Class -XII
PHYSICS

SQP Marking Scheme

2019-20

Section-A		
1.	a, $\quad \phi=\frac{q}{6 \in 0}$ (for one face)	1
2.	b, Conductor	1
3.	a , 1Ω.	1
4.	c, 12.0kJ	1
5.	a , speed	1
6.	d, virtual and inverted	1
7.	a, straight line	1
8.	d, $60{ }^{\circ}$	1
9.	b, work function	1
10.	b, third orbit	1
11.	45° or vertical	1
12.	2 H	1
13.	double	1
14.	$1.227 \mathrm{~A}^{\circ}$	1
15.	60°	1
16.	Difference in initial mass energy and energy associated with mass of products Or Total Kinetic energy gained in the process	1
17.	Increases	1
18.	$\mathrm{N}_{\mathrm{o}} / 8$	1
19.	0.79 eV	1
20.	Diodes with band gap energy in the visible spectrum range can function as LED	1

\begin{tabular}{|c|c|c|}
\hline \& Any one use \& \\
\hline \& Section - B \& \\
\hline 21. \& \begin{tabular}{l}
When electric field E is applied on conductor force acting on free electrons
\[
\begin{aligned}
\vec{F} \& =-\mathrm{e} \vec{E} \\
\operatorname{la} \& =-\mathrm{e} \vec{E}
\end{aligned}
\]
\[
\vec{a}=\frac{-s \vec{E}}{m}
\] \\
Average thermal velocity of electron in conductor is zero
\[
\left(\mathrm{u}_{\mathrm{t}}\right)_{\mathrm{av}}=0
\] \\
Average velocity of electron in conductors in \(\tau\) (relaxation time) \(=v_{d}\) (drift velocity)
\[
\begin{aligned}
\& \mathrm{v}_{\mathrm{d}}=\left(\mathrm{u}_{\mathrm{t}}\right)_{\mathrm{av}}+\mathrm{a} \tau \\
\& \mathrm{v}_{\mathrm{d}}=0+\frac{-a E \tau}{m}
\end{aligned}
\]
\[
\overrightarrow{\mathrm{v}_{\mathrm{d}}}=\frac{-s \vec{E} \overrightarrow{\mathrm{E}}_{\mathrm{t}}}{m}
\]
\end{tabular} \& 1
1 \\
\hline 22. \& \begin{tabular}{l}
\(\mathrm{C}_{2}\) and \(\mathrm{C}_{3}\) are in series
\[
\begin{aligned}
\& \frac{1}{c^{\prime}}=\frac{1}{2}+\frac{1}{2}=1 \\
\& c^{\prime}=1 \mu \mathrm{f}
\end{aligned}
\] \\
\(c^{\prime} \& \mathrm{C}_{4}\) are in II
\[
\mathrm{C}^{\prime \prime}=1+1=2 \mu \mathrm{f}
\] \\
\(C^{\prime \prime} \& C_{5}\) are in series
\[
\frac{1}{c m}=\frac{1}{2}+\frac{1}{2} \Rightarrow c^{n \prime \prime}=1 \mu \mathrm{f}
\] \\
\(c^{\prime \prime \prime} \& c_{1}\) are in II
\[
\mathrm{C}_{\mathrm{eq}}=1+1=2 \mu \mathrm{f}
\] \\
Energy stored
\[
\begin{aligned}
U=\frac{1}{2} \mathrm{cv}^{2} \& =\frac{1}{2} \times 2 \times 10^{-6} \times 6^{2} \\
\& =36 \times 10^{-6} \mathrm{~J}
\end{aligned}
\]
\end{tabular} \& 1

1

\hline
\end{tabular}

23.	(ii)/(i) $\begin{gathered} \frac{m_{\alpha} v_{\alpha}^{2}}{m_{p} v_{p}^{x}}=\frac{q_{x}}{q_{p}}=\frac{2}{1} \\ \frac{v_{x}^{x}}{v_{p}^{2}}=\frac{m_{p} \times 2}{m_{\mathrm{a}} \times 1}=\frac{2 m_{p}}{4 m_{p} \times 1}=\frac{1}{2} \\ v_{\alpha}: v_{p}=1: \sqrt{2} \end{gathered}$	1 1
24.	"The angle of incidence at which the reflected light is completely plane polarized, is called as Brewster's angle (i_{B}) At $\mathrm{i}=\mathrm{i}_{\mathrm{B}}$, reflected beam 1 to refracted beam $\therefore \mathrm{i}_{\mathrm{B}}+\mathrm{r}=90 \Rightarrow \mathrm{r}=90-\mathrm{i}_{\mathrm{B}}$ Using snell's law $\begin{aligned} & \frac{\sin i}{\sin r}=\mu \\ & \frac{\sin i_{B}}{\sin \left(90-i_{B}\right]}=\mu \Rightarrow \frac{\sin i_{B}}{\operatorname{Cos} i_{B}}=\mu \\ & \mu=\tan i_{B} \end{aligned}$	1 1
25.	wave function $\omega=2.14 \mathrm{eV}$ (a) Threshold frequency $\omega=h \nu_{0}$ $v_{0}=\frac{\omega}{h}=\frac{2.14 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}}$	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
=5.17 \times 10^{14} \mathrm{H}_{\mathrm{z}}
\] \\
(b) \(\mathrm{As}_{\text {max }}=\mathrm{eV}_{0}=0.6 \mathrm{eV}\) \\
Energy of photon \(\mathrm{E}=\mathrm{k}_{\text {max }}+\omega=0.6 \mathrm{eV}+2.14 \mathrm{eV}\)
\[
=2.74 \mathrm{eV}
\] \\
Wave length of photon \(\lambda=\frac{h e}{E}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{-8}}{2.74 \times 1.5 \times 10^{-19}}\)
\[
=4530 \AA
\]
\end{tabular} \& 1 \\
\hline 26. \& \& \\
\hline \& \begin{tabular}{l}
Energy of electron in \(\mathrm{n}=2\) is -3.4 eV \\
\(\therefore\) energy in ground state \(=-13.6 \mathrm{eV}\) \(\mathrm{E}_{\mathrm{n}}=\underset{n^{2}}{x} \Rightarrow-3.4 \mathrm{eV}=\underset{2^{2}}{x} \Rightarrow\)
\[
\mathrm{kE}=-\mathrm{TE}=+13.6 \mathrm{eV}
\] \\
energy in ground state \(x=-13.6 \mathrm{eV}\).
\end{tabular} \& 1

1
1

1

\hline
\end{tabular}

	$\mathrm{PE}=2 \mathrm{TE}=-2 \times 13.6 \mathrm{eV}=-27.2 \mathrm{eV}$	1
27.	 OR Energy of photon $\mathrm{E}=\frac{h e}{\lambda}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{6000 \times 10^{-9} \times 1.6 \times 10^{-19}} \mathrm{eV}=2.06 \mathrm{eV}$ As $\mathrm{E}<\mathrm{E}_{\mathrm{g}}(2.8 \mathrm{eV})$, so photodiode cannot detect this photon.	Any 2x1 $=1$ 1 1
	Section - C	
28.	Principle of potentiometer, when a constant current flows through a wire of uniform area of cross-section, the potential drop across any length of the wire is directly proportional to the length. Let resistance of wire $A B$ be R_{1} and its length be ' 1 ' then current drawn from driving cell - $\mathrm{I}=\frac{V}{R+\mathrm{R} 1} \text { and hence }$ P.D. across the wire $A B$ will be $\mathrm{V}_{\mathrm{AB}}=\mathrm{IR}_{1}=\frac{V}{\pi+\mathrm{R} \mathrm{I}} \times \frac{\mathrm{e}^{I \theta}}{a}$ Where ' a ' is area of cross-section of wire $A B$ $\therefore \frac{V A B}{l}=\frac{V \mathrm{e}}{(\mathrm{R}+\mathrm{R} 1) a}=\text { constant }=\mathrm{k}$ Where R increases, current and potential difference across wire $A B$ will be	1 1 1 1

	decreased and hence potential gradient ' k ' will also be decreased. Thus the null point or balance point will shift to right (towards, B) side.	
29.		
	According to Biot-Savart's law, magnetic field due to a current element is given by $\begin{gathered} \overrightarrow{d B}=\frac{\mu 0}{4 \pi} \frac{I d i x \hat{r}}{r^{2}} \text { where } \mathrm{r}=\sqrt{x^{2}+a^{2}} \\ \therefore \mathrm{~dB}=\frac{\mu 0}{4 \pi} \frac{I d l \sin 90^{\circ}}{x^{2}+\mathrm{a}^{2}} \end{gathered}$ And direction of $\overrightarrow{d B}$ is \perp to the plane containing I $\overrightarrow{d l}$ land \vec{r}. Resolving $\overrightarrow{d B}$ along the $\mathrm{x}-$ axis and $\mathrm{y}-$ axis. $\begin{aligned} & \mathrm{dB}_{\mathrm{x}}=\mathrm{dB} \sin \theta \\ & \quad \mathrm{~dB}_{\mathrm{y}}=\mathrm{dB} \cos \theta \end{aligned}$ taking the contribution of whole current loop we get $\begin{aligned} & \therefore \mathrm{B}_{\mathrm{P}}=\sqrt{B_{x}^{2}+B_{y}^{2}}=\mathrm{B}_{\mathrm{x}}=\frac{\mu 0}{4 \pi} \frac{2 I A}{\left(x^{2}+a^{2}\right)^{\mathrm{B} / 2}} \\ & \therefore \overrightarrow{B_{p}}=\frac{\mu 0}{4 \pi} \frac{2 m^{i}}{\left(x^{2}+a^{2}\right)^{\mathrm{s} / 2}}(\because \vec{m}=I \bar{A}) \end{aligned}$ For centre $\mathrm{x}=0$ $\therefore\left\|\overrightarrow{B_{0}}\right\|=\frac{\mu 0}{4 \pi} \frac{21 \pi a^{2}}{a^{3}}=\mu_{0}\left(\frac{I}{2 a}\right)$ in the direction of \vec{m}	1 $1 / 2$ $1 / 2$ 1

\begin{tabular}{|c|c|c|}
\hline 30. \& \begin{tabular}{l}
\(\because\) resonant frequency for LCR circuit is given by \(v_{0}=\frac{1}{2 \pi \sqrt{L C}}\)
\[
\begin{aligned}
\& =\frac{1}{2 \times 3.14 \sqrt{3 \times 27 \times 10^{-6}}} \\
\& =17.69 \mathrm{~Hz}
\end{aligned}
\] \\
Or \(\omega_{0}=2 \pi v_{0}=111 \mathrm{rad} / \mathrm{s}\). \\
\(\because\) quality factor of resonance
\[
\begin{aligned}
\& \mathrm{Q}=\frac{\omega_{0}}{2 \Delta w}=\frac{\omega_{0} L}{R}=\frac{1}{R} \sqrt{\frac{L}{c}} \\
\& \therefore \mathrm{Q}=\frac{1}{7.4} \sqrt{\frac{3}{27 \times 10^{-6}}}=45.0
\end{aligned}
\] \\
To improve sharpness of resonance circuit by a factor 2 , without reducing \(\omega_{0}\); reduce \(R\) to half of its value i.e. \(R=3.7 \Omega\)
\end{tabular} \& 1

1

1

\hline 31. \& | Two conditions for T IR - |
| :--- |
| (a) Light must travel from denser to rarer medium |
| (b) $i>i_{c}$ $\begin{aligned} & \because \operatorname{Sin} \mathrm{i}_{\mathrm{c}}=\frac{1}{\mu} \\ & \therefore\left(\mathrm{i}_{\mathrm{c}}\right)_{\text {Red }}=\operatorname{Sin}^{-1}\left(\frac{1}{1.39}\right)=46^{\circ} \\ & \left(\mathrm{i}_{\mathrm{c}}\right)_{\text {Green }}=\operatorname{Sin}^{-1}\left(\frac{1}{1.42}\right)=44.8^{\circ} \\ & \left(\mathrm{i}_{\mathrm{c}}\right)_{\text {Blue }}=\operatorname{Sin}^{-1}\left(\frac{1}{1.48}\right)=43^{\circ} \end{aligned}$ |
| \because Angle of incidence at face AC is 45° which is more than the critical angle for Blue and Green colours therefore they will show TIR but Red colour will refract to other medium. | \& 1

1
1

\hline 32. \& | Resolving power (R.P) of an astronomical telescope is its ability to form separate images of two neighboring |
| :--- |
| astronomical objects like stars etc. |
| R.P. $=\frac{1}{\pi H}=\frac{D}{1.22 \lambda} \quad$ where D is diameter of objective lens and λ is wave length | \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
finally; hence \(\mathrm{I}_{1}\) works as a virtual object \(2^{\text {nd }}\) refracting surface
\[
\begin{equation*}
\therefore \frac{n_{1}}{V}-\frac{n_{2}}{V^{1}}=\frac{n_{1}-n_{2}}{R_{2}} \tag{2}
\end{equation*}
\] \\
Equation (1) + (2)
\[
\begin{align*}
\& \frac{m_{1}}{V}-\frac{n_{1}}{u}=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
\& \therefore \frac{1}{V}-\frac{1}{u}=\left(n_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) . \tag{3}
\end{align*}
\] \\
If \(u=\infty, v=f\)
\[
\begin{equation*}
\frac{1}{f}=\left(n_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)- \tag{4}
\end{equation*}
\] \\
Which is lens maker's formula.
\end{tabular} \& 1 \\
\hline 33. \& \begin{tabular}{l}
\[
\begin{aligned}
{ }_{92}^{258} U \rightarrow{ }_{91}^{237} \mathrm{~Pa}+{ }_{1}^{1} \mathrm{H}+\mathrm{Q} \& \because \mathrm{Q}=\left[\mathrm{M}_{\mathrm{U}}-\mathrm{M}_{\mathrm{Pa}}-\mathrm{M}_{\mathrm{H}}\right] \mathrm{c}^{2} \\
\& =[238.05079-237.05121-1.00783] \mathrm{u} \times \mathrm{c}^{2} \\
= \& -0.00825 \mathrm{u} \times 931.5 \frac{\mathrm{MvV}}{\mathrm{u}} \\
\& =-7.68 \mathrm{MeV}
\end{aligned}
\] \\
\(\because \mathrm{Q}<0\); therefore it can't proceed spontaneously. We will have to supply energy of 7.68 MeV to \({ }_{92}^{238}\) Unucleus to make it emit proton.
\end{tabular} \& 1
1
1 \\
\hline 34. \& \begin{tabular}{l}
Circuit Diagram \\
One possible answer: Change the connection of R from point C to point B . \\
Now No Current flowing through \(\mathrm{D}_{2}\) in the second half. \\
1 mark for any correct diagram \\
2 marks for correct explanation
\end{tabular} \& 1

2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& Section - D \& \\
\hline \begin{tabular}{l}
\[
35 .
\] \\
(a)
\end{tabular} \& According the Gauss's law -
\[
\begin{aligned}
\& \oint_{\mathrm{N}} \mathrm{~d} \vec{s}=\frac{1}{e 0}\{\mathrm{q}\} \\
\& \int \vec{E} \overrightarrow{d s_{1}}+\int \vec{E} \overrightarrow{d s_{2}}+\int \vec{E} \overrightarrow{d s_{3}}=\frac{1}{E 0}(\lambda \mathrm{~L}) \\
\& \int \mathrm{Eds}_{1} \operatorname{Cos} 0+\int \mathrm{Eds}_{2} \operatorname{Cos} 90^{\circ}+\int \mathrm{Eds}_{3} \operatorname{Cos} 90^{\circ}=\frac{\lambda L}{E 0} \\
\& \mathrm{E} \int \mathrm{ds}_{1}=\frac{\lambda L}{E 0} \\
\& \mathrm{E} \times 2 \pi \mathrm{rL}=\frac{\lambda L}{\mathrm{E}} \\
\& \mathrm{E}=\frac{\lambda}{2 \pi E 0 r} \\
\& \vec{E}=\frac{\lambda}{2 \pi \in 0 r} \hat{r}
\end{aligned}
\] \& 1

1
1
1

\hline | $35 .$ |
| :--- |
| (b) | \& | $\begin{aligned} & \because E_{x}=\propto x=400 x \\ & E_{y}=E_{z}=0 \end{aligned}$ |
| :--- |
| Hence flux will exist only on left and right faces of cube as $E_{x} \neq 0$ $\begin{aligned} & \because \overrightarrow{E_{L}} \cdot \mathrm{a}^{2}\left(n_{2}\right)+\overrightarrow{E_{R}} \cdot \mathrm{a}^{2} \widehat{n_{R}}=\frac{1}{\varepsilon 0}\{\mathrm{qin}\}=\varnothing \\ & -E_{L} \cdot \mathrm{a}^{2}\left(\overline{n_{2}}\right)+\mathrm{a}^{2} E_{R}=\phi_{\text {Net }} \\ & \begin{aligned} \phi_{\text {Net }}= & -(400 \mathrm{a}) \mathrm{a}^{2}+\mathrm{a}^{2}(400 \times 2 \mathrm{a}) \\ & =-400 \mathrm{a}^{3}+800 \mathrm{a}^{3} \\ & =400 \mathrm{a}^{3} \\ & =400 \times(.1)^{3} \\ & \phi_{\text {Net }}=0.4 \mathrm{Nm}^{2} \mathrm{c}^{-1} \end{aligned} \end{aligned}$ | \& 1

\hline
\end{tabular}

$\begin{aligned} \phi_{B}=\text { Blx } & 0 \leq x<b \\ \text { Blb } & b \leq x<2 b \end{aligned}$ The induced emf is, $\begin{array}{ll} e=\frac{-d \phi \mathrm{~B}}{u l} \\ e=-\mathrm{BlV} & \\ =0 & 0 \leq x<b \\ & \\ & \\ \end{array}$ When induced emf is non-zero, the current I in the magnitude; $\mathrm{I}=\frac{a}{r}=\frac{\mathrm{slv}}{r}$ The force required to keep arm PQ in constant motion is $\mathrm{F}=\mathrm{IlB}$. Its direction is to the left. In magnitude The Joule heating loss is $\begin{array}{rlrl} \mathrm{P}_{\mathrm{I}} & =\mathrm{I}^{2} r & \\ & =\frac{B^{2} \mathrm{~b}^{2} \mathbb{V}^{\mathrm{a}}}{r} & & 0 \leq \mathrm{x}<\mathrm{b} \\ & =0 & & \mathrm{~b} \leq \mathrm{x}<2 \mathrm{~b} \end{array}$ One obtains similar expressions for the inward motion from $x=2 b$ to $x=0$	

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Working principle of cyclotron \\
Diagram \\
Working of cyclotron with explanation \\
Any two appliations
\end{tabular} \& 1
1
2
1 \\
\hline 37. \& \begin{tabular}{l}
Deduction of mirror formula
\[
\frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{E}}
\] \\
For a convex mirror \(f\) is always +ve.
\[
\therefore \mathrm{f}>\mathrm{c}
\] \\
Object is always placed in front of mirror hence \(u<0\) (for real object)
\[
\begin{aligned}
\& \frac{1}{\mathrm{v}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \\
\Rightarrow \quad \& \frac{1}{\mathrm{v}}=\frac{1}{\mathrm{f}}-\frac{1}{\mathrm{u}}
\end{aligned}
\] \\
As \(u<0 u\)-ve hence
\[
\frac{1}{v}>0
\] \\
\(\Rightarrow v>0\) i.e. \(+v e\) for all values of \(u\). \\
Image will be formed behind the mirror and it will be virtual for all values of \(u\).
\end{tabular} \& 1

2
1
1
1

\hline | 37. |
| :--- |
| (a) | \& | OR |
| :--- |
| Ray Diagram : (with proper labeling) | \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& Magnifying power \(\mathrm{m}=\frac{V_{0}}{u_{0}}\left(1+\frac{D}{f \in}\right)\)
\[
\mathrm{m}=\frac{L}{f_{0}}\left(1+\frac{D}{f_{e}}\right)
\] \& 1 \\
\hline \begin{tabular}{l}
37. \\
(b)
\end{tabular} \& \begin{tabular}{l}
\(\because \mathrm{m}=\mathrm{m}_{\mathrm{o}} \mathrm{m}_{\mathrm{e}}=-30\) (virtual, inverted)
\[
\begin{aligned}
\& \because \mathrm{f}_{\mathrm{o}}=1.25 \mathrm{~cm} \\
\& \mathrm{f}_{\mathrm{e}}=5.0 \mathrm{~cm}
\end{aligned}
\] \\
Let us setup a compound microscope such that the final image be formed at D , then
\[
\mathrm{m}_{\mathrm{e}}=1+\frac{b}{f e}=1+\frac{25}{5}=6
\] \\
and position of object for this image formation can be calculated -
\[
\begin{gathered}
\frac{1}{V e}-\frac{1}{u e}=\frac{1}{f e} \\
\frac{1}{-25}-\frac{1}{u e}=\frac{1}{5} \\
-\frac{1}{u e}=\frac{1}{5}+\frac{1}{25}=\frac{6}{25} \\
u e=\frac{-15}{6}=-4.17 \mathrm{~cm} . \\
\because m=m_{0} \times m_{e} \\
\therefore m_{0}=\frac{+V o}{w o}=\frac{-30}{6}=-5 \\
\therefore V=-5 u_{0} \\
\frac{1}{V \mathrm{c}}-\frac{1}{v o}=\frac{1}{f_{5}} \\
\frac{1}{-5 u 0}-\frac{1}{u 0}=\frac{1}{1.25}
\end{gathered}
\]
\end{tabular} \& 1

1

\hline
\end{tabular}

| $\frac{-\pi}{5 v o}=\frac{1}{1.25}$ | |
| :---: | :---: | :---: |
| $u o=-1.5 \mathrm{~cm} \Rightarrow \mathrm{~V}_{0}=7.5 \mathrm{~cm}$ | |
| Tube length $=\mathrm{V}_{\mathrm{o}}+\left\|\mathrm{u}_{\mathrm{e}}\right\|=7.5 \mathrm{~cm}+4.17 \mathrm{~cm}$ | |
| $\mathrm{~L}=11.67 \mathrm{~cm}$ | |
| Object should be placed at 1.5 cm distance from the objective lens. | 1 |
| | |

