Class XII Physics

Sample Question Paper

(Applicable for March 2016 Examination)

(Marking Scheme)

Time Allowed: 3 Hours

Maximum Marks: 70

Section A

1.

Inside
Outside
2. (i) Cu (metals, alloys)
(ii) Si (semiconductor)
3. (i) A
(ii) Capacitor
4. $\frac{1}{f}=\frac{1}{v}-\frac{1}{u}, \frac{1}{f}=\left(\frac{\mu l}{\mu m}-1\right)\left(\frac{1}{R 1}-\frac{1}{R 2}\right)$

If μ_{m} increases, $1 / \mathrm{f}$ decreases, $\therefore \mathrm{v}$ increases.
5. LAN

SECTION B

6. $\boldsymbol{\varepsilon}_{\mathrm{eq}}=\left(\frac{\varepsilon 1}{r 1}+\frac{\varepsilon 2}{r 2}\right) /\left(\frac{1}{r 1}+\frac{1}{r 2}\right)$

$$
\begin{align*}
& \boldsymbol{\varepsilon}_{\mathrm{eq}}=(10 / 10-2 / 5) /(1 / 10+1 / 5) \tag{1}\\
& \boldsymbol{\varepsilon}_{\mathrm{eq}}=2 \mathrm{~V} \tag{1/2}
\end{align*}
$$

7. $\mathrm{I}_{1}=\mathrm{I}_{\mathrm{o}} / 2$
$\mathrm{I}_{2}=\mathrm{I}_{1} \cos ^{2} 60^{\circ}$
$\mathrm{I}_{2}=\mathrm{I}_{\mathrm{o}} / 8$
OR
8. Huygens' Principle
(1)

Ray diagram using Huygen's construction
8. $\mathrm{P}=5 \times 10^{-3} \mathrm{~W}$
$\mathrm{n}=\frac{P}{E}$,
$\mathrm{E}=\frac{P}{n}=6.25 \times 10^{-19} \mathrm{~J}$
$\mathrm{E}=3.9 \mathrm{eV}$
$\mathrm{W}_{\mathrm{o}}=\mathrm{E}-\mathrm{eV}$ 。
9. $\mathrm{R}=\mathrm{Ro}^{-\lambda t}$
$\ln \mathrm{R}=\ln \mathrm{Ro}-\lambda \mathrm{t}$
$\ln R=-\lambda t+\ln R o$
slope of $\ln R \mathrm{v} / \mathrm{st}$ is ${ }^{'}-\lambda$ '
$-\lambda=\frac{0-1.52}{218-164}$
$\lambda=0.028$ minute $^{-1}$
10.

	Frequency range	
Ground wave	$500-1500 \mathrm{KHz} \mathrm{(1/2)}$	Standard AM broadcast (1/2)
Space wave	Above $40 \mathrm{MHz} \quad(1 / 2)$	Television $\quad(1 / 2)$

SECTION C

11. (i) at $\mathrm{A}, \quad \mathrm{E}=\frac{\sigma}{2 \varepsilon o}$
$\mathrm{E}=1.1 \times 10^{28} \mathrm{~N} / \mathrm{C}$
Directed away from the sheet
(ii) Point Y

Because at 50 cm , the charge sheet acts as a finite sheet and thus the magnitude remains same towards the middle region of the planar sheet.
12. (i) $\mathrm{V}=\mathrm{Ir}$ (without voltmeter) R_{v}

$$
\begin{align*}
& V^{\prime}=\frac{\mathrm{IrRv}}{\mathrm{r}+\mathrm{Rv}}=\frac{\mathrm{Ir}}{1+\frac{\mathrm{r}}{\mathrm{Rv}}} \tag{1/2}\\
& \mathrm{~V}^{\prime}<\mathrm{V} \tag{1/2}
\end{align*}
$$

(ii) Percentage error
$\left(\frac{V-V r}{V}\right) \mathrm{X} 100$
$=\left(\frac{\mathrm{r}}{\mathrm{r}+\mathrm{Rv}}\right) \mathrm{X} 100$
(iii) $\mathrm{Rv} \rightarrow \infty, \mathrm{V}^{\prime}=\mathrm{Ir}=\mathrm{V}$

OR

12(a) $\mathrm{I}=\frac{\varepsilon}{R+\frac{\rho 1 l}{A 1}}$ for Set A
$\mathrm{I}=\frac{\varepsilon}{R+\frac{\rho 1 l}{2 A 1}+\frac{\rho 2 l}{2 A 2}}$ for set B
Equating the above two expressions and simplifying

$$
\begin{equation*}
\frac{\rho_{1}}{A 1}=\frac{\rho_{2}}{A 2} \tag{1/2}
\end{equation*}
$$

(b) Potential gradient of the potentiometer wire for set $\mathrm{A}, \mathrm{K}=\mathrm{I} \frac{\rho 1}{A 1}$

Potential drop across the potentiometer wire in set B

$$
\begin{align*}
& \mathrm{V}=\mathrm{I}\left(\frac{\rho 1 l}{2 A 1}+\frac{\rho 2 l}{2 A 2}\right) \\
& \mathrm{V}=\frac{I}{2}\left(\frac{\rho 1}{A 1}+\frac{\rho 2}{A 2}\right) l \tag{1/2}\\
& \mathrm{~K}^{\prime}=\frac{I}{2}\left(\frac{\rho 1}{A 1}+\frac{\rho 2}{A 2}\right), \text { using the condition obtained in part (i) } \tag{1/2}\\
& \mathrm{K}^{\prime}=\mathrm{I} \frac{\rho 1}{A 1}, \text { which is equal to } \mathrm{K} . \tag{1/2}
\end{align*}
$$

Therefore, balancing length obtained in the two sets is same.
13. (i) Machine: Cyclotron

Diagram
Resonance condition
(ii) Particle will accelerate and decelerate alternately. However, the radius of the path will remain unchanged
14. $\boldsymbol{\varepsilon}=-\frac{\mathrm{d} \varnothing}{\mathrm{dt}}$,
$\varepsilon=-0.023 \mathrm{~V}$,
$\mathrm{I}=\varepsilon / \mathrm{R}=-2.7 \mathrm{~mA}$ for $0<\mathrm{t}<2 \mathrm{~s}$.

	$0<t<2 \mathrm{~s}$	$2<\mathrm{t}<4 \mathrm{~s}$	$4<\mathrm{t}<6 \mathrm{~s}$
$\boldsymbol{\varepsilon}(\mathrm{~V})$	-0.023	0	+0.023
I (A)	-2.7	0	+2.7

15.

	Type of wave	Application
(a)	Gamma rays (1/2)	Treatment of tumors (1/2)
(b)	Radio waves (1/2)	Radio and television Communication systems (1/2)
(c)	X- rays (1/2)	Study of crystals $\quad(1 / 2)$

16. $\mathrm{T}_{2} \mathrm{P}=D+x, \mathrm{~T}_{1} \mathrm{P}=D-x$
$\mathrm{S}_{1} \mathrm{P}=\left[\left(\mathrm{S}_{1} \mathrm{~T}_{1}\right)^{2}+\left(\mathrm{PT}_{1}\right)^{2}\right]^{1 / 2}$

$$
\begin{equation*}
=\left[D_{2}+(D-x)^{2}\right]^{1 / 2} \tag{1/2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{S}_{2} \mathrm{P}=\left[D^{2}+(D+x)^{2}\right]^{1 / 2} \tag{1/2}
\end{equation*}
$$

Minima will occur when $\mathrm{S}_{2} \mathrm{P}-\mathrm{S}_{1} \mathrm{P}=\lambda / 2$

$$
\begin{equation*}
\mathrm{D}=\frac{\lambda}{2(\sqrt{5}-1)} \tag{1/2}
\end{equation*}
$$

$$
\text { 17. } \begin{align*}
\frac{1}{f e} & =\frac{1}{v e}-\frac{1}{u e} \text { solving } \mathrm{u}_{\mathrm{e}}=-4.2 \mathrm{~cm} \tag{1}\\
\frac{1}{f o} & =\frac{1}{v o}-\frac{1}{u o}, \text { solving } \mathrm{u}_{0}=-1.1 \mathrm{~cm} \tag{1}
\end{align*}
$$

$\mathrm{m}=\frac{v}{u}\left(1+\frac{D}{f e}\right)=-44$
18.Explanation of Photo electric effect

Explanation of the effect using particle concept
Explanation of the failure of wave theory in the explanation
19. $\mathrm{mv}^{2} / \mathrm{r}=\mathrm{e}^{2} / 4 \pi \varepsilon_{0} \mathrm{r}^{2}$
$\mathrm{v}^{2}=\mathrm{e}^{2} / \mathrm{m} 4 \pi \varepsilon_{0} \mathrm{r}$
Bohr's quantisation condition
$\mathrm{Mvr}=\mathrm{nh} / 2 \pi$
Solving, $\mathrm{v}=\mathrm{e}^{2} / 2 \boldsymbol{\varepsilon}_{\mathrm{o}} \mathrm{h}, \mathrm{r}=\boldsymbol{\varepsilon}_{\mathrm{o}} \mathrm{h}^{2} / \pi \mathrm{me}^{2}$
Magnetic field at the centre

$$
\begin{align*}
& \mathrm{B}=\mu_{0} \mathrm{I} / 2 \mathrm{r} \tag{1/2}\\
& \mathrm{I}=\mathrm{ev} / 2 \pi \mathrm{r} \tag{1/2}\\
& \mathrm{~B}=\mu_{0} \mathrm{e}^{7} \pi \mathrm{~m}^{2} / 8 \boldsymbol{\varepsilon}_{0}^{3} \mathrm{~h}^{5}
\end{align*}
$$

20. B : reverse biased

C: forward biased
Justification
21.(i) Emitter base junction is forward biased whereas base collector junction is reverse biased.
(ii) Small change in the current I_{B} in the base circuit controls the larger current I_{C} in the collector circuit. $I_{C}=\beta I_{B}$
(iii) Elemental semiconductor's band gap is such that the emitted wavelength lies in IR region. Hence cannot be used for making LED
22. (i) size of the antenna

Effective power radiated by the antenna
Mixing up of signals from different transmitters
(ii) modulation

Block diagram of amplitude modulation

SECTION D

23. (i) Any meaningful activity and values which could be inculcated
(ii) Diagram with labelling three magnetic elements of earth (1+1)

SECTION E

24. (a) (i) $\mathrm{C}_{\mathrm{A}}=4 \pi \varepsilon_{0} \mathrm{R}, \mathrm{C}_{\mathrm{B}}=4 \pi \varepsilon_{0}$ (2R)
$\mathrm{C}_{\mathrm{B}}>\mathrm{C}_{\mathrm{A}}$
(ii) $u=\frac{1}{2} \varepsilon_{0} E^{2}$
$\mathrm{E}=\frac{\sigma}{z_{o}}=\frac{Q}{\text { Azo }}, \mathrm{u} \alpha 1 / \mathrm{A}^{2}$
$\therefore \mathrm{u}_{\mathrm{A}}>\mathrm{u}_{\mathrm{B}}$
(b) (i) $\mathrm{E}=-\frac{d V}{d r}$

For same change in $\mathrm{dV}, \mathrm{E} \alpha 1 / \mathrm{dr}$
where 'dr' represents the distance between equipotential surfaces.
Diagram of equipotential surface due to a dipole
(ii) Polarity of charge - negative

Direction of electric field - radially inward
OR
24 (a)

	Non-Polar $\left(\mathrm{O}_{2}\right)-(1 / 2)$	Polar $\left(\mathrm{H}_{2} \mathrm{O}\right)-(1 / 2)$
Absence of electric field (1)		
Individual	No dipole moment exists	Dipole moment exists
Specimen	No dipole moment exists	Dipoles are randomly oriented. Net $\mathbf{P}=0$

Presence of electric field(1)		
Individual	Dipole moment exists (molecules become polarised)	Torque acts on the molecules to align them parallel to \mathbf{E}
Specimen	Dipole moment exists	Net dipole moment exists parallel to Dipole moment exists E.

(b) (i) $\mathrm{V}=\mathrm{E}_{0} \mathrm{~d}+\frac{E o}{k} \mathrm{~d}+\mathrm{E}_{\mathrm{o}} \mathrm{d}+0+\mathrm{E}_{\mathrm{o}} \mathrm{d}$

$$
\begin{equation*}
\mathrm{V}=3 \mathrm{E}_{\mathrm{o}} \mathrm{~d}+\frac{E o}{k} \mathrm{~d} \tag{1/2}
\end{equation*}
$$

(ii) Graph

25. (a) AC generator

Diagram
Principle
Working
(b) (i) Capacitor - electric field

Inductor - magnetic field
(ii) resistance of the circuit

Radiation in the form of EM waves

OR

25 (a) B : inductive reactance
C: resistance
(b) At resonance $X_{L}=X_{C}$

$$
\begin{equation*}
\mathrm{Z}=\left[\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}+\mathrm{R}^{2}\right]^{1 / 2}, \mathrm{Z}=\mathrm{R} \tag{1/2}
\end{equation*}
$$

Phasor diagrams
phase difference is ϕ

$$
x_{L}=x_{c} \Rightarrow v_{L}=v_{c}
$$

same phase
(c) Acceptor circuit: Series LCR circuit
(1/2)

Radio tuning

26.

$$
\begin{equation*}
\text { (a) To derive } \frac{\mu 2}{v}-\frac{\mu 1}{u}=\frac{\mu 2-\mu 1}{R} \text {, } \tag{3}
\end{equation*}
$$

(b) Diagram

OR

26 (a) Diagram -

$$
\mu_{\mathrm{g}} / \mu_{\mathrm{w}}=1 / \sin \mathrm{i}_{\mathrm{c}}
$$

$\operatorname{Sin} \mathrm{i}_{\mathrm{c}}=8 / 9$
(b) Graph
(1)

Interpretation: Path of the ray can be traced back resulting in same angle of deviation if i \& e are interchanged
$\delta+\mathrm{A}=\mathrm{i}+\mathrm{e}$
To derive $\mu=\frac{\sin (A+\delta m) / 2}{\sin A / 2}$
(1)

