SAMPLE QUESTION PAPER

MARKING SCHEME

CLASS XII

MATHEMATICS (CODE-041)

SECTION: A (Solution of MCQs of 1 Mark each)

Q no.	ANS	HINTS/SOLUTION
1	(d)	$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$
2	(d)	$(A+B)^{-1} = B^{-1} + A^{-1}.$
3	(b)	Area = $\begin{vmatrix} 1 \\ -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{vmatrix}$, given that the area = 9 sq unit.
		$\Rightarrow \pm 9 = \frac{1}{2} \begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{vmatrix}; \text{ expanding along } C_2, \text{ we get } \Rightarrow k = \pm 3.$
4	(a)	Since, f is continuous at $x = 0$,
		therefore, $L.H.L = R.H.L = f(0) = a$ finite quantity.
		$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$
		$\Rightarrow \lim_{x \to 0^-} \frac{-kx}{x} = \lim_{x \to 0^+} 3 = 3 \Rightarrow k = -3.$
5	(d)	Vectors $2\hat{i} + 3\hat{j} - 6\hat{k} & 6\hat{i} + 9\hat{j} - 18\hat{k}$ are parallel and the fixed point $\hat{i} + \hat{j} - \hat{k}$ on the
		line $\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda \left(2\hat{i} + 3\hat{j} - 6\hat{k}\right)$ does not satisfy the other line
		$\vec{r} = 2\hat{i} - \hat{j} - \hat{k} + \mu (6\hat{i} + 9\hat{j} - 18\hat{k});$ where $\lambda \& \mu$ are scalars.
6	(c)	The degree of the differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = \left(\frac{d^2y}{dx^2}\right)^2$ is 2
7	(b)	Z = px + qy(i)
		At $(3,0)$, $Z = 3p(ii)$ and at $(1,1)$, $Z = p + q(iii)$
		From (ii) & (iii), $3p = p + q \Rightarrow 2p = q$.

8	(a)	Given, <i>ABCD</i> is a rhombus whose diagonals bisect each other. $ \vec{EA} = \vec{EC} $ and
		$\left \overrightarrow{EB} \right = \left \overrightarrow{ED} \right $ but since they are opposite to each other so they are of opposite signs
		$\Rightarrow \overrightarrow{EA} = -\overrightarrow{EC}$ and $\overrightarrow{EB} = -\overrightarrow{ED}$.
		A B E D C $\Rightarrow \overrightarrow{EA} + \overrightarrow{EC} = \overrightarrow{O} \dots (i) \text{ and } \overrightarrow{EB} + \overrightarrow{ED} = \overrightarrow{O} \dots (ii)$ Adding (i) and (ii), we get $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = \overrightarrow{O}$.
9	(b)	$f(x) = e^{\cos^2 x} \sin^3 (2n+1)x$
	(-)	$f(-x) = e^{\cos^2(-x)} \sin^3(2n+1)(-x)$
		$f(-x) = -e^{\cos^2 x} \sin^3(2n+1)x$
		f(-x) = -f(x)
		$So, \int_{-\pi}^{\pi} e^{\cos^2 x} \sin^3(2n+1)x dx = 0$
10	(b)	Matrix A is a skew symmetric matrix of odd order. $\therefore A = 0$.
11	(c)	We observe, $(0,0)$ does not satisfy the inequality $x-y \ge 1$
		So, the half plane represented by the above inequality will not contain origin
		therefore, it will not contain the shaded feasible region.
12	(b)	Vector component of \vec{a} along $\vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{\left \vec{b}\right ^2}\right)\vec{b} = \frac{18}{25}\left(3\hat{j} + 4\hat{k}\right).$
13	(d)	$ adj(2A) = (2A) ^2 = (2^3 A)^2 = 2^6 A ^2 = 2^6 \times (-2)^2 = 2^8.$
14	(d)	Method 1:
		Let A, B, C be the respective events of solving the problem. Then, $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$
		and $P(C) = \frac{1}{4}$. Here, A, B, C are independent events.
		Problem is solved if at least one of them solves the problem.
		Required probability is = $P(A \cup B \cup C) = 1 - P(\overline{A})P(\overline{B})P(\overline{C})$

		$=1-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)=1-\frac{1}{4}=\frac{3}{4}.$
		Method 2:
		The problem will be solved if one or more of them can solve the problem. The probability is
		$P(A\overline{B}\overline{C}) + P(\overline{A}B\overline{C}) + P(\overline{A}\overline{B}C) + P(A\overline{B}\overline{C}) + P(A\overline{B}C) + P(\overline{A}\overline{B}C) + P(\overline{A}BC) + P(ABC)$
		$=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}+\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{3}{4}+\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{3}{4}+\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{1}{4}=\frac{3}{4}.$
		Method 3:
		Let us think quantitively. Let us assume that there are 100 questions given to A . A
		solves $\frac{1}{2} \times 100 = 50$ questions then remaining 50 questions is given to <i>B</i> and <i>B</i> solves
		$50 \times \frac{1}{3} = 16.67$ questions. Remaining $50 \times \frac{2}{3}$ questions is given to <i>C</i> and <i>C</i> solves
		$50 \times \frac{2}{3} \times \frac{1}{4} = 8.33$ questions.
		Therefore, number of questions solved is $50 + 16.67 + 8.33 = 75$.
		So, required probability is $\frac{75}{100} = \frac{3}{4}$.
15	(c)	Method 1:
		$ydx - xdy = 0 \Rightarrow \frac{ydx - xdy}{v^2} = 0 \Rightarrow d\left(\frac{x}{v}\right) = 0 \Rightarrow x = \frac{1}{c}y \Rightarrow y = cx.$
		y (y)
		Method 2:
		$ydx - xdy = 0 \Rightarrow ydx = xdy \Rightarrow \frac{dy}{y} = \frac{dx}{x}$; on integrating $\int \frac{dy}{y} = \int \frac{dx}{x}$
		$\log_{e} y = \log_{e} x + \log_{e} c $
		since $x, y, c > 0$, we write $\log_e y = \log_e x + \log_e c \implies y = cx$.
16	(d)	Dot product of two mutually perpendicular vectors is zero.
10	(u)	$\Rightarrow 2 \times 3 + (-1)\lambda + 2 \times 1 = 0 \Rightarrow \lambda = 8.$
17		$\Rightarrow 2 \times 3 + (-1) \times + 2 \times 1 = 0 \Rightarrow \times = 0.$ Method 1:
17	(c)	
		$f(x) = x + x = \begin{cases} 2x, x \ge 0 & Y \\ 0, x < 0 & $
		$y = 2x, x \ge 0$
		$y = 2x, x \ge 0$
		$X' \leftarrow \underbrace{y = 0, x < 0}{O} \rightarrow X$
		Y
		There is a sharp corner at $x = 0$, so $f(x)$ is not differentiable at $x = 0$.
		Method 2:
L	I	

		Lf'(0) = 0 & Rf'(0) = 2; so, the function is not differentiable at $x = 0$
		For $x \ge 0$, $f(x) = 2x$ (linear function) & when $x < 0$, $f(x) = 0$ (constant function)
		Hence $f(x)$ is differentiable when $x \in (-\infty, 0) \cup (0, \infty)$.
18	(d)	We know, $l^2 + m^2 + n^2 = 1 \Rightarrow \left(\frac{1}{c}\right)^2 + \left(\frac{1}{c}\right)^2 + \left(\frac{1}{c}\right)^2 = 1 \Rightarrow 3\left(\frac{1}{c}\right)^2 = 1 \Rightarrow c = \pm\sqrt{3}.$
19	(a)	$\frac{d}{dx}(f(x)) = (x-1)^3 (x-3)^2$ Assertion : $f(x)$ has a minimum at $x = 1$ is true as
		$\frac{d}{dx}(f(x)) < 0, \forall x \in (1-h,1) \text{ and } \frac{d}{dx}(f(x)) > 0, \forall x \in (1,1+h); \text{ where,}$ 'h' is an infinitesimally small positive quantity, which is in accordance with
		the Reason statement.
20	(d)	Assertion is false. As element 4 has no image under f , so relation f is not a function.
		Reason is true. The given function $f: \{1,2,3\} \rightarrow \{x,y,z,p\}$ is one – one, as for each
		$a \in \{1,2,3\}$, there is different image in $\{x, y, z, p\}$ under f .

Section -B

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]

21	$\sin^{-1}\left(\cos\left(\frac{33\pi}{5}\right)\right) = \sin^{-1}\cos\left(6\pi + \frac{3\pi}{5}\right) = \sin^{-1}\cos\left(\frac{3\pi}{5}\right) = \sin^{-1}\sin\left(\frac{\pi}{2} - \frac{3\pi}{5}\right)$	1
	$=\frac{\pi}{2}-\frac{3\pi}{5}=-\frac{\pi}{10}.$	1
21 OR	$-1 \le \left(x^2 - 4\right) \le 1 \Longrightarrow 3 \le x^2 \le 5 \Longrightarrow \sqrt{3} \le x \le \sqrt{5}$	1
	$\Rightarrow x \in \left[-\sqrt{5}, -\sqrt{3}\right] \cup \left[\sqrt{3}, \sqrt{5}\right].$ So, required domain is $\left[-\sqrt{5}, -\sqrt{3}\right] \cup \left[\sqrt{3}, \sqrt{5}\right].$	1
22	$f(x) = x e^{x} \Rightarrow f'(x) = e^{x}(x+1)$	1
	When $x \in [-1,\infty), (x+1) \ge 0$ & $e^x > 0 \Rightarrow f'(x) \ge 0 \therefore f(x)$ increases in this interval.	1
	or, we can write $f(x) = x e^x \Rightarrow f'(x) = e^x(x+1)$	$\frac{1}{2}$
	For $f(x)$ to be increasing, we have $f'(x) = e^x(x+1) \ge 0 \Rightarrow x \ge -1$ as $e^x > 0, \forall x \in \mathbb{R}$	1
	Hence, the required interval where $f(x)$ increases is $[-1,\infty)$.	$\frac{1}{2}$
23	Method 1: $f(x) = \frac{1}{4x^2 + 2x + 1}$,	

Let
$$g(x) = 4x^2 + 2x + 1 = 4\left(x^2 + 2x\frac{1}{4} + \frac{1}{16}\right) + \frac{3}{4} = 4\left(x + \frac{1}{4}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$$

 \therefore maximum value of $f(x) = \frac{4}{3}$.
Method 2: $f(x) = \frac{1}{4x^2 + 2x + 1}$, let $g(x) = 4x^2 + 2x + 1$
 $\Rightarrow \frac{d}{dx}(g(x)) = g'(x) = 8x + 2$ and $g'(x) = 0$ at $x = -\frac{1}{4}$ also $\frac{d^2}{dx^2}(g(x)) = g''(x) = 8 > 0$
 $\Rightarrow g(x)$ is minimum when $x = -\frac{1}{4}$ so, $f(x)$ is maximum at $x = -\frac{1}{4}$
 \therefore maximum value of $f(x) = f\left(-\frac{1}{4}\right) = \frac{1}{4\left(-\frac{1}{4}\right)^2 + 2\left(-\frac{1}{4}\right) + 1} = \frac{4}{3}$.
Method 3: $f(x) = \frac{1}{4x^2 + 2x + 1}$
On differentiating w.r.t x, we get $f'(x) = \frac{-(8x + 2)}{(4x^2 + 2x + 1)^2}$ (i)
For maxima or minima, we put $f'(x) = 0 \Rightarrow 8x + 2 = 0 \Rightarrow x = -\frac{1}{4}$.
Again, differentiating equation (i) w.r.t. x, we get
 $f''(x) = -\left\{\frac{(4x^2 + 2x + 1)^2(8) - (8x + 2)2 \times (4x^2 + 2x + 1)(8x + 2)}{(4x^2 + 2x + 1)^4}\right\}$
At $x = -\frac{1}{4}$, $f'''\left(-\frac{1}{4}\right) < 0$
 $f(x)$ is maximum at $x = -\frac{1}{4}$.
 \therefore maximum value of $f(x)$ is $f\left(-\frac{1}{4}\right) = \frac{-(8x + 2)}{(4x^2 + 2x + 1)^4}$ (i)
Hethod 4: $f(x) = \frac{1}{4x^2 + 2x + 1}$
On differentiating w.r.t x, we get $f'(x) = \frac{-(8x + 2)}{(4x^2 + 2x + 1)^4}$ (i)
 $\frac{1}{2}$
Method 4: $f(x) = \frac{1}{4x^2 + 2x + 1}$
On differentiating w.r.t x, we get $f'(x) = \frac{-(8x + 2)}{(4x^2 + 2x + 1)^4}$ (i)
For maxima or minima, we put $f'(x) = 0 \Rightarrow 8x + 2 = 0 \Rightarrow x = -\frac{1}{4}$.
Method 4: $f(x) = \frac{1}{4x^2 + 2x + 1}$
On differentiating w.r.t x, we get $f'(x) = \frac{-(8x + 2)}{(4x^2 + 2x + 1)^2}$ (i)
For maxima or minima, we put $f'(x) = 0 \Rightarrow 8x + 2 = 0 \Rightarrow x = -\frac{1}{4}$.
When $x \in \left(-h - \frac{1}{4}, -\frac{1}{4}\right)$, where 'h' is infinitesimally small positive quantity.
 $4x < -1 \Rightarrow 8x < -2 \Rightarrow 8x + 2 < 0 \Rightarrow -(8x + 2) > 0$ and $(4x^2 + 2x + 1)^2 > 0 \Rightarrow f'(x) > 0$

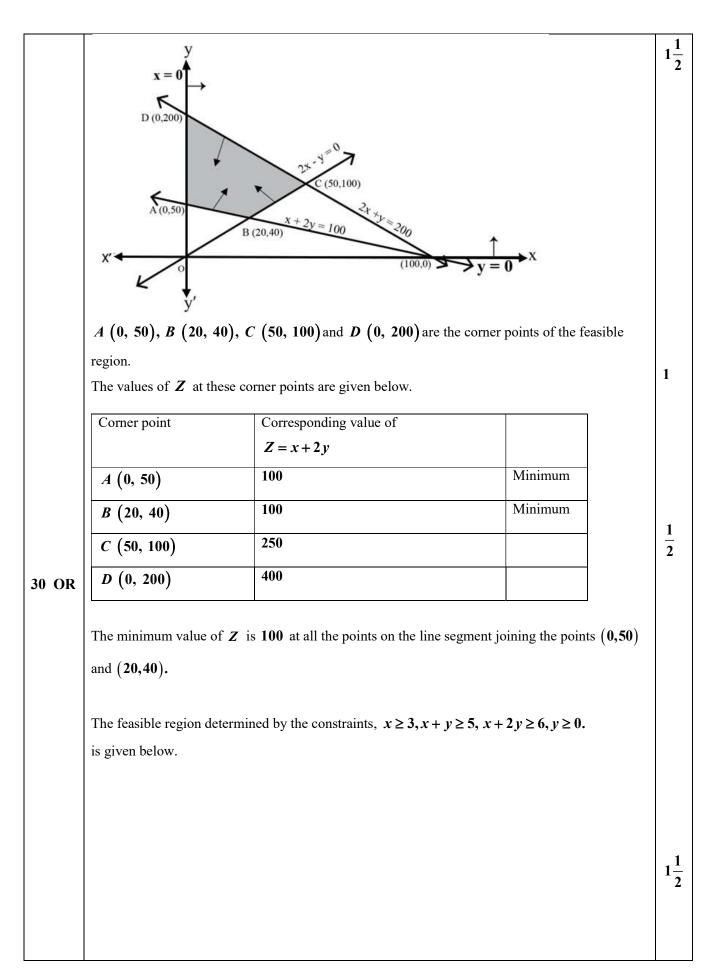
Page 5 of 19

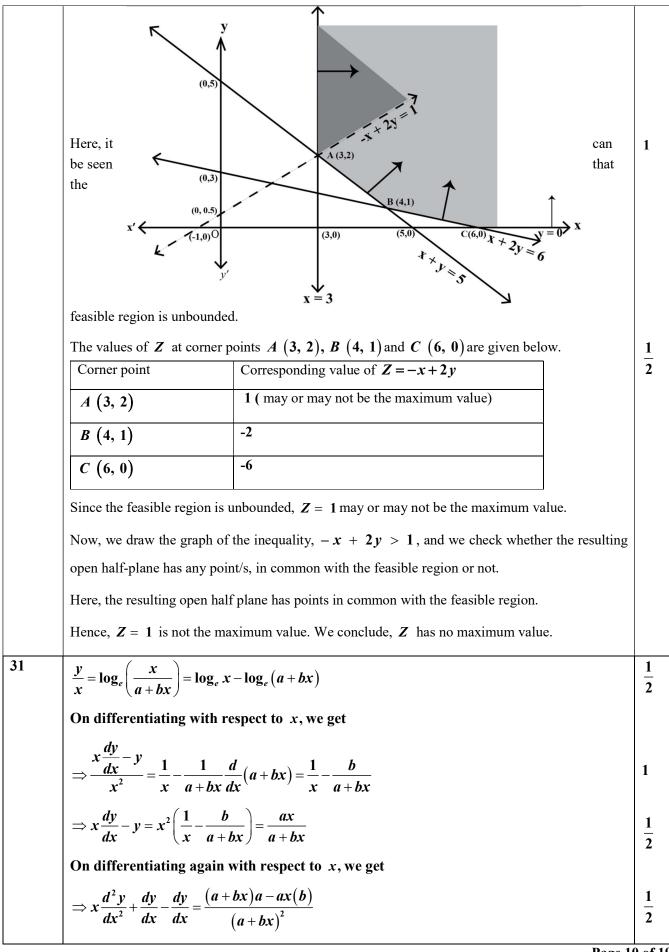
	and when $x \in \left(-\frac{1}{4}, -\frac{1}{4}+h\right), 4x > -1 \Rightarrow 8x > -2 \Rightarrow 8x + 2 > 0 \Rightarrow -(8x + 2) < 0$	$\frac{1}{2}$
	and $(4x^2 + 2x + 1)^2 > 0 \Rightarrow f'(x) < 0$. This shows that $x = -\frac{1}{4}$ is the point of local maxima.	
	$\therefore \text{ maximum value of } f(x) \text{ is } f\left(-\frac{1}{4}\right) = \frac{1}{4\left(-\frac{1}{4}\right)^2 + 2\left(-\frac{1}{4}\right) + 1} = \frac{4}{3}.$	$\frac{1}{2}$
23 OR	For maxima and minima, $P'(x) = 0 \Rightarrow 42 - 2x = 0$	$\frac{1}{2}$
	$\Rightarrow x = 21$ and $P''(x) = -2 < 0$	
	So, $P(x)$ is maximum at $x = 21$.	$\frac{1}{2}$
	The maximum value of $P(x) = 72 + (42 \times 21) - (21)^2 = 513$ i.e., the maximum profit is ₹ 513.	1
24	Let $f(x) = \log\left(\frac{2-x}{2+x}\right)$	
	We have, $f(-x) = \log\left(\frac{2+x}{2-x}\right) = -\log\left(\frac{2-x}{2+x}\right) = -f(x)$	1
	So, $f(x)$ is an odd function. $\therefore \int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) dx = 0.$	1
25	$f(x) = x^3 + x$, for all $x \in \mathbb{R}$.	
	$\frac{d}{dx}(f(x)) = f'(x) = 3x^2 + 1; \text{ for all } x \in \mathbb{R}, \ x^2 \ge 0 \Rightarrow f'(x) > 0$	$1\frac{1}{2}$
	Hence, no critical point exists.	$\frac{1}{2}$
	<u>Section –C</u>	
	[This section comprises of solution short answer type questions (SA) of 3 marks each]	
26	We have, $\frac{2x^2+3}{x^2(x^2+9)}$. Now, let $x^2 = t$	$\frac{1}{2}$
	So, $\frac{2t+3}{t(t+9)} = \frac{A}{t} + \frac{B}{t+9}$, we get $A = \frac{1}{3} \& B = \frac{5}{3}$	1
	$\int \frac{2x^2+3}{x^2(x^2+9)} dx = \frac{1}{3} \int \frac{dx}{x^2} + \frac{5}{3} \int \frac{dx}{x^2+9}$	$\frac{1}{2}$
	$= -\frac{1}{3x} + \frac{5}{9} \tan^{-1} \left(\frac{x}{3} \right) + c, \text{ where 'c' is an arbitrary constant of integration.}$	1
27	We have, (i) $\sum P(X_i) = 1 \Rightarrow k + 2k + 3k = 1 \Rightarrow k = \frac{1}{6}$.	1
		1
		1

	(ii) $P(X < 2) = P(X = 0) + P(X = 1) = k + 2k = 3k = 3 \times \frac{1}{6} = \frac{1}{2}$.	1
	(iii) $P(X > 2) = 0.$	1
28	Let $x^{\frac{3}{2}} = t \Rightarrow dt = \frac{3}{2}x^{\frac{1}{2}}dx$	$\frac{1}{2}$
	$\int \sqrt{\frac{x}{1-x^{3}}} dx = \frac{2}{3} \int \frac{dt}{\sqrt{1-t^{2}}}$	$\left \frac{1}{2} \right $
	$=\frac{2}{3}\sin^{-1}(t)+c$	1
	$=\frac{2}{3}\sin^{-1}\left(x^{\frac{3}{2}}\right)+c, \text{ where 'c' is an arbitrary constant of integration.}$	1
28 OR	Let $I = \int_0^{\frac{\pi}{4}} \log_e (1 + \tan x) dx$ (i)	
	$=\int_0^{\frac{\pi}{4}}\log_e\left(1+\tan\left(\frac{\pi}{4}-x\right)\right)dx, \text{Using}, \int_0^a f(x)dx = \int_0^a f(a-x)dx$	1
	$\Rightarrow I = \int_{0}^{\frac{\pi}{4}} \log_{e} \left(1 + \frac{1 - \tan x}{1 + \tan x} \right) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} \left(\frac{2}{1 + \tan x} \right) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (\text{ Using(i)}) dx = \int_{0}^{\frac{\pi}{4}} \log_{e} 2 dx - I (Using$	1
		1
	$I = \frac{\pi}{4} \log_e 2 \Rightarrow I = \frac{\pi}{8} \log_e 2.$	
29	Method 1: $ye^{\frac{x}{y}}dx = \left(xe^{\frac{x}{y}} + y^2\right)dy \Rightarrow e^{\frac{x}{y}}\left(ydx - xdy\right) = y^2dy \Rightarrow e^{\frac{x}{y}}\left(\frac{ydx - xdy}{y^2}\right) = dy$	1
	$\Rightarrow e^{\frac{x}{y}}d\left(\frac{x}{y}\right) = dy$	1
	$\Rightarrow \int e^{\frac{x}{y}} d\left(\frac{x}{y}\right) = \int dy \Rightarrow e^{\frac{x}{y}} = y + c, \text{ where 'c' is an arbitrary constant of integration.}$	1
	Method 2: We have, $\frac{dx}{dy} = \frac{xe^{\frac{x}{y}} + y^2}{y.e^{\frac{x}{y}}}$	
	$\Rightarrow \frac{dx}{dy} = \frac{x}{y} + \frac{y}{e^{\frac{x}{y}}} \dots \dots$	$\frac{1}{2}$
	Let $x = vy \Rightarrow \frac{dx}{dy} = v + y \cdot \frac{dv}{dy};$	$\frac{1}{2}$

Page 7 of 19

	So equation (i) becomes $v + y \frac{dv}{dy} = v + \frac{y}{e^v}$	$\frac{1}{2}$
	$\Rightarrow y \frac{dv}{dy} = \frac{y}{e^{v}}$	$\begin{array}{ c c }\hline 1\\ \hline 2\\ \hline 1\\ \hline 2\\ \hline 1\\ \hline 2\\ \hline 1\\ \hline 2\end{array}$
	$\Rightarrow e^{v} dv = dy$	$\frac{1}{2}$
	On integrating we get, $\int e^{v} dv = \int dy \Rightarrow e^{v} = y + c \Rightarrow e^{x/y} = y + c$	$\frac{1}{2}$
	where 'c' is an arbitrary constant of integration.	2
29 OR	The given Differential equation is	
	$\left(\cos^2 x\right)\frac{dy}{dx} + y = \tan x$	
	Dividing both the sides by $\cos^2 x$, we get	
	$\frac{dy}{dx} + \frac{y}{\cos^2 x} = \frac{\tan x}{\cos^2 x}$	
	$\frac{dy}{dx} + y(\sec^2 x) = \tan x(\sec^2 x)(i)$	$\frac{1}{2}$
	Comparing with $\frac{dy}{dx} + Py = Q$	
	$P = \sec^2 x, \ Q = \tan x \cdot \sec^2 x$	
	The Integrating factor is, $IF = e^{\int P dx} = e^{\int \sec^2 x dx} = e^{\tan x}$	$\frac{1}{2}$
	On multiplying the equation (i) by $e^{\tan x}$, we get	
	$\frac{d}{dx}(y.e^{\tan x}) = e^{\tan x} \tan x \left(\sec^2 x\right) \Rightarrow d\left(y.e^{\tan x}\right) = e^{\tan x} \tan x \left(\sec^2 x\right) dx$	1
	On integrating we get, $y \cdot e^{\tan x} = \int t \cdot e^t dt + c_1$; where, $t = \tan x$ so that $dt = \sec^2 x dx$	
	$= te^{t} - e^{t} + c = (\tan x)e^{\tan x} - e^{\tan x} + c$	
	$\therefore y = \tan x - 1 + c.(e^{-\tan x}), \text{ where } 'c_1' \& 'c' \text{ are arbitrary constants of integration.}$	1
30	The feasible region determined by the	
	constraints, $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$, $x, y \ge 0$, is given below.	
ı		8 of 19



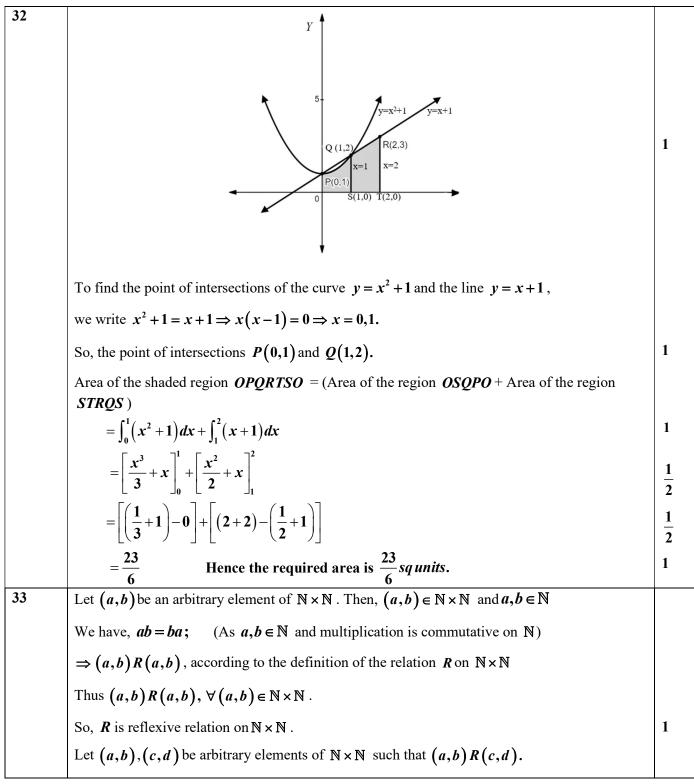


Page 10 of 19

$$\Rightarrow x \frac{d^2 y}{dx^2} = \left(\frac{a}{a+bx}\right)^2.$$

Section -D

[This section comprises of solution of long answer type questions (LA) of 5 marks each]



Page 11 of 19

Then,
$$(a,b)R(c,d) \Rightarrow ad = bc \Rightarrow bc = ad;$$
 (changing LHS and RHS)
 $\Rightarrow cb = da;$ (As $a,b,c,d \in \mathbb{N}$ and multiplication is commutative on \mathbb{N})
 $\Rightarrow (c,d)R(a,b)$; according to the definition of the relation $R \text{ on } \mathbb{N} \times \mathbb{N}$
Thus $(a,b)R(c,d) \Rightarrow (c,d)R(a,b)$
So, R is symmetric relation $n \in \mathbb{N} \times \mathbb{N}$.
Let $(a,b).(c,d).(e,f)$ be arbitrary elements of $\mathbb{N} \times \mathbb{N}$ such that
 $(a,b)R(c,d) = ad = bc$
 $(c,d)R(c,f) \Rightarrow cf = de$
 $\Rightarrow (ad)(cf) = (bc)(de) \Rightarrow af = bc$
 $\Rightarrow (a,b)R(c,d) = ad (c,d)R(e,f) \Rightarrow (a,b)R(c,f)$
So, R is transitive relation on $\mathbb{N} \times \mathbb{N}$.
As the relation R is reflexive, symmetric and transitive so, it is equivalence relation on $\mathbb{N} \times \mathbb{N}$.
 $\left[(2,6)] = \{(x,y) \in \mathbb{N} \times \mathbb{N} : (x,y)R(2,6) \}$
 $= \{(x,y) \in \mathbb{N} \times \mathbb{N} : 3x = y\}$
 $= \{(x,3x): x \in \mathbb{N}\} = \{(1,3).(2,6).(3,9), \dots, ..., \}$
33 OR
We have, $f(x) = \left\{ \frac{x}{1+x}, if x \ge 0$
 $\frac{x}{1-x}, if x < 0$
Now, we consider the following cases
Case 1: when $x \ge 0$, we have $f(x) = \frac{x}{1+x}$
Injectivity: let $x, y \in \mathbb{R}^+ \cup \{0\}$ such that $f(x) = f(y)$, then
 $\Rightarrow \frac{x}{1+x} = \frac{y}{1+y} \Rightarrow x + xy = y + xy \Rightarrow x = y$
So, f is injective function.
Surjectivity: when $x \ge 0$, we have $f(x) = \frac{x}{1+x} \ge 0$ and $f(x) = 1 - \frac{1}{1+x} < 1$, as $x \ge 0$
Let $y \in [0,1)$, thus for each $y \in [0,1)$ there exists $x = \frac{y}{1-y} \ge 0$ such that $f(x) = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = y$.

	So, f is onto function on $[0,\infty)$ to $[0,1)$.	
	Case 2: when $x < 0$, we have $f(x) = \frac{x}{1-x}$	
	Injectivity: Let $x, y \in \mathbb{R}^-$ i.e., $x, y < 0$, such that $f(x) = f(y)$, then	
	$\Rightarrow \frac{x}{1-x} = \frac{y}{1-y} \Rightarrow x - xy = y - xy \Rightarrow x = y$	
	So, f is injective function.	1
	Surjectivity: $x < 0$, we have $f(x) = \frac{x}{1-x} < 0$ also, $f(x) = \frac{x}{1-x} = -1 + \frac{1}{1-x} > -1$	1
	-1 < f(x) < 0.	
	Let $y \in (-1,0)$ be an arbitrary real number and there exists $x = \frac{y}{1+y} < 0$ such that,	
	$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\frac{y}{1+y}}{1-\frac{y}{1+y}} = y.$	
	So, for $y \in (-1,0)$, there exists $x = \frac{y}{1+y} < 0$ such that $f(x) = y$.	1
	Hence, f is onto function on $(-\infty, 0)$ to $(-1, 0)$.	
	Case 3:	
	(Injectivity): Let $x > 0$ & $y < 0$ such that $f(x) = f(y) \Rightarrow \frac{x}{1+x} = \frac{y}{1-y}$	
	$\Rightarrow x - xy = y + xy \Rightarrow x - y = 2xy$, here <i>LHS</i> > 0 but <i>RHS</i> < 0, which is inadmissible.	
	Hence, $f(x) \neq f(y)$ when $x \neq y$.	1
	Hence f is one-one and onto function.	1
34	The given system of equations can be written in the form $AX = B$,	
	Where, $A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} 1/x \\ 1/y \\ 1/z \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$	
	Now, $ A = \begin{vmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{vmatrix} = 2(120 - 45) - 3(-80 - 30) + 10(36 + 36)$	$\frac{1}{2}$
	$= 2(75) - 3(-110) + 10(72) = 150 + 330 + 720 = 1200 \neq 0 \therefore A^{-1} \text{ exists.}$	$\frac{1}{2}$
	$\therefore adj A = \begin{bmatrix} 75 & 110 & 72 \\ 150 & -100 & 0 \\ 75 & 30 & -24 \end{bmatrix}^{T} = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$	$1\frac{1}{2}$

Let $Q(x_1, y_1, z_1)$ be the image of P(1, 6, 3) in the given line. Then, L is the mid-point of 1 PQ. Therefore, $\frac{(x_1+1)}{2} = 1, \frac{(y_1+6)}{2} = 3$ and $\frac{(z_1+3)}{2} = 5 \Rightarrow x_1 = 1, y_1 = 0$ and $z_1 = 7$ Hence, the image of P(1,6,3) in the given line is (1,0,7). 1 Now, the distance of the point (1,0,7) from the y - axis is $\sqrt{1^2 + 7^2} = \sqrt{50}$ units. 1 35 OR $\vec{\mathbf{r}} = \lambda (\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}); \text{ where '} \lambda' \text{ is a scalar}$ $P(\lambda, -\lambda, \lambda)$ Method 1: $\mathcal{Q}(1,-1-2\mu,\mu)$ $\vec{r} = \hat{i} - \hat{j} + \mu \left(-2\hat{j} + \hat{k}\right); \text{ where '}\mu' \text{ is a scalar}$ Given that equation of lines are $\vec{r} = \lambda (\hat{i} - \hat{j} + \hat{k})$(*i*) and $\vec{r} = \hat{i} - \hat{j} + \mu (-2\hat{j} + \hat{k})$(*ii*) The given lines are non-parallel lines as vectors $\hat{i} - \hat{j} + \hat{k}$ and $-2\hat{j} + \hat{k}$ are not parallel. There is a unique line segment PQ(P lying on line (i) and Q on the other line (ii)), which is at right angles to both the lines. PQ is the shortest distance between the lines. Hence, the shortest possible distance between the aeroplanes = PQ. Let the position vector of the point **P** lying on the line $\vec{r} = \lambda (\hat{i} - \hat{j} + \hat{k})$ where ' λ ' is a scalar, is 1 $\lambda(\hat{i}-\hat{j}+\hat{k})$, for some λ and the position vector of the point Q lying on the line 2 $\vec{r} = \hat{i} - \hat{j} + \mu \left(-2\hat{j} + \hat{k}\right);$ where ' μ ' is a scalar, is $\hat{i} + \left(-1 - 2\mu\right)\hat{j} + \left(\mu\right)\hat{k}$, for some μ . 1 Now, the vector $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (1 - \lambda)\hat{i} + (-1 - 2\mu + \lambda)\hat{j} + (\mu - \lambda)\hat{k}$; (where 'O' is the 2 origin), is perpendicular to both the lines, so the vector \overrightarrow{PQ} is perpendicular to both the vectors $\hat{i} - \hat{j} + \hat{k}$ and $-2\hat{j} + \hat{k}$ $\Rightarrow (1-\lambda).1 + (-1-2\mu+\lambda).(-1) + (\mu-\lambda).1 = 0 \&$ $\Rightarrow (1-\lambda).0 + (-1-2\mu+\lambda).(-2) + (\mu-\lambda).1 = 0$ 1 2 $\Rightarrow 2+3\mu-3\lambda=0 \& 2+5\mu-3\lambda=0$ 1 2

Page 15 of 19

On solving the above equations , we get $\lambda = \frac{2}{3}$ and $\mu = 0$ 1 So, the position vector of the points, at which they should be so that the distance between them is the shortest, are $\frac{2}{3}(\hat{i}-\hat{j}+\hat{k})$ and $\hat{i}-\hat{j}$. 1 $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \frac{1}{3}\hat{i} - \frac{1}{3}\hat{j} - \frac{2}{3}\hat{k}$ and $\left|\overrightarrow{PQ}\right| = \sqrt{\left(\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(-\frac{2}{3}\right)^2} = \sqrt{\frac{2}{3}}$ 1 The shortest distance = $\sqrt{\frac{2}{3}}$ units. $\frac{x}{1} = \frac{y}{-1} = \frac{x}{1}$ Method 2: $\frac{x-1}{0} = \frac{y+1}{-2} = \frac{z}{1}$ The equation of two given straight lines in the Cartesian form are $\frac{x}{1} = \frac{y}{-1} = \frac{z}{1}$(*i*) and $\frac{x-1}{0} = \frac{y+1}{-2} = \frac{z}{1}$(*ii*) The lines are not parallel as direction ratios are not proportional. Let **P** be a point on straight line 1 2 (i) and Q be a point on straight line (ii) such that line PQ is perpendicular to both of the lines. Let the coordinates of P be $(\lambda, -\lambda, \lambda)$ and that of Q be $(1, -2\mu - 1, \mu)$; where ' λ ' and ' μ 'are 1 scalars. 2 Then the direction ratios of the line PQ are $(\lambda - 1, -\lambda + 2\mu + 1, \lambda - \mu)$ Since PQ is perpendicular to straight line (i), we have, 1 $(\lambda - 1).1 + (-\lambda + 2\mu + 1).(-1) + (\lambda - \mu).1 = 0$ $\overline{2}$ \Rightarrow 3 λ – 3 μ = 2.....(*iii*) 1 Since, PQ is perpendicular to straight line (ii), we have 2 $0.(\lambda-1) + (-\lambda+2\mu+1).(-2) + (\lambda-\mu).1 = 0 \Longrightarrow 3\lambda - 5\mu = 2....(iv)$ 1 Solving (*iii*) and (*iv*), we get $\mu = 0, \lambda = \frac{2}{3}$ 1 *Therfore*, the *Coordinates* of *P* are $\left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}\right)$ and that of *Q* are (1, -1, 0)1

Page 16 of 19

So, the required shortest distance is
$$\sqrt{\left(1-\frac{2}{3}\right)^2 + \left(-1+\frac{2}{3}\right)^2 + \left(0-\frac{2}{3}\right)^2} = \sqrt{\frac{2}{3}}$$
 units.

Section –E

[This section comprises solution of 3 case- study/passage based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.)

$$\begin{aligned} & (\text{We have, } \sum_{i=1}^{2} P(E_i | E) = P(E_i | E) + P(E_i | E) + P(E_i | E) \\ &= \frac{P(E \cap E_i) + P(E \cap E_i) + P(E \cap E_i)}{P(E)} \\ &= \frac{P((E \cap E_i) \cup (E \cap E_i) \cup (E \cap E_i))}{P(E)} \text{ as } E_i \& E_j; i \neq j \text{, are mutually exclusive events} \\ &= \frac{P((E \cap E_i \cup E_i \cup E_i))}{P(E)} = \frac{P(E \cap S)}{P(E)} = \frac{P(E)}{P(E)} = 1; \ 'S' \text{ being the sample space}) \end{aligned}$$

37 We have,
$$\begin{vmatrix} \overline{F_i} | = \sqrt{6^2 + 0^2} = 6kN, |\overline{F_2}| = \sqrt{(-4)^2 + 4^2} = \sqrt{32} = 4\sqrt{2}kN, |\overline{F_3}| = \sqrt{(-3)^2 + (-3)^2} = \sqrt{18} = 3\sqrt{2}kN. \end{aligned}$$
(i) Magnitude of force of Team $A = 6kN$.
(ii) Since $\overline{a} + \overline{c} = 3(\widehat{i} - \widehat{j})$ and $\overline{b} = -4(\widehat{i} - \widehat{j})$
So, \overline{b} and $\overline{a} + \overline{c}$ are unlike vectors having same initial point
and $|\overline{b}| = 4\sqrt{2} \& |\overline{a} + \overline{c}| = 3\sqrt{2}$
Thus $|\overline{F_i}| > |\overline{F_i} + \overline{F_i}|$ also $\overline{F_i}$ and $\overline{F_i} + \overline{F_i}$ are unlike
Hence B will win the game
(iii) $\overline{F} = \overline{F_i} + \overline{F_2} + \overline{F_3} = 6\widehat{i} + 0\widehat{j} - 4\widehat{i} + 4\widehat{j} - 3\widehat{i} - 3\widehat{j} = -\widehat{i} + \widehat{j}$
 $\therefore \theta = \pi - \tan^{-1}(\frac{1}{4}) = \pi - \frac{\pi}{4} = \frac{3\pi}{4};$ where ' θ' is the angle made by the resultant force with the
+verdirection of the x - axis.

38 $y = 4x - \frac{1}{2}x^3$
(i) The rate of growth of the plant with respect to the number of days exposed to sunlight
is given by $\frac{dy}{dx} = 4 - x.$
(ii) Let rate of growth be represented by the function $g(x) = \frac{dy}{dx}$.

Now,
$$g'(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = -1 < 0$$

 $\Rightarrow g(x)$ decreases.
So the rate of growth of the plant decreases for the first three days.
Height of the plant after 2 days is $y = 4 \times 2 - \frac{1}{2}(2)^2 = 6 cm$.