sec ^{2} x\right) \tag{i}
\end{align*}
\] \\
Comparing with \(\frac{d y}{d x}+\boldsymbol{P} \boldsymbol{y}=\boldsymbol{Q}\)
\[
P=\sec ^{2} x, Q=\tan x \cdot \sec ^{2} x
\] \\
The Integrating factor is, \(\boldsymbol{I F}=\boldsymbol{e}^{\int P d x}=\boldsymbol{e}^{\int \sec ^{2} x d x}=\boldsymbol{e}^{\tan x}\) \\
On multiplying the equation \((\boldsymbol{i})\) by \(\boldsymbol{e}^{\tan x}\), we get
\[
\frac{d}{d x}\left(y \cdot e^{\tan x}\right)=e^{\tan x} \tan x\left(\sec ^{2} x\right) \Rightarrow d\left(y \cdot e^{\tan x}\right)=e^{\tan x} \tan x\left(\sec ^{2} x\right) d x
\] \\
On integrating we get, \(\boldsymbol{y} \cdot \boldsymbol{e}^{\tan x}=\int \boldsymbol{t} \cdot \boldsymbol{e}^{\boldsymbol{t}} \boldsymbol{d t}+\boldsymbol{c}_{1}\); where, \(\boldsymbol{t}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}\) so that \(\boldsymbol{d t}=\sec ^{2} \boldsymbol{x} \boldsymbol{d x}\)
\[
=t e^{t}-e^{t}+c=(\tan x) e^{\tan x}-e^{\tan x}+c
\] \\
\(\therefore \boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}-\mathbf{1}+\boldsymbol{c} .\left(e^{-\tan x}\right)\), where ' \(c_{1}{ }^{\prime} \&^{\prime} c^{\prime}\) are arbitrary constants of integration.
\end{tabular} \& \(\frac{1}{2}\)

$\frac{1}{2}$
1
1

\hline 30 \& The feasible region determined by the constraints, $x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200, x, y \geq 0$, is given below. \&

\hline
\end{tabular}

	 $\boldsymbol{A}(\mathbf{0}, \mathbf{5 0}), \boldsymbol{B}(\mathbf{2 0}, \mathbf{4 0}), \boldsymbol{C}(\mathbf{5 0}, \mathbf{1 0 0})$ and $\boldsymbol{D}(\mathbf{0}, \mathbf{2 0 0})$ are the corner points of the feasible region. The values of \boldsymbol{Z} at these corner points are given below.	1 2 1
	Corner point Corresponding value of $\boldsymbol{Z}=\boldsymbol{x}+\mathbf{2 y}$	
	$\boldsymbol{B}(\mathbf{2 0}, \mathbf{4 0})$ $\mathbf{1 0 0}$ Minimum	
	C $\mathbf{5 0 , 1 0 0)}$ 250	$\frac{1}{2}$
30 OR	$D(0,200)$ 400 The minimum value of \boldsymbol{Z} is $\mathbf{1 0 0}$ at all the points on the line segment joining the points $(\mathbf{0 , 5 0})$ and (20,40). The feasible region determined by the constraints, $\boldsymbol{x} \geq \mathbf{3}, \boldsymbol{x}+\boldsymbol{y} \geq \mathbf{5}, \boldsymbol{x}+\mathbf{2} y \geq 6, y \geq 0$. is given below.	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Here, it be seen the \\
feasible region is unbounded. \\
The values of \(\boldsymbol{Z}\) at corner points \(\boldsymbol{A}(\mathbf{3}, \mathbf{2}), \boldsymbol{B}(\mathbf{4}, \mathbf{1})\) and \(\boldsymbol{C}(\mathbf{6}, \mathbf{0})\) are given below. \\
Since the feasible region is unbounded, \(\boldsymbol{Z}=\mathbf{1}\) may or may not be the maximum value. \\
Now, we draw the graph of the inequality, \(-\boldsymbol{x}+\mathbf{2 y}>\mathbf{1}\), and we check whether the resulting open half-plane has any point/s, in common with the feasible region or not. \\
Here, the resulting open half plane has points in common with the feasible region. \\
Hence, \(\boldsymbol{Z}=\mathbf{1}\) is not the maximum value. We conclude, \(\boldsymbol{Z}\) has no maximum value.
\end{tabular} \& 1

$\frac{1}{2}$

\hline 31 \& | $\frac{y}{x}=\log _{e}\left(\frac{x}{a+b x}\right)=\log _{e} x-\log _{e}(a+b x)$ |
| :--- |
| On differentiating with respect to x, we get $\begin{aligned} & \Rightarrow \frac{x \frac{d y}{d x}-y}{x^{2}}=\frac{1}{x}-\frac{1}{a+b x} \frac{d}{d x}(a+b x)=\frac{1}{x}-\frac{b}{a+b x} \\ & \Rightarrow x \frac{d y}{d x}-y=x^{2}\left(\frac{1}{x}-\frac{b}{a+b x}\right)=\frac{a x}{a+b x} \end{aligned}$ |
| On differentiating again with respect to \boldsymbol{x}, we get $\Rightarrow x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-\frac{d y}{d x}=\frac{(a+b x) a-a x(b)}{(a+b x)^{2}}$ | \& $\frac{1}{2}$

1
$\frac{1}{2}$
$\frac{1}{2}$

\hline
\end{tabular}

\square

Section-D

[This section comprises of solution of long answer type questions (LA) of 5 marks each]

	Then, $(\boldsymbol{a}, \boldsymbol{b}) \boldsymbol{R}(\boldsymbol{c}, \boldsymbol{d}) \Rightarrow \boldsymbol{a} \boldsymbol{d}=\boldsymbol{b} \boldsymbol{c} \Rightarrow \boldsymbol{b} \boldsymbol{c}=\boldsymbol{a d} \boldsymbol{d} \quad$ (changing LHS and RHS) $\Rightarrow \boldsymbol{c b}=\boldsymbol{d} \boldsymbol{a} ; \quad($ As $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \mathbb{N}$ and multiplication is commutative on $\mathbb{N})$ $\Rightarrow(c, \boldsymbol{d}) \boldsymbol{R}(\boldsymbol{a}, \boldsymbol{b}) ;$ according to the definition of the relation \boldsymbol{R} on $\mathbb{N} \times \mathbb{N}$ Thus $(a, b) R(c, d) \Rightarrow(c, d) R(a, b)$ So, \boldsymbol{R} is symmetric relation on $\mathbb{N} \times \mathbb{N}$. Let $(\boldsymbol{a}, \boldsymbol{b}),(\boldsymbol{c}, \boldsymbol{d}),(\boldsymbol{e}, \boldsymbol{f})$ be arbitrary elements of $\mathbb{N} \times \mathbb{N}$ such that $(a, b) R(c, d) \text { and }(c, d) R(e, f)$ Then $\left.\begin{array}{l} (a, b) R(c, d) \Rightarrow a d=b c \\ (c, d) R(e, f) \Rightarrow c f=d e \end{array}\right\} \Rightarrow(a d)(c f)=(b c)(d e) \Rightarrow a f=b e$ $\Rightarrow(\boldsymbol{a}, \boldsymbol{b}) R(\boldsymbol{e}, \boldsymbol{f}) ; \quad$ (according to the definition of the relation \boldsymbol{R} on $\mathbb{N} \times \mathbb{N}$) Thus $(a, b) R(c, d)$ and $(c, d) R(e, f) \Rightarrow(a, b) R(e, f)$ So, \boldsymbol{R} is transitive relation on $\mathbb{N} \times \mathbb{N}$. As the relation \boldsymbol{R} is reflexive, symmetric and transitive so, it is equivalence relation on $\mathbb{N} \times \mathbb{N}$. $\begin{aligned} & {[(2,6)]=\{(x, y) \in \mathbb{N} \times \mathbb{N}:(x, y) R(2,6)\}} \\ & =\{(x, y) \in \mathbb{N} \times \mathbb{N}: 3 x=y\} \\ & =\{(x, 3 x): x \in \mathbb{N}\}=\{(1,3),(2,6),(3,9), \ldots \ldots \ldots\} \end{aligned}$	1 1 $\frac{1}{2}$ 1 $\frac{1}{2}$ 1
33 OR	We have, $f(x)= \begin{cases}\frac{x}{1+x}, & \text { if } x \geq 0 \\ \frac{x}{1-x}, & \text { if } x<0\end{cases}$ Now, we consider the following cases Case 1: when $x \geq 0$, we have $f(x)=\frac{x}{1+x}$ Injectivity: let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{+} \cup\{0\}$ such that $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{y})$, then $\Rightarrow \frac{x}{1+x}=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y$ So, \boldsymbol{f} is injective function. Surjectivity : when $x \geq 0$, we have $f(x)=\frac{x}{1+x} \geq 0$ and $f(x)=1-\frac{1}{1+x}<1$, as $x \geq 0$ Let $y \in[0,1)$, thus for each $y \in[0,1)$ there exists $x=\frac{y}{1-y} \geq 0$ such that $f(x)=\frac{\frac{y}{1-y}}{1+\frac{y}{1-y}}=y$.	1

	So, \boldsymbol{f} is onto function on $[\mathbf{0}, \infty)$ to $[\mathbf{0 , 1})$. Case 2: when $\boldsymbol{x}<0$, we have $f(x)=\frac{\boldsymbol{x}}{1-\boldsymbol{x}}$ Injectivity: Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{-}$i.e., $\boldsymbol{x}, \boldsymbol{y}<\mathbf{0}$, such that $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{y})$, then $\Rightarrow \frac{x}{1-x}=\frac{y}{1-y} \Rightarrow x-x y=y-x y \Rightarrow x=y$ So, \boldsymbol{f} is injective function. Surjectivity : $\boldsymbol{x}<\mathbf{0}$, we have $f(x)=\frac{\boldsymbol{x}}{1-x}<0$ also, $f(x)=\frac{x}{1-x}=-1+\frac{1}{1-x}>-1$ $-1<f(x)<0$. Let $\boldsymbol{y} \in(-\mathbf{1}, \mathbf{0})$ be an arbitrary real number and there exists $\boldsymbol{x}=\frac{\boldsymbol{y}}{\mathbf{1 + y}}<\mathbf{0}$ such that, $f(x)=f\left(\frac{y}{1+y}\right)=\frac{\frac{y}{1+y}}{1-\frac{y}{1+y}}=y$ So, for $\boldsymbol{y} \in(-\mathbf{1}, \mathbf{0})$, there exists $\boldsymbol{x}=\frac{\boldsymbol{y}}{1+\boldsymbol{y}}<\mathbf{0}$ such that $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{y}$. Hence, \boldsymbol{f} is onto function on $(-\infty, 0)$ to $(-\mathbf{1 , 0})$. Case 3: (Injectivity): Let $\boldsymbol{x}>\mathbf{0} \& y<0$ such that $f(x)=f(y) \Rightarrow \frac{x}{1+x}=\frac{y}{1-y}$ $\Rightarrow x-x y=y+x y \Rightarrow x-y=2 x y$, here $\boldsymbol{L H S}>0$ but $\boldsymbol{R H S}<0$, which is inadmissible. Hence, $\boldsymbol{f}(\boldsymbol{x}) \neq \boldsymbol{f}(\boldsymbol{y})$ when $\boldsymbol{x} \neq \boldsymbol{y}$. Hence \boldsymbol{f} is one-one and onto function.	1
34	The given system of equations can be written in the form $A X=B$, Where, $A=\left[\begin{array}{ccc}2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20\end{array}\right], X=\left[\begin{array}{c}1 / x \\ 1 / y \\ 1 / z\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$ Now, $\|A\|=\left\|\begin{array}{ccc}2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20\end{array}\right\|=\mathbf{2 (1 2 0 - 4 5) - 3 (- 8 0 - 3 0) + 1 0 (3 6 + 3 6) ~}$ $\begin{aligned} & =2(75)-3(-110)+10(72)=150+330+720=1200 \neq 0 \quad \therefore A^{-1} \text { exists. } \\ & \therefore \text { adj } A=\left[\begin{array}{ccc} 75 & 110 & 72 \\ 150 & -100 & 0 \\ 75 & 30 & -24 \end{array}\right]^{T}=\left[\begin{array}{ccc} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{array}\right] \end{aligned}$	$\frac{1}{2}$ $\frac{1}{2}$ $11 \frac{1}{2}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Hence, \(A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)=\frac{1}{1200}\left[\begin{array}{ccc}75 \& 150 \& 75 \\ 110 \& -100 \& 30 \\ 72 \& 0 \& -24\end{array}\right]\) \\
As, \(A X=B \Rightarrow X=A^{-1} B \Rightarrow\left[\begin{array}{c}\frac{1}{x} \\ \frac{1}{y} \\ \frac{1}{z}\end{array}\right]=\frac{1}{1200}\left[\begin{array}{ccc}75 \& 150 \& 75 \\ 110 \& -100 \& 30 \\ 72 \& 0 \& -24\end{array}\right]\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]\)
\[
=\frac{1}{1200}\left[\begin{array}{c}
300+150+150 \\
440-100+60 \\
288+0-48
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\frac{1}{x} \\
\frac{1}{y} \\
\frac{1}{z}
\end{array}\right]=\frac{1}{1200}\left[\begin{array}{c}
600 \\
400 \\
240
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{3} \\
\frac{1}{5}
\end{array}\right]
\] \\
Thus, \(\frac{1}{x}=\frac{1}{2}, \frac{1}{y}=\frac{1}{3}, \frac{1}{z}=\frac{1}{5} \quad\) Hence, \(x=2, y=3, z=5\).
\end{tabular} \& \begin{tabular}{l}
\(\frac{1}{2}\) \\
\(\frac{1}{2}\) \\
\(\frac{1}{2}\) \\
\hline 1
\end{tabular} \\
\hline 35 \& \begin{tabular}{l}
Let \(\boldsymbol{P}(\mathbf{1 , 6 , 3})\) be the given point, and let ' \(\boldsymbol{L}\) ' be the foot of the perpendicular from ' \(\boldsymbol{P}\) ' to the given line \(\boldsymbol{A} \boldsymbol{B}\) (as shown in the figure below). The coordinates of a general point on the given line are given by \\
\(\frac{\boldsymbol{x}-\mathbf{0}}{\mathbf{1}}=\frac{\boldsymbol{y}-\mathbf{1}}{2}=\frac{z-2}{3}=\lambda ; \lambda\) is a scalar, i.e., \(\boldsymbol{x}=\lambda, y=2 \lambda+\mathbf{1}\) and \(\boldsymbol{z}=\mathbf{3} \lambda+\mathbf{2}\) \\
Let the coordinates of \(L\) be \((\lambda, 2 \lambda+1,3 \lambda+2)\). \\
So, direction ratios of \(P L\) are \(\lambda-1,2 \lambda+1-6\) and \(3 \lambda+2-3\), i.e. \(\lambda-1,2 \lambda-5\) and \(3 \lambda-1\). \\
Direction ratios of the given line are \(\mathbf{1 , 2}\) and \(\mathbf{3}\), which is perpendicular to \(\boldsymbol{P L}\). \\
Therefore, \((\lambda-1) 1+(2 \lambda-5) 2+(3 \lambda-1) 3=0 \Rightarrow 14 \lambda-14=0 \Rightarrow \lambda=1\) \\
So, coordinates of \(\boldsymbol{L}\) are \((\mathbf{1 , 3 , 5})\).
\end{tabular} \& \(\frac{1}{2}\)
\(\frac{1}{2}\)

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Let \(\boldsymbol{Q}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}, \boldsymbol{z}_{1}\right)\) be the image of \(\boldsymbol{P}(\mathbf{1 , 6 , 3})\) in the given line. Then, \(\boldsymbol{L}\) is the mid-point of \(P Q\). \\
Therefore, \(\frac{\left(x_{1}+1\right)}{2}=1, \frac{\left(y_{1}+6\right)}{2}=3\) and \(\frac{\left(z_{1}+3\right)}{2}=5 \Rightarrow x_{1}=1, y_{1}=0\) and \(z_{1}=7\) \\
Hence, the image of \(\boldsymbol{P}(\mathbf{1 , 6 , 3})\) in the given line is \((\mathbf{1 , 0 , 7})\). \\
Now, the distance of the point \((1,0,7)\) from the \(y\)-axis is \(\sqrt{1^{2}+7^{2}}=\sqrt{50}\) units.
\end{tabular} \& 1

1
1

\hline 35 OR \& | Method 1: |
| :--- |
| Given that equation of lines are $\begin{equation*} \overrightarrow{\boldsymbol{r}}=\lambda(\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}) . \tag{ii} \end{equation*}$ \qquad (i) and $\overrightarrow{\boldsymbol{r}}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\mu(-\mathbf{2} \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}})$. \qquad |
| The given lines are non-parallel lines as vectors $\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$ and $-\mathbf{2} \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}}$ are not parallel. There is a unique line segment $\boldsymbol{P Q}(\boldsymbol{P}$ lying on line (\boldsymbol{i}) and \boldsymbol{Q} on the other line $(\boldsymbol{i i})$), which is at right angles to both the lines. $\boldsymbol{P Q}$ is the shortest distance between the lines. Hence, the shortest possible distance between the aeroplanes $=\boldsymbol{P Q}$. |
| Let the position vector of the point \boldsymbol{P} lying on the line $\overrightarrow{\boldsymbol{r}}=\lambda(\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}})$ where ' λ ' is a scalar, is $\lambda(\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}})$, for some λ and the position vector of the point \boldsymbol{Q} lying on the line $\overrightarrow{\boldsymbol{r}}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{j}}+\mu(-\mathbf{2} \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}})$; where ' μ ' is a scalar, is $\hat{\boldsymbol{i}}+(-\mathbf{1} \mathbf{- 2} \mu) \hat{\boldsymbol{j}}+(\mu) \hat{\boldsymbol{k}}$, for some μ. |
| Now, the vector $\overrightarrow{\boldsymbol{P Q}}=\overrightarrow{\boldsymbol{O Q}}-\overrightarrow{\boldsymbol{O P}}=(\mathbf{1}-\lambda) \hat{\boldsymbol{i}}+(-\mathbf{1}-\mathbf{2} \mu+\lambda) \hat{\boldsymbol{j}}+(\mu-\lambda) \hat{\boldsymbol{k}}$; (where ' \boldsymbol{O} ' is the origin), is perpendicular to both the lines, so the vector $\overrightarrow{\boldsymbol{P Q}}$ is perpendicular to both the vectors $\begin{aligned} & \hat{i}-\hat{\boldsymbol{j}}+\hat{\boldsymbol{k}} \text { and }-2 \hat{\boldsymbol{j}}+\hat{\boldsymbol{k}} \\ & \Rightarrow(1-\lambda) \cdot 1+(-1-2 \mu+\lambda) \cdot(-1)+(\mu-\lambda) \cdot 1=0 \& \\ & \Rightarrow(1-\lambda) \cdot 0+(-1-2 \mu+\lambda) \cdot(-2)+(\mu-\lambda) \cdot 1=0 \\ & \Rightarrow 2+3 \mu-3 \lambda=0 \& 2+5 \mu-3 \lambda=0 \end{aligned}$ | \& $\frac{1}{2}$

$\frac{1}{2}$

$\frac{1}{2}$
$\frac{1}{2}$

\hline
\end{tabular}

$$
\text { So, the required shortest distance is } \sqrt{\left(1-\frac{2}{3}\right)^{2}+\left(-1+\frac{2}{3}\right)^{2}+\left(0-\frac{2}{3}\right)^{2}}=\sqrt{\frac{2}{3}} \text { units. }
$$

Section -E

[This section comprises solution of 3 case- study/passage based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks $\mathbf{1 , 1 , 2}$ respectively. Solution of the third case study question has two sub parts of 2 marks each.)

36 Let $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}, \boldsymbol{E}_{3}$ be the events that Jayant, Sonia and Oliver processed the form, which are clearly pairwise mutually exclusive and exhaustive set of events.

Then $P\left(E_{1}\right)=\frac{\mathbf{5 0}}{100}=\frac{\mathbf{5}}{10}, P\left(E_{2}\right)=\frac{\mathbf{2 0}}{100}=\frac{\mathbf{1}}{\mathbf{5}}$ and $\boldsymbol{P}\left(\boldsymbol{E}_{3}\right)=\frac{\mathbf{3 0}}{\mathbf{1 0 0}}=\frac{\mathbf{3}}{10}$.

Also, let \boldsymbol{E} be the event of committing an error.

We have, $\boldsymbol{P}\left(\boldsymbol{E} \mid \boldsymbol{E}_{1}\right)=\mathbf{0 . 0 6}, \boldsymbol{P}\left(\boldsymbol{E} \mid \boldsymbol{E}_{2}\right)=\mathbf{0 . 0 4}, \boldsymbol{P}\left(\boldsymbol{E} \mid \boldsymbol{E}_{3}\right)=\mathbf{0 . 0 3}$.
(i) The probability that Sonia processed the form and committed an error is given by

$$
P\left(E \cap E_{2}\right)=P\left(E_{2}\right) . P\left(E \mid E_{2}\right)=\frac{1}{5} \times 0.04=0.008
$$

(ii) The total probability of committing an error in processing the form is given by

$$
\begin{aligned}
& P(E)=P\left(E_{1}\right) \cdot P\left(E \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E \mid E_{2}\right)+P\left(E_{3}\right) \cdot P\left(E \mid E_{3}\right) \\
& P(E)=\frac{50}{100} \times 0.06+\frac{20}{100} \times 0.04+\frac{30}{100} \times 0.03=0.047 .
\end{aligned}
$$

(iii) The probability that the form is processed by Jayant given that form has an error is given by

$$
\begin{aligned}
& P\left(E_{1} \mid E\right)=\frac{P\left(E \mid E_{1}\right) \times P\left(E_{1}\right)}{P\left(E \mid E_{1}\right) \cdot P\left(E_{1}\right)+P\left(E \mid E_{2}\right) \cdot P\left(E_{2}\right)+P\left(E \mid E_{3}\right) \cdot P\left(E_{3}\right)} \\
& =\frac{0.06 \times \frac{50}{100}}{0.06 \times \frac{50}{100}+0.04 \times \frac{20}{100}+0.03 \times \frac{\mathbf{3 0}}{100}}=\frac{\mathbf{3 0}}{47}
\end{aligned}
$$

Therefore, the required probability that the form is not processed by Jayant given that form has an error $=\boldsymbol{P}\left(\overline{\boldsymbol{E}_{1}} \mid \boldsymbol{E}\right)=\mathbf{1}-\boldsymbol{P}\left(\boldsymbol{E}_{1} \mid \boldsymbol{E}\right)=\mathbf{1}-\frac{\mathbf{3 0}}{\mathbf{4 7}}=\frac{\mathbf{1 7}}{\mathbf{4 7}}$.
(iii) OR $\quad \sum_{i=1}^{3} P\left(E_{i} \mid E\right)=P\left(E_{1} \mid E\right)+P\left(E_{2} \mid E\right)+P\left(E_{3} \mid E\right)=1$

Since, sum of the posterior probabilities is 1 .

	$\begin{aligned} & \left(\text { We have, } \sum_{i=1}^{3} P\left(E_{i} \mid E\right)=P\left(E_{1} \mid E\right)+P\left(E_{2} \mid E\right)+P\left(E_{3} \mid E\right)\right. \\ & =\frac{P\left(E \cap E_{1}\right)+P\left(E \cap E_{2}\right)+P\left(E \cap E_{3}\right)}{P(E)} \\ & =\frac{P\left(\left(E \cap E_{1}\right) \cup\left(E \cap E_{2}\right) \cup\left(E \cap E_{3}\right)\right)}{P(E)} \text { as } E_{i} \& E_{j} ; i \neq j, \text { are mutually exclusive events } \\ & =\frac{P\left(E \cap\left(E_{1} \cup E_{2} \cup E_{3}\right)\right.}{P(E)}=\frac{P(E \cap S)}{P(E)}=\frac{P(E)}{P(E)}=1 ; ' S \text { ' being the sample space) } \end{aligned}$	
37	We have, $\left\|\vec{F}_{1}\right\|=\sqrt{6^{2}+0^{2}}=6 k N,\left\|\vec{F}_{2}\right\|=\sqrt{(-4)^{2}+4^{2}}=\sqrt{32}=4 \sqrt{2} k N,\left\|\overrightarrow{F_{3}}\right\|=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{18}=3 \sqrt{2} k N .$ (i) Magnitude of force of Team $\boldsymbol{A}=\mathbf{6} \boldsymbol{k} \boldsymbol{N}$. (ii) Since $\vec{a}+\vec{c}=3(\hat{i}-\hat{j})$ and $\vec{b}=-4(\hat{i}-\hat{j})$ So, \vec{b} and $\vec{a}+\vec{c}$ are unlike vectors having same intial point and $\|\vec{b}\|=4 \sqrt{2} \&\|\vec{a}+\vec{c}\|=3 \sqrt{2}$ Thus $\left\|\vec{F}_{2}\right\|>\left\|\vec{F}_{1}+\vec{F}_{3}\right\|$ also $\overrightarrow{\boldsymbol{F}}_{2}$ and $\overrightarrow{\boldsymbol{F}}_{1}+\overrightarrow{\boldsymbol{F}}_{3}$ are unlike Hence B will win the game (iii) $\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=6 \hat{i}+0 \hat{j}-4 \hat{i}+4 \hat{j}-3 \hat{i}-3 \hat{j}=-\hat{i}+\hat{j}$ $\therefore\|\vec{F}\|=\sqrt{(-1)^{2}+(1)^{2}}=\sqrt{2} k N .$ OR $\vec{F}=-\hat{i}+\hat{j}$ $\therefore \theta=\pi-\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{\mathbf{1}}{\mathbf{1}}\right)=\pi-\frac{\pi}{\mathbf{4}}=\frac{\mathbf{3 \pi}}{\mathbf{4}}$; where' θ^{\prime} ' is the angle made by the resultant force with the $+\boldsymbol{v e}$ direction of the \boldsymbol{x}-axis.	1 1 1 1 1 1 1
38	$y=4 x-\frac{1}{2} x^{2}$ (i) The rate of growth of the plant with respect to the number of days exposed to sunlight is given by $\frac{d y}{d x}=4-x$. (ii) Let rate of growth be represented by the function $g(x)=\frac{d y}{d x}$.	2

Now, $g^{\prime}(x)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=-1<0$
$\Rightarrow \boldsymbol{g}(\boldsymbol{x})$ decreases.
So the rate of growth of the plant decreases for the first three days.
Height of the plant after 2 days is $\boldsymbol{y}=\mathbf{4} \times \mathbf{2}-\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{2})^{2}=\mathbf{6} \mathbf{c m}$.

