Class XII Physics

Sample Question Paper

(Applicable for March 2016 Examination)

(Marking Scheme)

Time Allowed: 3 Hours

Maximum Marks: 70

Section A

1.

5. LAN (1)

SECTION B

6.
$$\mathbf{\epsilon}_{eq} = \left(\frac{\epsilon_1}{r_1} + \frac{\epsilon_2}{r_2}\right) / \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$
 (1/2)

$$\boldsymbol{\varepsilon}_{eq} = (10/10 - 2/5)/(1/10 + 1/5) \tag{1}$$

$$\boldsymbol{\varepsilon}_{eq} = 2V \tag{1/2}$$

7.
$$I_1 = I_0/2$$
 (1/2)
 $I_2 = I_1 \cos^2 60^0$ (1/2)
 $I_2 = I_0/8$ (1)

OR

(1)

7. Huygens' Principle

Ray diagram using Huygen's construction	(1)
8. $P = 5 \times 10^{-3} W$	
$n=\frac{P}{E}$,	
$E = \frac{P}{n} = 6.25 \text{ X } 10^{-19} \text{ J}$	(1/2)
E = 3.9 eV	(1/2)

$$W_0 = E - eV_0$$
 (1/2)
= (3.9 - 2) eV

$$W_0 = 1.9 \text{ eV}$$
 (1/2)

9.
$$R = Ro e^{-\lambda t}$$
 (1/2)

$$\ln R = \ln Ro - \lambda t$$

$$\ln R = -\lambda t + \ln Ro$$
(1/2)

slope of ln R v/s t is '-
$$\lambda$$
'
 $-\lambda = \frac{0-1.52}{(1/2)}$

$$\lambda = 0.028 \text{ minute}^{-1}$$
 (1/2)

10.

	Frequency range	Use
Ground wave	500-1500KHz (1/2)	Standard AM broadcast (1/2)
Space wave	Above 40 MHz (1/2)	Television (1/2)

SECTION C

11. (i) at A, $E = \frac{\sigma}{2\varepsilon o}$	(1/2)
$E = 1.1 X 10^{28} N/C$	(1/2)
Directed away from the sheet	(1/2)
(ii) Point Y	(1/2)

Because at 50cm, the charge sheet acts as a finite sheet and thus the magnitude remains same towards the middle region of the planar sheet.

(1)

12. (i) $V = Ir$ (without	voltmeter) R _v
---------------------------	---------------------------

$$V' = \frac{I r R v}{r + R v} = \frac{I r}{1 + \frac{r}{R v}}$$
(1/2)

$$\mathbf{V}' < \mathbf{V} \tag{1/2}$$

(ii) Percentage error

$$\left(\frac{V-V}{V}\right) \ge 100 \tag{1/2}$$

$$=\left(\frac{\mathbf{r}}{\mathbf{r}+\mathbf{R}\mathbf{v}}\right)\mathbf{X}\ 100\tag{1}$$

(iii) $\operatorname{Rv} \to \infty$, $\operatorname{V'} = \operatorname{Ir} = \operatorname{V}$ (1/2)

OR

12 (a)
$$I = \frac{\varepsilon}{R + \frac{\rho_1 l}{A_1}}$$
 for Set A (1/2)

$$I = \frac{\varepsilon}{R + \frac{\rho_1 l}{2A_1} + \frac{\rho_2 l}{2A_2}} \text{ for set B}$$
(1/2)

Equating the above two expressions and simplifying

$$\frac{\rho_1}{A_1} = \frac{\rho_2}{A_2} \tag{1/2}$$

(b) Potential gradient of the potentiometer wire for set A, $K = I \frac{\rho_1}{A_1}$

Potential drop across the potentiometer wire in set B

$$V = I \left(\frac{\rho_{1l}}{2A_{1}} + \frac{\rho_{2l}}{2A_{2}} \right)$$
$$V = \frac{I}{2} \left(\frac{\rho_{1}}{A_{1}} + \frac{\rho_{2}}{A_{2}} \right) l$$
(1/2)

K' =
$$\frac{I}{2} \left(\frac{\rho_1}{A_1} + \frac{\rho_2}{A_2} \right)$$
, using the condition obtained in part (i) (1/2)

K'=
$$I \frac{\rho_1}{A_1}$$
, which is equal to K.

Therefore, balancing length obtained in the two sets is same. (1/2)

13. (i) Machine : Cyclotron	(1/2)
Diagram	(1/2)
Resonance condition	(1)
(ii) Particle will accelerate and decelerate alternately.	However, the radius of
the path will remain unchanged	(1)

14.
$$\varepsilon = -\frac{d\phi}{dt}$$
,
 $\varepsilon = -0.023 \text{ V}$,
 $I = \varepsilon/R = -2.7 \text{ mA for } 0 < t < 2s$.
 $\boxed{\begin{array}{c} 0 < t < 2s \\ \varepsilon (V) \end{array}} = \frac{0 < t < 2s}{0} \\ 1 (A) \\ -2.7 \end{array} = \frac{0}{2} < t < 4s \\ 0 \\ -2.7 \end{array} = \frac{4}{2} < t < 4s \\ -2.7 \\ 0 \\ -2.7 \end{array} = \frac{1}{2} < t < 4s \\ -2.7 \\ -2.7 \\ 0 \\ -2.7$

15.

	Type of wave	Application
(a)	Gamma rays (1/2)	Treatment of tumors (1/2)
(b)	Radio waves (1/2)	Radio and television Communication systems (1/2)
(c)	X- rays (1/2)	Study of crystals (1/2)

16. $T_2P = D + x$, $T_1P = D - x$	(1/2)
$S_1 P = [(S_1T_1)^2 + (PT_1)^2]^{1/2}$	(1/2)
$= [D_2 + (D - x)^2]^{1/2}$	(1/2)
$S_2P = [D^2 + (D + x)^2]^{1/2}$	(1/2)
Minima will occur when $S_2P - S_1P = \lambda/2$	(1/2)
$D = \frac{\lambda}{2(\sqrt{5}-1)}$	(1/2)

17. $\frac{1}{fe} = \frac{1}{ve} - \frac{1}{ue}$ solving $u_e = -4.2$ cm	(1)
$\frac{1}{fo} = \frac{1}{vo} - \frac{1}{uo}$, solving $u_0 = -1.1$ cm	(1)

$$m = \frac{v}{u} \left(1 + \frac{D}{fe} \right) = -44 \tag{1}$$

18.Explanation of Photo electric effect	(1)
Explanation of the effect using particle concept	(1)
Explanation of the failure of wave theory in the explanation	(1)

19. $mv^2/r = e^2/4\pi\epsilon_0 r^2$	
$v^2 = e^2 / m 4\pi \epsilon_o r$	(1/2)
Bohr's quantisation condition	
$Mvr = nh/2\pi$	(1/2)
Solving, $v = e^2 / 2\varepsilon_0 h$, $r = \varepsilon_0 h^2 / \pi m e^2$	(1/2)
Magnetic field at the centre	
$B = \mu_0 I / 2r$	(1/2)
$I = ev/2\pi r$	(1/2)
$\mathbf{B} = \mu_{\mathrm{o}} \mathrm{e}^{7} \pi \mathrm{m}^{2} / 8 \boldsymbol{\varepsilon}_{\mathrm{o}}^{3} \mathrm{h}^{5}$	(1/2)
20. B : reverse biased	(1/2)

. D. Teverse blased	(1/2)
C: forward biased	(1/2)
Justification	(2)

21.(i) Emitter base junction is forward biased whereas base collector junction is reverse biased. (1) (ii) Small change in the current I_B in the base circuit controls the larger current I_C in the collector circuit. $I_C = \beta I_B$ (1) (iii) Elemental semiconductor's band gap is such that the emitted wavelength lies in IR region. Hence cannot be used for making LED (1) (1)

22. (1) size of the antenna	(1/2)
Effective power radiated by the antenna	(1/2)
Mixing up of signals from different transmitters	(1/2)
(ii) modulation	(1/2)
Block diagram of amplitude modulation	(1)

SECTION D

23. (i) Any meaningful activity and values which could be inculcated (2)

(ii) Diagram with labelling three magnetic elements of earth (1+1)

SECTION E

24. (a) (i)
$$C_A = 4\pi \epsilon_0 R$$
, $C_B = 4\pi \epsilon_0 (2R)$ (1/2)

$$C_{\rm B} > C_{\rm A} \tag{1/2}$$

(ii) $u = \frac{1}{2} \varepsilon_{\rm o} E^2$
(1/2)

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{A\varepsilon_0}, u \alpha 1 / A^2$$

$$\therefore \mathbf{u}_{\mathrm{A}} > \mathbf{u}_{\mathrm{B}} \tag{1/2}$$

(b) (i)
$$E = -\frac{dV}{dr}$$
 (1/2)

For same change in dV, $E \alpha 1/dr$ (1/2)

where 'dr' represents the distance between equipotential surfaces.

Diagram of equipotential surface due to a dipole	(1)
(ii) Polarity of charge – negative	(1/2)
Direction of electric field – radially inward	(1/2)

OR

^{24 (}a)

	Non-Polar (O_2) –(1/2)	Polar (H ₂ O)- (1/2)
Absence of electric field (1)		
Individual	No dipole moment exists	Dipole moment exists
Specimen	No dipole moment exists	Dipoles are randomly oriented. Net P =0

Page **19** of **23**

Presence of electric field (1)		
Individual	Dipole moment exists (molecules become polarised)	Torque acts on the molecules to align them parallel to E
Specimen	Dipole moment exists	Net dipole moment exists parallel to Dipole moment exists E .

(b) (i)
$$V = E_o d + \frac{E_o}{k} d + E_o d + 0 + E_o d$$
 (1/2)

$$V = 3 E_0 d + \frac{E_0}{k} d \tag{1/2}$$

(ii) Graph

25. (a) AC generator	
Diagram	(1)
Principle	(1)
Working	(1)
(b) (i) Capacitor – electric field	(1/2)
Inductor – magnetic field	(1/2)
(ii) resistance of the circuit	(1/2)

(1)

(1+1)

OR

25 (a) B : inductive reactance (1	/2)
-----------------------------------	-----

(b) At resonance
$$X_L = X_C$$
 (1/2)

$$Z = [(X_{L} - X_{C})^{2} + R^{2}]^{1/2}, Z = R$$
(1/2)

Phasor diagrams

phase difference is ϕ

(c) Acceptor circuit: Series LCR circuit

(1/2)

Page **21** of **23**

26. (a) To derive $\frac{\mu^2}{\nu} - \frac{\mu^1}{u} = \frac{\mu^2 - \mu^1}{R}$, (b) Diagram (2)

(3)

OR

26 (a) Diagram -

(1/2)

(1)

$$\sin i_c = 8/9$$
 (1/2)

(b) Graph

(1)

Interpretation: Path of the ray can be traced back resulting in same angle of deviation if i & e are interchanged (1/2)

$$\delta + \mathbf{A} = \mathbf{i} + \mathbf{e} \tag{1/2}$$

To derive
$$\mu = \frac{\sin(A + \delta m)/2}{\sin A/2}$$
 (1)
