Sample Question Paper
 CLASS: XII
 Session: 2021-22
 Mathematics (Code-041)
 Term - 1

Maximum Marks: 40
Time Allowed: 90 minutes

General Instructions:

1. This question paper contains three sections - A, B and C. Each part is compulsory.
2. Section - A has 20 MCQs, attempt any 16 out of 20.
3. Section - B has 20 MCQs, attempt any 16 out of 20
4. Section - C has 10 MCQs, attempt any 8 out of 10.
5. All questions carry equal marks.
6. There is no negative marking.

SECTION - A

In this section, attempt any 16 questions out of Questions 1-20.
Each Question is of 1 mark weightage.

1. $\sin \left[\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right]$ is equal to:
a) $\frac{1}{2}$
b) $\frac{1}{3}$
c) -1
d) 1
2. The value of $\mathrm{k}(\mathrm{k}<0)$ for which the function f defined as
$f(x)= \begin{cases}\frac{1-\cos k x}{x \sin x} & , x \neq 0 \\ \frac{1}{2} & , x=0\end{cases}$
is continuous at $x=0$ is:
a) ± 1
b) -1
c) $\pm \frac{1}{2}$
d) $\frac{1}{2}$
3. If $A=\left[a_{i j}\right]$ is a square matrix of order 2 such that $a_{i j}=\left\{\begin{array}{c}1, \text { when } i \neq j \\ 0, \text { when } i=j\end{array}\right.$, then A^{2} is:

a) $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$	b) $\left[\left.\begin{array}{ll}1 & 1 \\ 0 & 0\end{array} \right\rvert\,\right.$
c) $\left[\left.\begin{array}{ll}1 & 1 \\ 1 & 0\end{array} \right\rvert\,\right.$	d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Value of k, for which $A=\left[\begin{array}{cc}k & 8 \\ 4 & 2 k\end{array}\right]$ is a singular matrix is:	
a) 4 b) -4 c) ± 4 d) 0	

5.	Find the intervals in which the function f given by $f(x)=x^{2}-4 x+6$ is strictly increasing:		1
	a) $(-\infty, 2) \cup(2, \infty)$	b) $(2, \infty)$	
	c) $(-\infty, 2)$	d) $(-\infty, 2] \cup(2, \infty)$	
6.	Given that A is a square matrix of order 3 and $\|A\|=-4$, then $\|\operatorname{adj} A\|$ is equal to:		1
	a) -4	b) 4	
	c) -16	d) 16	
7.	A relation R in set $A=\{1,2,3\}$ is defined as $R=\{(1,1),(1,2),(2,2),(3,3)\}$. Which of the following ordered pair in R shall be removed to make it an equivalence relation in A ?		1
	a) $(1,1)$	b) $(1,2)$	
	c) $(2,2)$	d) $(3,3)$	
8.	If $\left[\begin{array}{cc}2 a+b & a-2 b \\ 5 c-d & 4 c+3 d\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ 11 & 24\end{array}\right]$, then value of $\mathrm{a}+\mathrm{b}-\mathrm{c}+2 \mathrm{~d}$ is:		1
	a) 8	b) 10	
	c) 4	d) -8	
9.	The point at which the normal to the curve $\mathrm{y}=x+\frac{1}{x}, \mathrm{x}>0$ is perpendicular to the line $3 x-4 y-7=0$ is:		1
	a) $(2,5 / 2)$	b) $(\pm 2,5 / 2)$	
	c) $(-1 / 2,5 / 2)$	d) $(1 / 2,5 / 2)$	
10.	$\sin \left(\tan ^{-1} \mathrm{x}\right)$, where $\|\mathrm{x}\|<1$, is equal to:		1
	a) $\frac{x}{\sqrt{1-x^{2}}}$	b) $\frac{1}{\sqrt{1-x^{2}}}$	
	C) $\frac{1}{\sqrt{1+x^{2}}}$	d) $\frac{x}{\sqrt{1+x^{2}}}$	
11.	Let the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by $R=\{(a, b): \mid a-$ $b \mid$ is a multiple of 4$\}$. Then [1], the equivalence class containing 1 , is:		1
	a) $\{1,5,9\}$	b) $\{0,1,2,5\}$	
	c) ϕ	d) A	
12.	If $\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}+\mathrm{y}}$, then $\frac{d y}{d x}$ is:		1
	a) e^{y-x}	b) e^{x+y}	
	c) $-e^{y-x}$	d) $2 e^{x-y}$	

20. The least value of the function $f(x)=2 \cos x+x$ in the closed interval $\left[0, \frac{\pi}{2}\right]$ is:
a) 2
b) $\frac{\pi}{6}+\sqrt{3}$
c) $\frac{\pi}{2}$
d) The least value does not exist.

SECTION - B

In this section, attempt any 16 questions out of the Questions 21-40. Each Question is of 1 mark weightage.
21. The function $f: \mathrm{R} \rightarrow \mathrm{R}$ defined as $f(x)=x^{3}$ is:
a) One-on but not onto
b) Not one-one but onto
c) Neither one-one nor onto
d) One-one and onto
22. If $\mathrm{x}=\mathrm{a} \sec \theta, \mathrm{y}=\mathrm{b} \tan \theta$, then $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{6}$ is:
a) $\frac{-3 \sqrt{3} b}{a^{2}}$
b) $\frac{-2 \sqrt{3} b}{a}$
c) $\frac{-3 \sqrt{3} b}{a}$
d) $\frac{-b}{3 \sqrt{3} a^{2}}$
23.

In the given graph, the feasible region for a LPP is shaded.
The objective function $Z=2 x-3 y$, will be minimum at:
a) $(4,10)$
b) $(6,8)$
c) $(0,8)$
d) $(6,5)$
24. The derivative of $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ w.r.t $\sin ^{-1} \mathrm{x}, \quad-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$, is:
a) 2
b) $\frac{\pi}{2}-2$
c) $\frac{\pi}{2}$
d) -2
25.

If $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right]$, then:
a) $A^{-1}=B$
b) $A^{-1}=6 B$
c) $\mathrm{B}^{-1}=\mathrm{B}$
d) $\mathrm{B}^{-1}=\frac{1}{6} \mathrm{~A}$

26.	The real function $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is:	1
	a) Strictly increasing in (-m, -2) and strictly decreasing in ($-2, \infty$)	
	b) Strictly decreasing in ($-2,3$)	
	c) Strictly decreasing in (-m,3) and strictly increasing in (3, ∞)	
	d) Strictly decreasing in $(-\infty,-2) \cup(3, \infty)$	
27.	Simplest form of $\tan ^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right), \pi<x<\frac{3 \pi}{2}$ is:	1
	a) $\frac{\pi}{4}-\frac{x}{2}$ b) $\frac{3 \pi}{2}-\frac{x}{2}$	
	c) $-\frac{x}{2}$ d) $\pi-\frac{x}{2}$	
28.	Given that A is a non-singular matrix of order 3 such that $A^{2}=2 A$, then value of $\|2 A\|$ is:	1
	a) 4	
	c) 64 d) 16	
29.	The value of b for which the function $f(x)=x+\cos x+b$ is strictly decreasing over \mathbf{R} is:	1
	a) $b<1$	
	c) $b \leq 1$	
30.	Let R be the relation in the set N given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}=\mathrm{b}-2, \mathrm{~b}>6\}$, then:	1
	c) $(6,8) \in \mathrm{R}$ d d) $(8,7) \in \mathrm{R}$	
31.	The point(s), at which the function f given by $f(x)=\left\{\begin{array}{l}\frac{x}{\|x\|}, x<0 \\ -1, x \geq 0\end{array}\right.$ is continuous, is/are:	1
	a) $x \in \mathrm{R}$	
	c) $x \in \mathrm{R}-\{0\} \times$ d) $x=-1$ and 1	
32.	If $A=\left[\begin{array}{cc}0 & 2 \\ 3 & -4\end{array}\right]$ and $k A=\left[\begin{array}{cc}0 & 3 a \\ 2 b & 24\end{array}\right]$, then the values of k, a and b respectively are:	1

