Class: XII
Physics (042)
Marking Scheme 2018-19
Time allowed: 3 hours
Maximum Marks: 70

Q No	SECTION A	Marks
1.	$\mathrm{C} / \mathrm{m}^{2}$	1
2.	Fractional change in resistivity per unit change in temperature.	1
3.	X-rays	1
	OR	1
	Displacement current	
4.	From the graph $\tan \theta=\frac{\sin r}{\sin i}$ $\begin{aligned} & \frac{\sin i}{\sin r}=\frac{v_{1}}{v_{2}} \\ & \frac{v_{1}}{v_{2}}=\cot \theta \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
5.	$\begin{aligned} & \mathrm{P}_{1}=\mathrm{P}_{2} \\ & \text { Ratio } \lambda 1 / \lambda 2=1: 1 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
	OR	
	Each photon has an energy , $\mathrm{E}=\mathrm{h} . \mathrm{v}$ $\begin{aligned} & =\left(6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(6.0 \times 10^{14} \mathrm{~Hz}\right) \\ & =3.98 \times 10^{-19} \mathrm{~J} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
	SECTION B	
6.	$\begin{aligned} \text { Equivalent Resistance } & =R 1 . R 2 /(R 1+R 2)+R 3+R 4 . R 5 /(R 4+R 5) \\ & =[(4 \times 4) /(4+4)]+1+[(12 \times 6) /(12+6)] \Omega \\ & =7 \Omega . \end{aligned}$ OR $\begin{aligned} r & =\frac{\varepsilon-V}{1} \\ & =\quad \\ & \frac{9 \mathrm{~V}-8 \mathrm{~V}}{5 \mathrm{~A}} \\ & =0.2 \Omega \end{aligned}$	1 1/2 $1 / 2$ 1 1/2 $1 / 2$

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 7. \& \begin{tabular}{l}
The positive of \(\mathrm{E}_{1}\) is not connected to terminal X . \\
In loop PGJX, \\
\(\mathrm{E}_{1}-\mathrm{V}_{\mathrm{G}}+\mathrm{E}_{\mathrm{XN}}=0\)
\[
\mathrm{V}_{\mathrm{G}}=\mathrm{E}_{1}+\mathrm{E}_{\mathrm{XN}}
\] \\
\(\mathrm{V}_{\mathrm{G}}=\mathrm{E}_{1}+\mathrm{k} \ell\) \\
So, \(\mathrm{V}_{\mathrm{G}}\) (or deflection) will be maximum when \(\ell\) is maximum i.e. when jockey is touched near end Y . Also, \(\mathrm{V}_{\mathrm{G}}\) (or deflection) will be minimum when \(\ell\) is minimum i.e. when jockey is touched near end X .
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \\
\hline (a) \& $\mathrm{X}=(100-\ell) \mathrm{R} / \ell$ \& \\
\hline (b) \& Balancing length will increase on increase of resistance R. \& \\

\hline 8. \& | |
| :--- |
| Equal length of phasors current leads voltage phase difference is $\pi / 4$ | \& $1 / 2$

$1 / 2$
1 \\

\hline 9. \& | (i) Radiation re-radiated by earth has greater wavelength |
| :--- |
| (ii)Tanning effect is significant for direct UV radiation; it is negligible for radiation coming through the glass. | \& \[

$$
\begin{array}{|l|}
\hline \mathbf{1} \\
\hline
\end{array}
$$
\] \\

\hline 10. \& | $\text { Angular width } 2 \Theta=2 \lambda / \mathrm{d}$ |
| :--- |
| Given $\lambda=6000 \AA$ |
| In Case of new λ (assumed λ ' here), angular width decreases by 30% $\begin{aligned} & =\left(\frac{100-30}{100}\right) 2 \Theta \\ & =0.70(2 \Theta) \end{aligned}$ | \& $1 / 2$

$1 / 2$
$1 / 2$ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{aligned}
& 2 \lambda^{\prime} / d=0.70 \times(2 \lambda / d) \\
& \therefore \lambda^{\prime}=4200 \AA
\end{aligned}
$$ \& 1/2 \\
\hline 11. \& Universal gates (like the NAND and the NOR gates) are gates that can be appropriately combined to realize all the three basic gates. \& 1

1 \\

\hline 12. \& $$
\begin{aligned}
\text { Range } \mathrm{d} & =\sqrt{2 h R}+\sqrt{2 h_{R} R} \\
\mathrm{~d} & =33.9 \mathrm{~km}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{1} \\
& \mathbf{1}
\end{aligned}
$$
\] \\

\hline \& SECTION: C \& \\
\hline \multirow[t]{3}{*}{13.} \& From energy conservation,

$$
\begin{aligned}
& U_{i}+K_{i}=U_{f}+K_{f} \\
& \mathrm{kQq} / \mathrm{r}_{\mathrm{i}}+0=\mathrm{kQq} / \mathrm{r}_{\mathrm{f}}+\mathrm{K}_{\mathrm{f}} \\
& \mathrm{~K}_{\mathrm{f}}=\mathrm{kQq}\left(1 / \mathrm{r}_{\mathrm{i}}-1 / \mathrm{r}_{\mathrm{f}}\right)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\] \\

\hline \& When Q is $+15 \mu \mathrm{C}$, q will move 15 cm away from it. Hence $\mathrm{r}_{\mathrm{f}}=45 \mathrm{~cm}$ $\begin{aligned} \mathrm{K}_{\mathrm{f}} & =9 \times 10^{9} \times 15 \times 10^{-6} \times 5 \times 10^{-6}\left[1 /\left(30 \times 10^{-2}\right)-1 /\left(45 \times 10^{-2}\right)\right] \\ & =0.75 \mathrm{~J}\end{aligned}$ \& $$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$ \\

\hline \& When Q is $-15 \mu \mathrm{C}$, q will move 15 cm towards it. Hence $\mathrm{r}_{\mathrm{f}}=15 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{f}} & =9 \times 10^{9} \times\left(-15 \times 10^{-6}\right) \times 5 \times 10^{-6}\left[1 /\left(30 \times 10^{-2}\right)-1 /\left(15 \times 10^{-2}\right)\right] \\
& =2.25 \mathrm{~J}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\] \\

\hline 14. \& | (a) p_{1} : stable equilibrium |
| :--- |
| p_{2} : unstable equilibrium |
| The electric field, on either side, is directed towards the negatively charged sheet and its magnitude is independent of the distance of the field point from the sheet. For position p_{1}, dipole moment and electric field are parallel. For position p_{2}, they are antiparallel. | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2+1 / 2
\end{aligned}
$$
\] \\

\hline \& (b) The dipole will not be in equilibrium in any of the two positions. The electric field due to an infinite straight charged wire is non- uniform ($\mathrm{E} \alpha 1 / \mathrm{r}$). Hence there will be a net non-zero force on the dipole in each case. \& $$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$ \\

\hline 15. \& (a) Drift speed in B (n-type semiconductor) is higher Reason: $\mathrm{I}=\mathrm{neAv}_{\mathrm{d}}$ is same for both n is much lower in semiconductors. \& $$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$ \\

\hline \& | (b) Voltage drop across A will increase as the resistance of A increases with increase in temperature. |
| :--- |
| Voltage drop across B will decrease as resistance of B will decrease with increase in temperature. | \& \[

$$
\begin{aligned}
& 1 / 2+1 / 2 \\
& 1 / 2+1 / 2
\end{aligned}
$$
\] \\

\hline 16. \& | $\mathbf{E}=\mathrm{E} \mathbf{j} \text { and } \mathbf{B}=\mathrm{B} \mathbf{k}$ |
| :--- |
| Force on positive ion due to electric field $\mathbf{F}_{\mathbf{E}}=\mathrm{qE} \mathbf{j}$ Force due to magnetic field $\mathbf{F}_{\mathbf{B}}=\mathrm{q}\left(\mathbf{v}_{\mathbf{c}} \times \mathbf{B}\right)$ | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\] \\

\hline \& | For passing undeflected, $\mathbf{F}_{\mathbf{E}}=-\mathbf{F}_{\mathbf{B}}$ $\mathrm{qEj}=-\mathrm{q}\left(\mathbf{v}_{\mathrm{c}} \times \mathrm{Bk}\right)$ |
| :--- |
| This is possible only if $\mathrm{q}_{\mathbf{c}} \times \mathrm{Bk}=\mathrm{qv}_{\mathrm{c}} \mathrm{Bj}$ or $\mathbf{v}_{\mathbf{c}}=(\mathrm{E} / \mathrm{B}) \mathbf{i}$ | \& 1/2 \\

\hline
\end{tabular}

17.	$\begin{aligned} & \hline \mathrm{I}_{0}=\mathrm{V}_{0} / \mathrm{R}=10 / 10=1 \mathrm{~A} \\ & \omega_{\mathrm{r}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{ }\left(1 \times 1 \times 10^{-6}\right)=10^{3} \mathrm{rad} / \mathrm{s} \\ & \mathrm{~V}_{0}=\mathrm{I}_{0} \mathrm{X}_{\mathrm{L}}=\mathrm{I}_{0} \omega_{\mathrm{r}} \mathrm{~L} \\ & \quad=1 \times 10^{3} \times 1=10^{3} \mathrm{~V} \\ & \mathrm{Q}=\omega_{\mathrm{r}} \mathrm{~L} / \mathrm{R} \\ & =\left(10^{3} \times 1\right) / 10=100 \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
18.	a) Principle of transformer b) Laminations are thin, making the resistance higher. Eddy currents are confined within each thin lamination. This reduces the net eddy current. c) For maximum sharing of magnetic flux and magnetic flux per turn to be the same in both primary and secondary.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
	OR	
	At an instant t, charge q on the capacitor and the current i are given by: $\begin{aligned} & q(t)=q_{0} \cos \omega t \\ & i(t)=-q_{0} \omega \sin \omega t \end{aligned}$ Energy stored in the capacitor at time t is $U_{E}=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{q^{2}}{C}=\frac{q_{0}^{2}}{2 C} \cos ^{2}(\omega t)$ Energy stored in the inductor at time t is $\begin{aligned} & U_{M}=\frac{1}{2} L i^{2} \\ & =\frac{1}{2} L q_{0}^{2} \omega^{2} \sin ^{2}(\omega t) \\ & =\frac{q_{0}^{2}}{2 C} \sin ^{2}(\omega t) \quad(\because \omega=1 / \sqrt{L C}) \end{aligned}$ Sum of energies $\begin{aligned} U_{E}+U_{M} & =\frac{q_{0}^{2}}{2 C}\left(\cos ^{2} \omega t+\sin ^{2} \omega t\right) \\ & =\frac{q_{0}^{2}}{2 C} \end{aligned}$ This sum is constant in time as q_{0} and C, both are time-independent.	1 1 1 1
19.	Ray diagram: (2)	

	Drawbacks: (i)Large sized lenses are heavy and difficult to support (ii) large sized lenses suffer from chromatic and spherical aberration.	$\mathbf{O R}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
will not affect it. \\
(ii) Yes \\
Reason: The material is ferromagnetic. It will remain magnetised even after removal from the solenoid and hence align with magnetic meridian.
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{26.} \& \begin{tabular}{l}
(a) Set A: stable interference pattern, the positions of maxima and minima does not change with time. \\
Set B : positions of maxima and minima will change rapidly with time and an average uniform intensity distribution will be observed on the screen.
\end{tabular} \& 1
1 \\
\hline \& \begin{tabular}{l}
(b) Expression for intensity of stable interference pattern in set -A \\
If the displacement produced by slit S 1 is
\[
y_{1}=a \cos \omega t
\] \\
then, the displacement produced by \(\mathrm{S}_{2}\) would be
\[
y_{2}=a \cos (\omega t+\phi)
\] \\
and the resultant displacement will be given by
\[
\begin{aligned}
y \& =y_{1}+y_{2} \\
\& =a[\cos \omega t+\cos (\omega t+\phi)] \\
\& =2 a \cos (\phi / 2) \cos (\omega t+\phi / 2)
\end{aligned}
\] \\
The amplitude of the resultant displacement is \(2 a \cos (\phi / 2)\) and therefore the intensity at that point will be
\[
\begin{gathered}
I=4 I_{0} \cos ^{2}(\phi / 2) \\
\Phi=0 \\
\therefore \mathrm{I}=4 \mathrm{I} 0
\end{gathered}
\] \\
In set \(B\), the intensity will be given by the average intensity
\[
\begin{aligned}
\& \langle I\rangle=4 I_{0}\left\langle\cos ^{2}(\phi / 2)\right\rangle \\
\& I=2 I_{0}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{|c}
2 \\
\\
\\
1
\end{tabular} \\
\hline \& OR \& \\
\hline \& (a) Refer to NCERT example 10.8 on page no. 378 Intensity \& 2
1 \\
\hline \& \begin{tabular}{l}
(b) Expression for incident angle:
\[
\begin{gathered}
\mu=\frac{\sin i_{B}}{\sin r}=\frac{\sin i_{B}}{\sin \left(\pi / 2-i_{B}\right)} \\
=\frac{\sin i_{B}}{\cos i_{B}}=\tan i_{B}
\end{gathered}
\] \\
Nature of polarisation: \\
Reflected light: Linearly polarised
\end{tabular} \& 1

$1 / 2$ \\
\hline
\end{tabular}

