| $\begin{array}{c}\text { Marking Scheme } \\ \text { CLASS: XII }\end{array}$ |
| :---: | :--- | :--- |
| Session: 2021-22 |$\}$

\begin{tabular}{|c|c|c|}
\hline 5. \& \begin{tabular}{l}
A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement. \\
Solution: Let X be the random variable defined as the number of red balls. \\
Then \(X=0,1\)
\[
\begin{aligned}
\& \mathrm{P}(\mathrm{X}=0)=\frac{3}{4} \times \frac{2}{3}=\frac{6}{12}=\frac{1}{2} \\
\& \mathrm{P}(\mathrm{X}=1)=\frac{1}{4} \times \frac{3}{3}+\frac{3}{4} \times \frac{1}{3}=\frac{6}{12}=\frac{1}{2}
\end{aligned}
\] \\
Probability Distribution Table:
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
\hline 6. \& \begin{tabular}{l}
Two cards are drawn at random from a pack of 52 cards one-by-one without replacement. What is the probability of getting first card red and second card Jack? \\
Solution: The required probability \(=\mathrm{P}((\) The first is a red jack card and The second is a jack card) or (The first is a red non-jack card and The second is a jack card))
\[
=\frac{2}{52} \times \frac{3}{51}+\frac{24}{52} \times \frac{4}{51}=\frac{1}{26}
\]
\end{tabular} \& 1
1 \\
\hline \& SECTION - B \& \\
\hline 7. \& \begin{tabular}{l}
Find: \(\int \frac{x+1}{\left(x^{2}+1\right) x} d x\) \\
Solution: Let \(\frac{x+1}{\left(x^{2}+1\right) x}=\frac{A x+B}{x^{2}+1}+\frac{C}{x}=\frac{(A x+B) x+C\left(x^{2}+1\right)}{\left(x^{2}+1\right) x}\) \(\Rightarrow x+1=(A x+B) x+C\left(x^{2}+1\right)\) \\
(An identity) Equating the coefficients, we get
\[
B=1, C=1, A+C=0
\] \\
Hence, \(A=-1, B=1, C=1\) \\
The given integral \(=\int \frac{-x+1}{x^{2}+1} d x+\int \frac{1}{x} d x\)
\[
\begin{aligned}
\& =\frac{-1}{2} \int \frac{2 x-2}{x^{2}+1} d x+\int \frac{1}{x} d x \\
\& =\frac{-1}{2} \int \frac{2 x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x+\int \frac{1}{x} d x \\
\& =\frac{-1}{2} \log \left(x^{2}+1\right)+\tan ^{-1} x+\log |x|+c
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\(1 / 2\) \\
\(1 / 2\) \\
\(1 / 2\) \\
\(1+1 / 2\)
\end{tabular} \\
\hline 8. \& \begin{tabular}{l}
Find the general solution of the following differential equation:
\[
x \frac{d y}{d x}=y-x \sin \left(\frac{y}{x}\right)
\] \\
Solution: We have the differential equation:
\[
\frac{d y}{d x}=\frac{y}{x}-\sin \left(\frac{y}{x}\right)
\] \\
The equation is a homogeneous differential equation.
\[
\text { Putting } y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}
\] \\
The differential equation becomes
\[
\begin{aligned}
\& v+x \frac{d v}{d x}=v-\sin v \\
\& \Rightarrow \frac{d v}{\sin v}=-\frac{d x}{x} \Rightarrow \operatorname{cosec} v d v=-\frac{d x}{x}
\end{aligned}
\] \\
Integrating both sides, we get
\end{tabular} \& 1

$1 / 2$ \\
\hline
\end{tabular}

	$\begin{aligned} & \log \|\operatorname{cosec} v-\operatorname{cotv}\|=-\log \|x\|+\log K, K>0 \quad \text { (Here, } \log K \text { is an arbitrary } \\ & \text { constant.) } \\ & \Rightarrow \log \|(\operatorname{cosec} v-\cot v) x\|=\log K \\ & \Rightarrow\|(\operatorname{cosec} v-\operatorname{cotv}) x\|=K \\ & \Rightarrow(\operatorname{cosec} v-\operatorname{cotv}) x= \pm K \\ & \Rightarrow\left(\operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}\right) x=C, \text { which is the required general solution. } \end{aligned}$ OR Find the particular solution of the following differential equation, given that y $=0$ when $\mathrm{x}=\frac{\pi}{4}$: $\frac{d y}{d x}+y \cot x=\frac{2}{1+\sin x}$ Solution: The differential equation is a linear differential equation $\mathrm{IF}=e^{\int \cot x d x}=e^{\log \sin x}=\sin x$ The general solution is given by $\begin{aligned} & y \sin x=\int 2 \frac{\sin x}{1+\sin x} d x \\ & \Rightarrow y \sin x=2 \int \frac{\sin x+1-1}{1+\sin x} d x=2 \int\left[1-\frac{1}{1+\sin x}\right] d x \\ & \Rightarrow y \sin x=2 \int\left[1-\frac{1}{1+\cos \left(\frac{\pi}{2}-x\right)}\right] d x \\ & \Rightarrow y \sin x=2 \int\left[1-\frac{1}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right] d x \\ & \Rightarrow y \sin x=2 \int\left[1-\frac{1}{2} \sec ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)\right] d x \\ & \Rightarrow y \sin x=2\left[x+\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right]+c \end{aligned}$ Given that $\mathrm{y}=0$, when $\mathrm{x}=\frac{\pi}{4}$, Hence, $0=2\left[\frac{\pi}{4}+\tan \frac{\pi}{8}\right]+c$ $\Rightarrow c=-\frac{\pi}{2}-2 \tan \frac{\pi}{8}$ Hence, the particular solution is $y=\operatorname{cosec} x\left[2\left\{x+\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right\}-\left(\frac{\pi}{2}+2 \tan \frac{\pi}{8}\right)\right]$	$1112{ }^{1}$		
9.	If $\vec{a} \neq \overrightarrow{0}, \vec{a} . \vec{b}=\vec{a} . \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$, then show that $\vec{b}=\vec{c}$. Solution: We have $\vec{a} .(\vec{b}-\vec{c})=0$ $\begin{aligned} & \Rightarrow(\vec{b}-\vec{c})=\overrightarrow{0} \text { or } \vec{a} \perp(\vec{b}-\vec{c}) \\ & \Rightarrow \vec{b}=\vec{c} \text { or } \vec{a} \perp(\vec{b}-\vec{c}) \end{aligned}$ Also, $\vec{a} \times(\vec{b}-\vec{c})=\overrightarrow{0}$ $\begin{aligned} & \Rightarrow(\vec{b}-\vec{c})=\overrightarrow{0} \text { or } \vec{a} \\|(\vec{b}-\vec{c}) \\ & \Rightarrow \vec{b}=\vec{c} \text { or } \vec{a} \\|(\vec{b}-\vec{c}) \end{aligned}$ \vec{a} can not be both perpendicular to $(\vec{b}-\vec{c})$ and parallel to $(\vec{b}-\vec{c})$ Hence, $\vec{b}=\vec{c}$.	1 1 1		
10.	Find the shortest distance between the following lines: $\begin{aligned} & \vec{r}=(\hat{\imath}+\hat{\jmath}-\hat{k})+s(2 \hat{\imath}+\hat{\jmath}+\hat{k}) \\ & \vec{r}=(\hat{\imath}+\hat{\jmath}+2 \hat{k})+t(4 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \end{aligned}$			

12. Using integration, find the area of the region in the first quadrant enclosed by the line $x+y=2$, the parabola $y^{2}=x$ and the x-axis.
Solution: Solving $x+y=2$ and $y^{2}=x$ simultaneously, we get the points of intersection as $(1,1)$ and (4, -2).

Fig 1

The required area $=$ the shaded area $=\int_{0}^{1} \sqrt{x} d x+\int_{1}^{2}(2-x) d x$
$=\frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{2}$
$=\frac{2}{3}+\frac{1}{2}=\frac{7}{6}$ square units
OR
Using integration, find the area of the region: $\left\{(x, y): 0 \leq y \leq \sqrt{3} x, x^{2}+y^{2} \leq\right.$ 4\}

Solution: Solving $y=\sqrt{3} x$ and $x^{2}+y^{2}=4$, we get the points of intersection as $(1, \sqrt{3})$ and $(-1,-\sqrt{3})$

Fig 2

14.	Fig 3 An insurance company believes that people can be divided into two classes: tho accident prone and those who are not. The company's statistics show that an accider person will have an accident at sometime within a fixed one-year period with pro whereas this probability is 0.2 for a person who is not accident prone. The company 20 percent of the population is accident prone. Based on the given information, answer the following questions.	o are prone ty 0.6, s that
	(i)what is the probability that a new policyholder will have an accident within a year of purchasing a policy?	
	(ii) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone?	
	Solution: Let $\mathrm{E}_{1}=$ The policy holder is accident prone. $\mathrm{E}_{2}=$ The policy holder is not accident prone. $\mathrm{E}=$ The new policy holder has an accident within a year of purchasing a policy. (i) $\begin{aligned} & \mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{E}_{1}\right) \times \mathrm{P}\left(\mathrm{E} / \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \times \mathrm{P}\left(\mathrm{E} / \mathrm{E}_{2}\right) \\ & =\frac{20}{100} \times \frac{6}{10}+\frac{80}{100} \times \frac{2}{10}=\frac{7}{25} \end{aligned}$ (ii) By Bayes' Theorem, $P\left(E_{1} / E\right)=\frac{P\left(E_{1}\right) \times P\left(E / E_{1}\right)}{P(E)}$ $=\frac{\frac{20}{100} \times \frac{6}{10}}{\frac{280}{1000}}=\frac{3}{7}$	1 1 1 1

