Sample Question Paper

CLASS: XII Session: 2021-22

Mathematics (Code-041)

Term - 1

Time Allowed: 90 minutes Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION - A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

		<u> </u>
1.	$\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2} \right) \right]$ is equal to:	
	a) $\frac{1}{2}$ b) $\frac{1}{3}$	
	c) -1 d) 1	
2.	The value of k (k < 0) for which the function f defined as	1
	$\left(\frac{1-\cos kx}{r\sin x}, x \neq 0\right)$	
	$f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$	
	is continuous at $x = 0$ is:	
	a) ± 1 b) -1 c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
	a) ± 1 b) -1 c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
3.	If A = $[a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, & when i \neq j \\ 0, & when i = j \end{cases}$, the	n 1
	$A^{2} \text{ is:} \qquad (0, when i = j)$	
	7. 13.	
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ b) $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$	
	' 10 01	
	c) $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
4.	Value of k , for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:	1
	$\begin{bmatrix} value & 0 & k, & 10 \end{bmatrix}$ with the $\begin{bmatrix} 1 & 2k \end{bmatrix}$ is a singular matrix is.	
	a) 4 b) -4	
	c) ±4 d) 0	
		_

	Find the intervals in which the function f given by $f(x) = x^2 - 4x + 6$ is strictly increasing:		
	a) (-∞, 2) ∪ (2, ∞)	b) (2, ∞)	
	c) $(-\infty,2)$	d) (-∞, 2]∪ (2, ∞)	
		, , , , , , , , , , , , , , , , , , , ,	
6.	Given that A is a square matrix of order 3 and A = - 4, then adj A is equal to:		
	a) -4	b) 4	
	c) -16	d) 16	
7.	A relation R in set $A = \{1,2,3\}$ is defined as $R = \{(1, 1), (1, 2), (2, 2), (3, 3)\}$. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A?		1
	a) (1, 1)	b) (1, 2)	
	c) (2, 2)	d) (3, 3)	
8.	$ \operatorname{If} \begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix} $	d) (3, 3) , then value of a + b - c + 2d is:	1
	a) 8	b) 10	
	c) 4	d) -8	
9.	The point at which the normal to the line $3x - 4y - 7 = 0$ is:	the curve $y = x + \frac{1}{x}$, $x > 0$ is perpendicular to	1
9.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$	b) (±2, 5/2)	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$	b) (±2, 5/2) d) (1/2, 5/2)	1
9.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$	b) (±2, 5/2) d) (1/2, 5/2)	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ al to:	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equ	b) (±2, 5/2) d) (1/2, 5/2) al to:	1
	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = $(-1)^{-1}$	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ al to:	1 1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = {b is a multiple of 4}. Then [1], the	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ all to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ be equivalence class containing 1, is:	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = $(-1)^{-1}$	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ all to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = {b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ all to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ be equivalence class containing 1, is:	1
10.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = {b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ all to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ be equivalence class containing 1, is:	1
11.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equ a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = { b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ all to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ be equivalence class containing 1, is:	1
11.	the line $3x - 4y - 7 = 0$ is: a) $(2, 5/2)$ c) $(-1/2, 5/2)$ sin $(\tan^{-1}x)$, where $ x < 1$, is equal a) $\frac{x}{\sqrt{1-x^2}}$ c) $\frac{1}{\sqrt{1+x^2}}$ Let the relation R in the set A = 8 b is a multiple of 4}. Then [1], then a) $\{1, 5, 9\}$ c) ϕ	b) $(\pm 2, 5/2)$ d) $(1/2, 5/2)$ all to: b) $\frac{1}{\sqrt{1-x^2}}$ d) $\frac{x}{\sqrt{1+x^2}}$ $\{x \in Z : 0 \le x \le 12\}$, given by $R = \{(a, b) : a - b $ e equivalence class containing 1, is:	1

13.	Given that matrices A and B are of order 3×n and m×5 respectively, then the order of matrix C = 5A +3B is:		1
	a) 3x5	b) 5 x 3	
	a) 3x5 c) 3x3	d) 5×5	
	o) one		
14.	If $y = 5 \cos x - 3 \sin x$, then $\frac{d^2y}{dx^2}$ is	s equal to:	1
	a) - y	b) y	
	c) 25y	d) 9y	
4.5			
15.	For matrix A = $\begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, $(adjA)'$ a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	is equal to:	1
	a) $\begin{bmatrix} -2 & -5 \\ 11 & -7 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5 \\ 11 & 2 \end{bmatrix}$	
	c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$	d) $\begin{bmatrix} 7 & -5 \\ 11 & 2 \end{bmatrix}$	
16.	The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are parallel to yaxis are:		1
	a) (0,±4)	b) (±4,0)	
17.	c) (± 3.0)	d) $(0, \pm 3)$ matrix of order 3×3 and $ A = -7$, then the	1
17.		enotes the cofactor of element a_{ij} is:	'
	a) 7	b) -7	
	c) 0	d) 49	
18.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:		1
	a) $\cos e^{x-1}$	b) $e^{-x}\cos e^x$	
	c) $e^x \sin e^x$	d) $-e^x \tan e^x$	
19.	Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function $Z = 3x + 9y$ maximum?		1
	Y		
	25 D(0,20) 15 C(15,15)		
	(0,10) 5 B(5,5) (6)	0,0) X	
	(10,0) $x + y = 10$	x + 3y = 60	
	a) Point B	b) Point C	
	c) Point D	d) every point on the line segment CD	

20.	The least value of the function $f(x) = 2\cos x + x$ in the closed interval $[0, \frac{\pi}{2}]$ is:		
	a) 2 c) $\frac{\pi}{2}$	b) $\frac{\pi}{6} + \sqrt{3}$ d) The least value does not exist.	
	SECTION In this section, attempt any 16 question is of	stions out of the Questions 21 - 40.	
21.	The function $f: R \rightarrow R$ defined as $f(x)$	$= x^3$ is:	1
	a) One-on but not onto c) Neither one-one nor onto	b) Not one-one but onto d) One-one and onto	
22.	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2y}{dx^2}$ at θ	$=\frac{\pi}{6}$ is:	1
	a) $\frac{-3\sqrt{3}b}{a^2}$ c) $\frac{-3\sqrt{3}b}{a}$	b) $\frac{-2\sqrt{3}b}{a}$ d) $\frac{-b}{3\sqrt{3}a^2}$	
	$\begin{array}{ c c } \hline c) & \frac{-3\sqrt{3b}}{a} \\ \hline \end{array}$	d) $\frac{1}{3\sqrt{3}a^2}$	
23.	In the given graph, the feasible region for a LPP is shaded. The objective function $Z = 2x - 3y$, will be minimum at:		1
24.	c) (0, 8) d) (6, 5) The derivative of $\sin^{-1}(2x\sqrt{1-x^2})$ w.r.t $\sin^{-1}x$, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$, is:		
	a) 2 b) $\frac{\pi}{2}$ c) $\frac{\pi}{2}$	2	
25.	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 \\ -4 & 2 \\ 2 & -1 \end{bmatrix}$	-4] -4], then: 5	1
		$A^{-1} = 6B$ $B^{-1} = \frac{1}{6}A$	

26.	The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is:	
	a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$	
	b) Strictly decreasing in (-2,3)	
	c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$	
	d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$	
27.	Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+cosx}+\sqrt{1-cosx}}{\sqrt{1+cosx}-\sqrt{1-cosx}}\right)$, $\pi < x < \frac{3\pi}{2}$ is:	
	a) $\frac{\pi}{4} - \frac{x}{2}$ b) $\frac{3\pi}{2} - \frac{x}{2}$	
	c) $-\frac{x}{2}$ d) $\pi - \frac{x}{2}$	
28.	Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is:	1
	a) 4 b) 8	
	c) 64 d) 16	
29.	The value of <i>b</i> for which the function $f(x) = x + cosx + b$ is strictly	1
	decreasing over R is:	
	a) $b < 1$ b) No value of b exists c) $b \le 1$ d) $b \ge 1$	
30.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then:	1
	a) $(2,4) \in R$ b) $(3,8) \in R$ c) $(6,8) \in R$ d) $(8,7) \in R$	
The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, & x < 0 \\ -1, & x \ge 0 \end{cases}$		1
	is continuous, is/are: $(-1, x \ge 0)$	
	a) $x \in \mathbb{R}$ b) $x = 0$	
	c) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and 1	
32.	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k, a and b respectively	1
	are:	

	a) -6, -12, -18	b) -6, -4, -9	
	c) -6, 4, 9	d) -6,12,18	
33.	A linear programming problem is as follows:		
	Minimize Z = 30x + 50y		
	subject to the constraints,		
	$3x + 5y \ge 15$		
	$2x + 3y \le 18$		
	$x \ge 0, y \ge 0$		
	In the feasible region, the minimum value	ue of Z occurs at	
	a) a unique point b)	no point	
	c) infinitely many points d)	two points only	
34.	The area of a trapezium is defined by fu	unction f and given by $f(x) = (10 +$	1
01.	$(x)\sqrt{100-x^2}$, then the area when it is m		•
	$x/\sqrt{100-x^2}$, then the area when it is in	iaximised is.	
	a) 75 <i>cm</i> ²	b) $7\sqrt{3}cm^2$	
	c) $75\sqrt{3}cm^2$	b) $7\sqrt{3}cm^2$ d) $5cm^2$	
	<i>c)</i> 73 y 3 cm	d) Sent	
35.	If A is square matrix such that $A^2 = A$, the square matrix such that $A^2 = A$, the square $A^2 = A$ is the square $A^2 = A$.	hen (I + A) ³ – 7 A is equal to:	1
	a) A	b) I + A	
200	c) I – A	d) I	4
36.	If $tan^{-1} x = y$, then:		1
	a) -1 < y < 1	b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
	c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) $y \in \{\frac{-\pi}{2}, \frac{\pi}{2}\}$	
		α, y ε _{ξ 2} , ₂ }	
37.	Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let	$f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
	from A to B. Based on the given information		
	a) Surjective function	b) Injective function	
00	c) Bijective function	d) function	4
38.	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A ⁻¹ is given by	<i>'</i> :	1
	- 1 23		
	a) $14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$	
	$\begin{bmatrix} a & 14 & 1 & 3 \end{bmatrix}$	b) [2 6]	
	r2 _11	r_3 _11	
	c) $2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$	d) $2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$	
	1 0	-	
39.	The point(s) on the curve $y = x^3 - 11x$	+ 5 at which the tangent is $y = x - 11$	1
	is/are:		
	0) (240)	(3 0)	
	a) (-2,19) b) c) (+2,19) d)	(2, - 9) (-2, 19) and (2, -9)	
40.	/ (= / /		1
7 ∪.	Given that $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and $A^2 = 3I$, the	en:	ı
	£/ ***		
,		I I	,

	a) $1 + \alpha^2 + \beta \gamma = 0$ c) $3 - \alpha^2 - \beta \gamma = 0$	b) $1 - \alpha^2 - \beta \gamma = 0$ d) $3 + \alpha^2 + \beta \gamma = 0$	
	SI In this section Each questio	ECTION – C 1, attempt any 8 questions. 1 is of 1-mark weightage. 2) are based on a Case-Study.	
41.	For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) are $(0, 20)$, $(10, 10)$, $(30, 30)$ and $(0, 40)$. The condition on a and b such that the maximum Z occurs at both the points $(30, 30)$ and $(0, 40)$ is:		
	a) $b - 3a = 0$ c) $a + 2b = 0$	b) $a = 3b$ d) $2a - b = 0$	
42.	For which value of m is the line	y = mx + 1 a tangent to the curve y ² = 4x? 1	
	2	b) 1 d) 3	
43.	The maximum value of $[x(x-1)]$	$(1) + 1]^{\frac{1}{3}}, 0 \le x \le 1 \text{ is:}$	
	c) 1	(a) $\frac{1}{2}$ (b) $\sqrt[3]{\frac{1}{3}}$	
44.	In a linear programming problem and y are $x - 3y \ge 0, y \ge 0, 0 \le 0$	n, the constraints on the decision variables x $x \le 3$. The feasible region	
	a) is not in the first quadrant c) is unbounded in the first quadrant	b) is bounded in the first quadrant d) does not exist	
45. Let $A = \begin{bmatrix} 1 & \sin \alpha & 1 \\ -\sin \alpha & 1 & \sin \alpha \\ -1 & -\sin \alpha & 1 \end{bmatrix}$, where $0 \le \alpha \le 2\pi$, then:		where $0 \le \alpha \le 2\pi$, then:	
	a) A =0c) A ε(2,4)	b) A ε(2,∞) d) A ε[2,4]	
		CASE STUDY The fuel cost per hour for running a train is proportional	
	WAS 22850	to the square of the speed it generates in km per hour. If	
the fuel costs ₹ 48 per hour at speed 16 km			
		and the fixed charges to run the train amount to ₹	
1200 per hour. Assume the speed of the train as $v \text{ km/h}$.			

Assume the speed of the train as $v \, \mathrm{km/h.}$

	Based on the given information,	answer the following questions.	
46.	Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:		
	a) $\frac{16}{3}$ c) 3	b) 1/2	
	c) 3	b) $\frac{1}{3}$ d) $\frac{3}{46}$	
47.			
	a) $\frac{15}{16}v + \frac{6000000}{v}$	b) $\frac{375}{4}v + \frac{600000}{v}$	
	c) $\frac{5}{16}v^2 + \frac{150000}{v}$	d) $\frac{3}{16}v + \frac{6000}{v}$	
48.	The most economical speed to run the train is:		
	a) 18km/h	b) 5km/h	
	c) 80km/h	d) 40km/h	
49.	The fuel cost for the train to travel 500km at the most economical speed is:		1
	a) ₹3750	b) ₹750	
	c) ₹7500	d) ₹75000	
50.	The total cost of the train to travel 500km at the most economical speed is:		1
	a) ₹3750	b) ₹75000	
	c) ₹7500	d) ₹15000	
