Class: XII

SESSION: 2022-2023

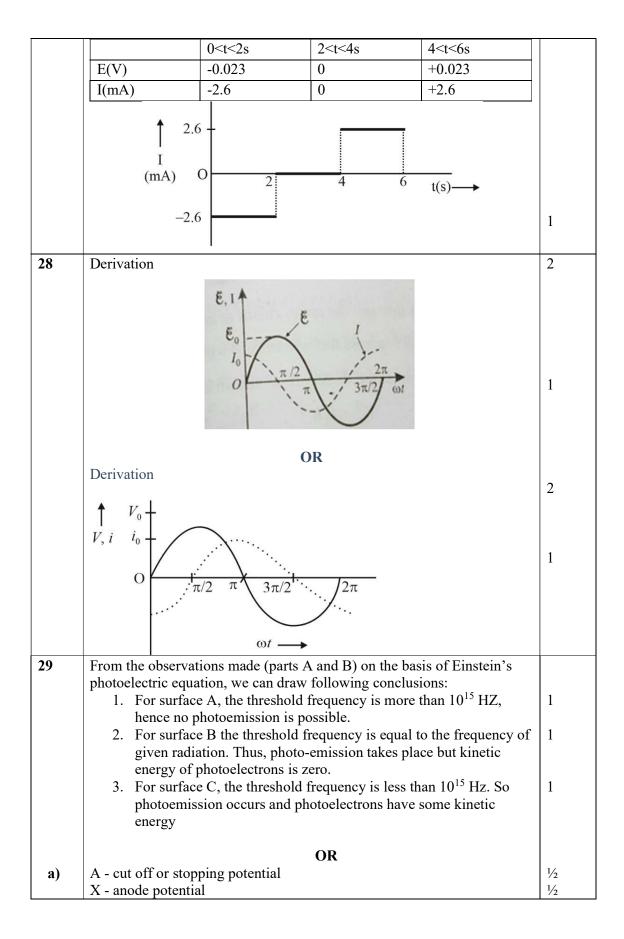
MARKING SCHEME

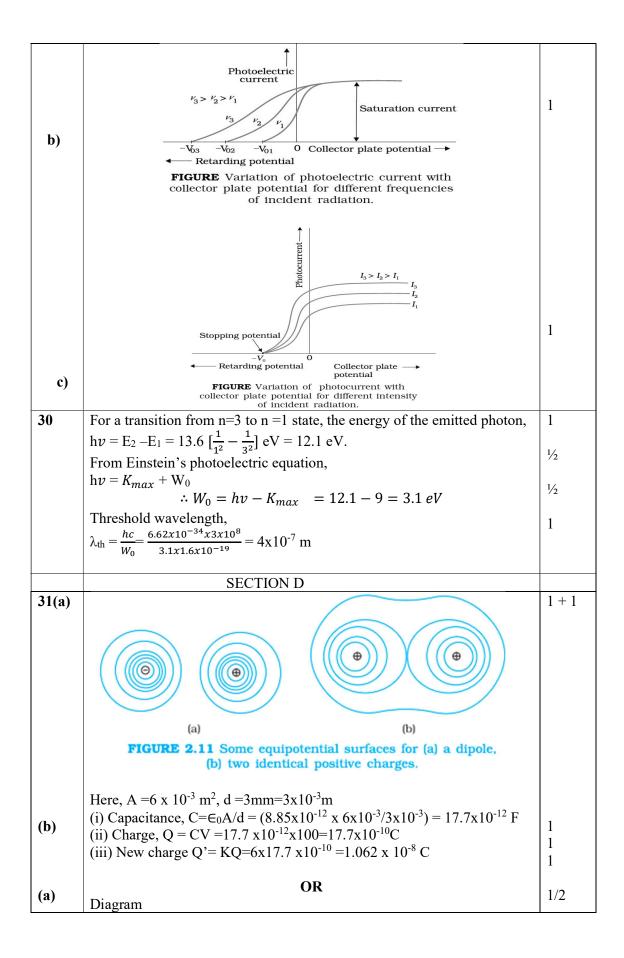
CBSE SAMPLE QUESTION PAPER (THEORY) SUBJECT: PHYSICS

Q.no Marks **SECTION A** (ii) q₁q₂<0 1 1 2 1 (iv) zero 3 (ii) material A is germanium and material B is copper 1 4 (iv) 6A in the clockwise direction 1 5 1 (iii) 4:3 6 (i) decreases 1 7 (ii) increase 1 8 (iv) Both electric and magnetic field vectors are parallel to each 1 other. (ii) the circular and elliptical loops 9 1 **10** (iv) 0.85 1 11 (iii) 3000 Å 1 (iv) 4.77 X 10⁻¹⁰m 12 1 13 (ii) The nuclear force is much weaker than the Coulomb force . 1 14 (i) 30 V 1 15 (i) 1 16 1 c) A is true but R is false 17 c) A is true but R is false 1 1 18 a) Both A and R are true and R is the correct explanation of A **SECTION B** 19 λ_1 -Microwave $\frac{1}{2}$ λ_2 ultraviolet $\frac{1}{2}$ λ_{3} infrared $\frac{1}{2}$ 1/2 Ascending order - $\lambda_2 < \lambda_3 < \lambda_1$ A - diamagnetic $\frac{1}{2}$ 20 B- paramagnetic $\frac{1}{2}$ The magnetic susceptibility of A is small negative $\frac{1}{2}$ and that of B is small positive. $\frac{1}{2}$ From the relation $R = R_0 A^{1/3}$, where R_0 is a constant and A is the mass 21 $\frac{1}{2}$ number of a nucleus $R_{Fe}/R_{Al} = (A_{Fe}/A_{Al})^{1/3}$ $=(125/27)^{1/3}$ $\frac{1}{2}$ $R_{Fe} = 5/3 R_{Al}$ $=5/3 \times 3.6$ $\frac{1}{2}$ = 6 fermi $\frac{1}{2}$ OR Given short wavelength limit of Lyman series

	1 (1 1)	
	$\frac{1}{\lambda_L} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$ $\frac{1}{913.4 \text{ Å}} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$	1/2
	$\lambda_{\rm L} = \frac{1}{R} = 913.4 \text{ Å}$	1/2
	For the short wavelength limit of Balmer series $n_1=2, n_2=\infty$ $\frac{1}{\lambda_B}=R\left(\frac{1}{2^2}-\frac{1}{\infty}\right)$	1/2
	$\lambda_B = \frac{4}{R} = 4 \times 913.4 \text{ Å}$ = 3653.6 Å	1/2
22	$= 3653.6 \text{ Å}$ $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	1/2
	$\frac{1}{f} = \left(\frac{\mu_m}{\mu_w} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2
	$\frac{\mu_m}{\mu_w} = \frac{1.25}{1.33}$	
	$\mu_{w}=1.33$ $\mu_{m}=0.02$	1/2
	$\frac{\mu_m}{\mu_w} = 0.98$ The value of $(\mu - 1)$ is negative and 'f' will be negative. So it will behave like diverging lens.	1/2
23	To keep the reading of ammeter constant value of R should be increased as with the increase in temperature of a semiconductor, its resistance decreases and current tends to increase.	1
	OR	
	B - reverse biased	1/2
	In the case of reverse biased diode the potential barrier becomes higher as the battery further raises the potential of the n side.	1/2
	C -forward biased Due to forward bias connection the potential of P side is raised and hence	1/2
	the height of the potential barrier decreases.	1/2
24	Angular width $2\phi = 2\lambda/d$ Given $\lambda = 6000 \text{ Å}$	1/2
	In Case of new λ (assumed λ ' here),	1/2
	angular width decreases by 30% New angular width = 0.70 (2 ϕ) 2 λ'/d = 0.70 X (2 λ/d)	1/2
	$\lambda' = 4200 \text{ Å}$	1/2

25		
	Surface charge density of plate A = $+17.7 \times 10^{-22} \text{ C/m}^2$	
	Surface charge density of plate B = $-17.7 \times 10^{-22} \text{ C/m}^2$	
	(a) In the outer region of plate I, electric field intensity E is zero.(b)Electric field intensity E in between the plates is given by relation	1/ ₂ 1/ ₂
	$E = \frac{\sigma}{\epsilon_0}$ Where,	
	ϵ_0 = Permittivity of free space = 8.85 x10 ⁻¹² N ⁻¹ C ² m ⁻²	
	$\therefore E = \frac{17.7 \times 10^{-22}}{8.85 \times 10^{-1}}$	1/2
	8.85 x 10 1	1/2
	Therefore, electric field between the plates is 2.0 x 10 ⁻¹⁰ N/C	
	SECTION C	
26	Diagram Derivation	1½ 1½
	The ampere is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would exert on each of these conductors a force equal to 2×10^{-7} newtons per metre of length.	1
27	Area of the circular loop = πr^2	
	$= 3.14 \times (0.12)^2 \text{ m}^2 = 4.5 \times 10^{-2} \text{ m}^2$	
	$E = -\frac{d\varphi}{dt} = -\frac{d}{dt} (BA) = -A \frac{dB}{dt} = -A \cdot \frac{B_2 - B_1}{t_2 - t_1}$	1/2
	For $0 < t < 2s$	
	$E_1 = -4.5 \times 10^{-2} \times \left\{ \frac{1-0}{2-0} \right\} = -2.25 \times 10^{-2} \text{ V}$	
	$I_1 = \frac{E_1}{R} = \frac{-2.25 \times 10^{-2}}{8.5} \text{ A} = -2.6 \times 10^{-3} \text{ A} = -2.6 \text{ mA}$	1/2
	For $2s < t < 4s$,	
	$E_2 = -4.5 \times 10^{-2} \times \left\{ \frac{1-1}{4-2} \right\} = 0$	1/2
	$\therefore I_2 = \frac{E_2}{R} = 0$	
	For $4s < t < 6s$,	
	$I_3 = -\frac{4.5 \times 10^{-2}}{8.5} \times \left\{ \frac{0-1}{6-4} \right\} A = 2.6 \text{ mA}$	1/2



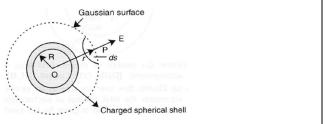


$$\frac{K(-q)Q}{x} + \frac{kQ(-q)}{x} + \frac{k(-q)(-q)}{2x} = 0$$

$$\frac{-2kqQ}{x} + \frac{kq^2}{2x} = 0 \text{ or } \frac{kq^2}{2x} = \frac{2kqQ}{x}$$

$$q = 4Q \text{ or } \frac{Q}{a} = \frac{1}{4}$$

(b) Electric field due to a uniformly charged thin spherical shell:



 $\frac{1}{2}$

 $\frac{1}{2}$

1

When point P lies outside the spherical shell: Suppose that we have calculate field at the point P at a distance r (r>R) from its centre. Draw Gaussian surface through point P so as to enclose the charged spherical shell. Gaussian surface is a spherical surface of radius r and centre O.

Let \vec{E} be the electric field at point P, then the electric flux through area element of area \vec{ds} is given by

$$d\varphi = \vec{E}. \ \vec{ds}$$

Since \overrightarrow{ds} is also along normal to the surface

$$d\varphi = E dS$$

: Total electric flux through the Gaussian surface is given by

$$\varphi = \oint E ds = E \oint ds$$
Now,
$$\oint ds = 4 \pi r^2 ...(i)$$

$$= Ex4 \pi r^2$$

Since the charge enclosed by the Gaussian surface is q, according to the Gauss's theorem,

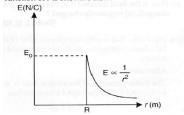
$$\varphi = \frac{q}{\epsilon_0} \dots (ii)$$

From equation (i) and (ii) we obtain

$$E \times 4 \pi r^{2} = \frac{q}{\epsilon_{0}}$$

$$E = \frac{1}{4\pi\epsilon_{0}} \cdot \frac{q}{r^{2}} \text{ (for r>R)}$$

(ii) A graph showing the variation of electric field as function of r is shown below.



32(a)	Drift velocity: It is the average velocity acquired by the free electrons	1/2
	superimposed over the random motion in the direction opposite to electric field and along the length of the metallic conductor.	
	Derivation $I = ne A V_d$	11/2
(b)	Here, $I = I_1 + I_2$ (i)	
	Let $V = $ Potential difference between A and B.	
	For cell ε_1	
	Then, $V = \varepsilon_1 - I_1 r_1 \implies I_1 = \frac{\varepsilon_1 - V}{\varepsilon_1}$	
	ϵ_1, r_1	
	I_1	
	I	2
	A B	3
	I_2	
	$\begin{array}{c} \mathbf{r} \\ \mathbf{r}_{2}, \mathbf{r}_{2} \end{array}$	
	Similarly, for cell ε_2 $I_2 = \frac{\varepsilon_2 - V}{r_2}$	
	Putting these values in equation (i)	
	$I = \frac{\varepsilon_1 - V}{r_1} + \frac{\varepsilon_2 - V}{r_2}$	
	r_1 r_2	
	or $I = \left(\frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$	
	or $V = \left(\frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2}\right) - I\left(\frac{r_1 r_2}{r_1 + r_2}\right) \qquad \dots (ii)$	
	Comparting the above equation with the equivalent circuit of emf ' ε_{eq} '	
	and internal resistance ' r_{eq} ' then,	
	$V = \varepsilon_{\rm eq} - Ir_{\rm eq} \qquad(iii)$	
	Then	
	(i) $\varepsilon_{\text{eq}} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2} \qquad (ii) \qquad r_{\text{eq}} = \frac{r_1 r_2}{r_1 + r_2}$	
	(iii) The potential difference between A and B	
	$V = \varepsilon_{\rm eq} - Ir_{\rm eq}$	
	OR	
(a)	Junction rule: At any junction, the sum of the currents entering the junction is equal to the sum of currents leaving the junction	1
	Loop rule: The algebraic sum of changes in potential around any closed	1
	loop involving resistors and cells in the loop is zero	
(b)	Derivation	3

