SECTION A

1. It is independent of the distance. It's a straight line parallel to x-axis.
(1)
2.

3. $\varepsilon=\mathrm{Blv}$

$$
\begin{equation*}
=\mathrm{B} \cos \theta \times I \times(2 \mathrm{gH})^{1 / 2} \tag{1/2}
\end{equation*}
$$

4.

$$
\begin{align*}
\mathrm{I} & =\mathrm{Io} / 2 \cos ^{2}(45) \tag{1/2}\\
& =\mathrm{Io} / 4
\end{align*}
$$

5.

SECTION B

6.

$$
\begin{align*}
& A_{A} / A_{B}=6 \tag{1/2}\\
& H=V^{2} t / R \tag{1/2}\\
& R=\rho I / A \tag{1/2}\\
& H_{A} / H_{B}=6 \tag{1/2}
\end{align*}
$$

7.

$$
\begin{equation*}
1 / \mathrm{f}=(\mu-1)\left[1 / \mathrm{R}_{1}-1 / \mathrm{R}_{2}\right] \tag{1/2}
\end{equation*}
$$

$1 / 20=1 / 2\left[1 / R_{1}-1 / R_{2}\right]=$
$1 / f^{\prime}=1 / 4\left[1 / R_{1}-1 / R_{2}\right]$
$f^{\prime}=40 \mathrm{~cm}$
OR
$P=+5 D \quad f=1 / 5 \mathrm{~m}=20 \mathrm{~cm}$
For $3^{\text {rd }}$ observation, when the object is at $<2 \mathrm{f}$,
then the image has to be at $>2 \mathrm{f}$
hence this observation is wrong.
8.

$$
\begin{align*}
& \mathrm{m}_{\mathrm{p}}=1 \mathrm{u} \quad \mathrm{~m}_{\alpha}=4 \mathrm{u} \text { and } \mathrm{q}_{\mathrm{p}}=\mathrm{e} \quad \mathrm{q}_{\alpha}=4 \mathrm{e} \tag{1/2}\\
& 1 / 2 \mathrm{~m} \mathrm{v}^{2}=\mathrm{qV} \tag{1/2}\\
& \mathrm{P}=\mathrm{mv}=[\sqrt{ } 2 \mathrm{qVm}]^{1 / 2} \tag{1/2}\\
& \mathrm{P}_{\mathrm{p}} / \mathrm{P}_{\alpha}=1 / 8 \tag{1/2}
\end{align*}
$$

9.

$$
\begin{equation*}
\text { a) } \mathrm{t}_{1 / 2}=0.693 / 1.05=39.6 \text { or appro. } 40 \mathrm{~min} \tag{1/2}
\end{equation*}
$$

b) slope of graph $=-\lambda$

$$
\begin{align*}
& \lambda=-[-4.16+3.11 / 1]=1.05 \mathrm{~h} \tag{1/2}\\
& \mathrm{t}_{1 / 2}=0.693 / 1.05=39.6 \text { or appro. } 40 \mathrm{~min} \tag{1/2}
\end{align*}
$$

10.

Any correct answer 1 mark each

SECTION C

11.

a) $Q= \pm N q$
b) $V=Q / C \quad v=q / c \quad V / v=N(r / R)=N^{2 / 3}$
(1)
c) $C=N^{1 / 3} \mathrm{C}$
(1)
12.

$X / Y=40 / 60=2 / 3$
$X=4 \Omega$
4Ω and 6Ω are in series, $=10 \Omega$
40Ω and 60Ω are in series, $=100 \Omega$
10Ω and 100Ω are in parallel, $=1000 / 110 \Omega=9.09 \Omega$
There will be no change in the balancing length.
Formula for series and parallel

OR

Balanced Wheatstone bridge
Resultant resistance of the circuit $=2.5 \Omega$
Current in the circuit $=6 / 2.5=2.4 \mathrm{~A}$
Statement and conservation of energy
13.

$$
\begin{align*}
& \text { Rate of change of flux }=\mathrm{d} \Phi / \mathrm{dt}=\left(\left.\pi\right|^{2}\right) \mathrm{B}_{0} \mid \mathrm{dz} / \mathrm{dt}=\mathrm{IR} \tag{1/2}\\
& \qquad \mathrm{I}=\left(\left.\pi\right|^{2} \lambda\right) \mathrm{B}_{0} v / \mathrm{R} \tag{1/2}
\end{align*}
$$

Energy lost per second $=I^{2} R=\left(\left.\pi\right|^{2} \lambda\right)^{2} B_{o}{ }^{2} v^{2} / R$
Rate of change in $P E=m \mathrm{~g} \mathrm{dz} / \mathrm{dt}=\mathrm{mg} \mathrm{v}$
$m g v=\left(\left.\pi\right|^{2} \lambda\right)^{2} B_{0}{ }^{2} v^{2} / R$
$v=m g R /\left(\left.\pi\right|^{2} \lambda\right)^{2} B_{0}{ }^{2}$
14.
a) In absence of magnetic field, the energy is determined by the principle quantum number n, while the orbital quantum number 1 . If an electron is in nth state then the magnitude of the angular momentum is $(h / 2 \pi) I(I+1)$ where $I=0,1,2, \ldots \ldots .,(n-1)$, Since $I=0,1,2, \ldots,(n-1)$, different values of A are compatible with the same value of n. For example, when $n=3$, the possible values of 1 are $0,1,2$, and when $n=4$, the possible values of I are $0,1,2,3$. Thus, the electron in one of the atoms could have $n=3, I=2$, while the electron in the other atom could have $n=4, \mathrm{I}=2$. Therefore, according to quantum mechanics, it is possible for the electrons to have different energies but have the same orbital angular momentum.
b)

For a point nucleus in H -atom:
Ground state: $m v r=\mathrm{h}, \frac{m v^{2}}{r_{B}}=-\frac{e^{2}}{r_{B}{ }^{2}} \cdot \frac{1}{4 \pi \varepsilon_{0}}$
$\therefore m \frac{\mathrm{~h}^{2}}{m^{2} r_{B}{ }^{2}} \cdot \frac{1}{r_{B}}=+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \frac{1}{r_{B}{ }^{2}}$
$\therefore \frac{\hbar^{2}}{m} \cdot \frac{4 \pi \varepsilon_{0}}{e^{2}}=r_{B}=0.51 \AA$

If $R \gg r_{\mathrm{B}}$: the electron moves inside the sphere with radius $r_{B}^{\prime}\left(r_{B}^{\prime}=\right.$ new Bohr radius).

Charge inside $r_{B}^{\prime 4}=e\left(\frac{r_{B}^{\prime 3}}{R^{3}}\right)$

$$
\begin{align*}
& \therefore r_{B}^{\prime}=\frac{\mathrm{h}^{2}}{m}\left(\frac{4 \pi \varepsilon_{0}}{e^{2}}\right) \frac{R^{3}}{r_{B}^{\prime 3}} \\
& r_{B}^{\prime 4}=(0.51 \mathrm{~A}) \cdot R^{3} \cdot \quad R=10 A \\
& =510(\mathrm{~A})^{4} \\
& \begin{aligned}
& \therefore r_{B}^{\prime}=(510)^{1 / 4} \mathrm{~A}<R . \\
&=\left(\frac{\mathrm{h}^{2}}{2 m r_{B}^{2}}\right) \cdot\left(\frac{r_{B}^{2}}{r_{B}^{\prime 2}}\right)=(13.6 \mathrm{eV}) \frac{(0.51)^{2}}{(510)^{1 / 2}}=\frac{3.54}{22.6}=0.16 \mathrm{eV} \\
& P \cdot E=+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right) \cdot \frac{r_{0}}{2} \cdot \frac{r_{B}^{\prime 2}-3 R^{2}}{2 R^{2} r_{B}^{\prime 2}}=\frac{\mathrm{h}}{2 m} \cdot \frac{1}{r_{B}^{\prime 2}} \\
&= \\
&=+\left(\frac{e^{2}}{4 \pi \varepsilon_{0}} \cdot \frac{1}{r_{B}}\right) \cdot\left(\frac{r_{B}\left(r_{B}^{\prime 2}-3 R^{2}\right.}{R^{3}}\right) \\
&=+(27.2 \mathrm{eV}) \cdot \frac{-141}{1000}=-3.83 \mathrm{eV} .
\end{aligned} \\
& =+(27.2 \mathrm{eV})\left[\frac{0.51(\sqrt{510}-300)}{1000}\right]
\end{align*}
$$

15.

$E / B=v$ when E, V and B are perpendicular to each other.
Cyclotron, E is perpendicular to B is perpendicular to V, In presence of E parabolic path and in presence of B circular path. T and V are independent of radius of the path.

When frequency of oscillator is same as frequency of cyclotron then resonance occurs.
16.

$$
\begin{aligned}
\mathrm{T}_{2} \mathrm{P}= & D+x, \mathrm{~T}_{1} \mathrm{P}=D-x \\
\mathrm{~S}_{1} \mathrm{P}= & \sqrt{\left(\mathrm{S}_{1} \mathrm{~T}_{1}\right)^{2}+\left(\mathrm{PT}_{1}\right)^{2}} \\
= & {\left[D^{2}+(D-x)^{2}\right]^{1 / 2} } \\
\mathrm{~S}_{2} \mathrm{P}= & {\left[D^{2}+(D+x)^{2}\right]^{1 / 2} }
\end{aligned}
$$

Minima will occur when

$$
\begin{aligned}
& {\left[D^{2}+(D+x)^{2}\right]^{1 / 2}-\left[D^{2}+(D-x)^{2}\right]^{1 / 2}=\frac{\lambda}{2}} \\
& \text { If } x=D \\
& \left(D^{2}+4 D^{2}\right)^{1 / 2}=\frac{\lambda}{2} \\
& \left(5 D^{2}\right)^{1 / 2}=\frac{\lambda}{2}, \quad \therefore D=\frac{\lambda}{2 \sqrt{5}} .
\end{aligned}
$$

17.

Diagram
$L=$ length of the telescope $=\mathrm{fo}+\mathrm{fe}=15.05 \mathrm{~m}$
$\mathrm{m}=\mathrm{fo} / \mathrm{fe}=15 / 0.05=300$
18. A - Incident energy is less than the work function of the metal

B - Incident energy is equal to the work function of the metal
C - Incident energy is greater than the work function of the metal
19.

Proton
e
1 u
alpha particle
2e
4 u
$r=m v / B q$
For same momentum: $p=m v$
$r \propto 1 / q$
$R($ proton $)>r($ alpha $)$
For same kinetic energy: $\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2}$

$$
\begin{equation*}
r^{2} \propto m / q^{2} \tag{1/2}
\end{equation*}
$$

Radius is independent of KE
20. a)

$$
\begin{align*}
& \mathrm{E}=\mathrm{h} \mu \tag{1/2}\\
& =\mathrm{hc} / \lambda=\mathrm{hc} / \lambda \mathrm{e} \tag{1/2}\\
& =2 \mathrm{eV} \tag{1/2}
\end{align*}
$$

Hence D_{1} and D_{3} can detect light.
b)

Number of Free electrons are very small leading to negligible conduction.
Hence not possible.
21.

As $V_{\mathrm{be}}=0$, potential drop across R_{b} is 10 V .
$\therefore I_{b}=\frac{10}{400 \times 10^{3}}=25 \mu \mathrm{~A}$
Since $\mathrm{V}_{\mathrm{ce}}=0$, potential drop across R_{c}, i.e. $I_{c} R_{c}$ is 10 V .
$\therefore I_{c}=\frac{10}{3 \times 10^{3}}=3.33 \times 10^{-3}=3.33 \mathrm{~m} A$.
$\therefore \beta=\frac{I_{c}}{I_{b}}=\frac{3.33 \times 10^{-3}}{25 \times 10^{-6}}=1.33 \times 10^{2}=133$.
22. a)
μ is kept less than 1 so that the noise level can be kept small in the (1) signal.
b)

$$
\begin{equation*}
\mu=a(\max)+a(\min) / a(\max)-a(\min)=18 / 12=9 / 6=3 / 2=1.5 \tag{1}
\end{equation*}
$$

c)

Fading of a signal is prominent in case of amplitude modulation and

SECTION D

23.

i) Any one relevant value
ii) Nuclear fission
(1)
iii) Fuel, moderator, cadmium rods, any two
iv) to slow down the speed of neutrons

SECTION E

24.

$U=1 / 2 C V^{2}$
Loss in energy
It appears in the form of heat.

OR
Diagram
Net force $=0$ no translator motion
Defination of torque
SI unit
troque $=\mathrm{pE} \sin \theta$
$C_{\text {eq }}=11 / 6 \mathrm{C}$
where $C=A \varepsilon 0 / 3 d$,
$\mathrm{C} 1=\mathrm{C}, \mathrm{C} 2=\mathrm{C} / 2, \mathrm{C} 3=\mathrm{C} / 3$
and all of these capacitors are connected in parallel.
25. a)

$$
\begin{equation*}
X_{C}=X_{L} \tag{2}
\end{equation*}
$$

b)

$$
\begin{align*}
\mathrm{I}_{0} & =\mathrm{V}_{0} / \sqrt{ }\left(\mathrm{R}^{2}+X_{\mathrm{L}}^{2}\right) \tag{1/2}\\
\mathrm{Vo}_{0} & =\sqrt{ } 2 \mathrm{~V}_{\text {rms }} \tag{1/2}\\
\mathrm{X}_{\mathrm{L}} & =2 \pi \mathrm{fL} \tag{1/2}
\end{align*}
$$

Current lags behind the voltage by phase Φ

(1/2)
OR
a)
$\mathrm{V}=\mathrm{Vo} \sin \omega \mathrm{t} \quad \mathrm{V}=\mathrm{Q} / \mathrm{C}$
$\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$
$\mathrm{Io}=\mathrm{Vo} /(1 / \omega \mathrm{C})$
$\mathrm{I}=\mathrm{Io} \sin (\omega \mathrm{t}+\pi / 2)$

b)

$$
\begin{align*}
& \mathrm{X}_{\mathrm{c}}=1 / 2 \pi \mathrm{fc}=212.3 \Omega \\
& \mathrm{Z}=\sqrt{ } \mathrm{R}^{2}+\mathrm{Xc}^{2}=291.5 \Omega \tag{1/2}\\
& \mathrm{I}_{\mathrm{rms}}=\mathrm{V}_{\mathrm{rms}} / \mathrm{Z}=220 / 291.5=0.755 \mathrm{~A} \tag{1/2}\\
& \mathrm{~V}_{\mathrm{R}}(\mathrm{rms})=151 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{c}}(\mathrm{rms})=160.3 \mathrm{~V} \tag{1/2}
\end{align*}
$$

Two voltages are out of phase. Hence they are added vectorially and hence the difference is!
26. a)
$\mu=c / v=\sin i / \sin r$,
$v \alpha \sin r$ Hence $v_{\text {min }}$ for light will be for $r=15^{\circ}$.
Diagram
derivation
final expression
OR
a. The ray coming from the object has to pass from denser to rarer medium and angle of incidence is greater than the critical angle.
b.
i) $\sin \mathrm{c}=\mathrm{n}_{1} / \mathrm{n} \quad\left(90-\mathrm{r}_{1}\right)+45+(90-\mathrm{c})=180$
$\mathrm{r}_{1}=45-\mathrm{c}$
$\sin \mathrm{i} / \sin \mathrm{r}_{1}=\mathrm{n} \quad \sin \mathrm{i}=\mathrm{n} \sin \mathrm{r}_{1}=\mathrm{n} \sin (45-\mathrm{c})$
$=\mathrm{n}(\sin 45 \cos \mathrm{c}-\cos 45 \sin \mathrm{c})$
$=n / \sqrt{ } 2(\cos c-\sin c)$
$=n / \sqrt{ } 2\left(\sqrt{ }\left[1-\sin ^{2} C\right]-\sin c\right)$
$=1 / \sqrt{ } 2\left(\sqrt{ } n^{2}-n_{1}^{2}\right)-n_{1}$
$\mathrm{i}=\sin ^{-1}\left(1 / \sqrt{ } 2\left(\sqrt{ } \mathrm{n}^{2}-\mathrm{n}_{1}^{2}\right)-\mathrm{n}_{1}\right)$
ii) $r_{2}=0$

$$
\begin{equation*}
r_{1}+r_{2}=45 \quad r_{1}=45 \tag{1/2}
\end{equation*}
$$

$\sin i / \sin r_{1}=n$
$\sin i=n \sin r_{1}=1.352 \sin 45=0.956$
$i=\sin ^{-1}(0.956)=72.58$

