Class: XIISESSION : 2022-2023MARKING SCHEMECBSE SAMPLE QUESTION PAPER (THEORY)SUBJECT: PHYSICS		
Q.no		Marks
	SECTION A	
1	(ii) $\mathrm{q}_{1} \mathrm{q}_{2}<0$	1
2	(iv) zero	1
3	(ii) material A is germanium and material B is copper	1
4	(iv) 6A in the clockwise direction	1
5	(iii) $4: 3$	1
6	(i) decreases	1
7	(ii) increase	1
8	(iv) Both electric and magnetic field vectors are parallel to each other.	1
9	(ii) the circular and elliptical loops	1
10	(iv) 0.85	1
11	(iii) 3000 A	1
12	(iv) $4.77 \times 10^{-10} \mathrm{~m}$	1
13	(ii) The nuclear force is much weaker than the Coulomb force.	1
14	(i) 30 V	1
15	(i)	1
16	c) A is true but R is false	1
17	c) A is true but R is false	1
18	a) Both A and R are true and R is the correct explanation of A	1
	SECTION B	
19	λ_{1}-Microwave λ_{2} - ultraviolet λ_{3} - infrared Ascending order $-\lambda_{2}-\lambda_{3}-\lambda_{1}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$
20	A - diamagnetic B- paramagnetic The magnetic susceptibility of A is small negative and that of B is small positive.	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$
21	From the relation $R=R_{0} A^{1 / 3}$, where R_{0} is a constant and A is the mass number of a nucleus $\begin{gathered} \mathrm{R}_{\mathrm{Fe}} / \mathrm{R}_{\mathrm{Al}}=\left(\mathrm{A}_{\mathrm{Fe}} / \mathrm{A}_{\mathrm{Al}}\right)^{1 / 3} \\ =(125 / 27)^{1 / 3} \\ \mathrm{R}_{\mathrm{Fe}}=5 / 3 \mathrm{R}_{\mathrm{Al}} \\ =5 / 3 \times 3.6 \\ =6 \text { fermi } \end{gathered}$ OR Given short wavelength limit of Lyman series	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{gathered}
\frac{1}{\lambda_{L}}=R\left(\frac{1}{1^{2}}-\frac{1}{\infty}\right) \\
\frac{1}{913.4 \AA}=R\left(\frac{1}{1^{2}}-\frac{1}{\infty}\right) \\
\lambda_{\mathrm{L}}=\frac{1}{R}=913.4 \AA
\end{gathered}
\] \\
For the short wavelength limit of Balmer series
\[
\begin{aligned}
\& \quad \begin{array}{l}
\mathrm{n}_{1}=2, \mathrm{n}_{2}=\infty \\
\lambda_{B}
\end{array}=R\left(\frac{1}{2^{2}}-\frac{1}{\infty}\right) \\
\& \\
\& \\
\& \lambda_{B}=\frac{4}{R}=4 \times 913.4 \AA \\
\& \\
\& \\
\&
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline 22 \& \begin{tabular}{l}
\[
\begin{gathered}
\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
\frac{1}{f}=\left(\frac{\mu_{m}}{\mu_{w}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
\frac{\mu_{m}}{\mu_{w}}=\frac{1.25}{1.33} \\
\frac{\mu_{m}}{\mu_{w}}=0.98
\end{gathered}
\] \\
The value of \((\mu-1)\) is negative and ' \(f\) ' will be negative. So it will behave like diverging lens.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \\

\hline 23 \& | To keep the reading of ammeter constant value of R should be increased as with the increase in temperature of a semiconductor, its resistance decreases and current tends to increase. |
| :--- |
| OR |
| B - reverse biased |
| In the case of reverse biased diode the potential barrier becomes higher as the battery further raises the potential of the n side. |
| C-forward biased |
| Due to forward bias connection the potential of P side is raised and hence the height of the potential barrier decreases. | \& 1

1
1
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\
\hline 24 \& ```
Angular width $2 \varphi=2 \lambda / \mathrm{d}$
Given $\lambda=6000 \AA$
In Case of new λ (assumed λ^{\prime} here),
angular width decreases by 30%
New angular width $=0.70(2 \varphi)$
$2 \lambda^{\prime} / \mathrm{d}=0.70 \mathrm{X}(2 \lambda / \mathrm{d})$
$\therefore \lambda^{\prime}=4200 \AA$

``` & \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 25 & \begin{tabular}{l}
Surface charge density of plate \(\mathrm{A}=+17.7 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}\) \\
Surface charge density of plate \(B=-17.7 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}\) \\
(a) In the outer region of plate I , electric field intensity E is zero. \\
(b)Electric field intensity E in between the plates is given by relation
\[
\mathrm{E}=\frac{\sigma}{\epsilon_{0}}
\] \\
Where, \(\epsilon_{0}=\) Permittivity of free space \(=8.85 \times 10^{-12} \mathrm{~N}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-2}\)
\[
\therefore E=\frac{17.7 \times 10^{-22}}{8.85 \times 10^{-1}}
\] \\
Therefore, electric field between the plates is \(2.0 \times 10^{-10} \mathrm{~N} / \mathrm{C}\)
\end{tabular} & \(1 / 2\)
\(1 / 2\)



\(1 / 2\)
\(1 / 2\) \\
\hline & SECTION C & \\
\hline 26 & \begin{tabular}{l}
Diagram \\
Derivation \\
The ampere is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would exert on each of these conductors a force equal to \(2 \times 10^{-7}\) newtons per metre of length.
\end{tabular} & \[
\begin{aligned}
& 1 / 2 \\
& 11 / 2 \\
& 1
\end{aligned}
\] \\
\hline 27 & \begin{tabular}{l}
Area of the circular loop \(=\pi r^{2}\)
\[
\begin{aligned}
& =3.14 \times(0.12)^{2} \mathrm{~m}^{2}=4.5 \times 10^{-2} \mathrm{~m}^{2} \\
E & =-\frac{d \varphi}{d t}=-\frac{d}{d t}(\mathrm{BA})=-\mathrm{A} \frac{d B}{d t}=-\mathrm{A} \cdot \frac{B_{2}-B_{1}}{t_{2}-t_{1}}
\end{aligned}
\] \\
For \(0<t<2\) s
\[
\begin{aligned}
& E_{1}=-4.5 \times 10^{-2} \times\left\{\frac{1-0}{2-0}\right\}=-2.25 \times 10^{-2} \mathrm{~V} \\
\therefore \quad & I_{1}=\frac{E_{1}}{R}=\frac{-2.25 \times 10^{-2}}{8.5} \mathrm{~A}=-2.6 \times 10^{-3} \mathrm{~A}=-2.6 \mathrm{~mA}
\end{aligned}
\] \\
For \(2 \mathrm{~s}<t<4 \mathrm{~s}\),
\[
\begin{array}{ll} 
& E_{2}=-4.5 \times 10^{-2} \times\left\{\frac{1-1}{4-2}\right\}=0 \\
\therefore & I_{2}=\frac{E_{2}}{R}=0
\end{array}
\] \\
For \(4 \mathrm{~s}<t<6 \mathrm{~s}\),
\[
I_{3}=-\frac{4.5 \times 10^{-2}}{8.5} \times\left\{\frac{0-1}{6-4}\right\} \mathrm{A}=2.6 \mathrm{~mA}
\]
\end{tabular} & 1/2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline b) & \begin{tabular}{l}
FIGURE Variation of photoelectric current with collector plate potential for different frequencies of incident radiation. \\
FIGURE Variation of photocurrent with collector plate potential for different intensity of incident radiation.
\end{tabular} & 1


1 \\
\hline 30 & \begin{tabular}{l}
For a transition from \(\mathrm{n}=3\) to \(\mathrm{n}=1\) state, the energy of the emitted photon, \(\mathrm{h} v=\mathrm{E}_{2}-\mathrm{E}_{1}=13.6\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right] \mathrm{eV}=12.1 \mathrm{eV}\). \\
From Einstein's photoelectric equation,
\[
\begin{aligned}
& \mathrm{h} v=K_{\max }+\mathrm{W}_{0} \\
& \quad \therefore W_{0}=h v-K_{\max }=12.1-9=3.1 \mathrm{eV}
\end{aligned}
\] \\
Threshold wavelength,
\[
\lambda_{\mathrm{th}}=\frac{h c}{W_{0}}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{3.1 \times 1.6 \times 10^{-19}}=4 \times 10^{-7} \mathrm{~m}
\]
\end{tabular} & \begin{tabular}{l}
1 \\
\(1 / 2\) \\
\(1 / 2\) \\
1
\end{tabular} \\
\hline & SECTION D & \\
\hline 31(a)



(b)
(a) & \begin{tabular}{l}
(a) \\
(b) \\
FIGURE 2.11 Some equipotential surfaces for (a) a dipole, \\
(b) two identical positive charges. \\
Here, \(\mathrm{A}=6 \times 10^{-3} \mathrm{~m}^{2}, \mathrm{~d}=3 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}\) \\
(i) Capacitance, \(\mathrm{C}=\epsilon_{0} \mathrm{~A} / \mathrm{d}=\left(8.85 \times 10^{-12} \times 6 \times 10^{-3} / 3 \times 10^{-3}\right)=17.7 \times 10^{-12} \mathrm{~F}\) \\
(ii) Charge, \(\mathrm{Q}=\mathrm{CV}=17.7 \times 10^{-12} \times 100=17.7 \times 10^{-10} \mathrm{C}\) \\
(iii) New charge \(Q^{\prime}=K Q=6 \times 17.7 \times 10^{-10}=1.062 \times 10^{-8} \mathrm{C}\) \\
OR \\
Diagram
\end{tabular} & \begin{tabular}{l}
\[
1+1
\] \\
1 \\
1 \\
1 \\
\(1 / 2\)
\end{tabular} \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
(ii) At face AC, let the angle of incidence be \(r_{2}\). For grazing ray,
\[
\begin{aligned}
& e=90^{\circ} \\
\Rightarrow \mu & =\frac{1}{\sin r_{2}} \Rightarrow r_{2}=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}
\end{aligned}
\] \\
Let angle of refraction at face AB be \(r_{1}\). \\
Now \(r_{1}+r_{2}=A\)
\[
\therefore r_{1}=A-r_{2}=60^{\circ}-45^{\circ}=15^{\circ}
\] \\
Let angle of incidence at this face be \(i\)
\[
\begin{aligned}
& \mu=\frac{\sin i}{\sin r_{1}} \Rightarrow \sqrt{2}=\frac{\sin i}{\sin 15^{\circ}} \\
& \therefore i=\sin ^{-1}\left(\sqrt{2} \cdot \sin 15^{\circ}\right)=21.5^{0}
\end{aligned}
\]
\end{tabular} & \(11 / 2\) \\
\hline & SECTION E & \\
\hline 34(i) & When the image is formed at infinity, we can see it with minimum strain in the ciliary muscles of the eye. & 1 \\
\hline (ii) & The multi-component lenses are used for both objective and the eyepiece to improve image quality by minimising various optical aberrations in lenses. & 1 \\
\hline (iii) & \begin{tabular}{l}
(a)The compound microscope is used to observe minute nearby objects whereas the telescope is used to observe distant objects. \\
(b) In compound microscope the focal length of the objective is lesser than that of the eyepiece whereas in telescope the focal length of the objective is larger than that of the eyepiece. \\
OR
\end{tabular} & 1
1 \\
\hline (iii) & \begin{tabular}{l}
(a) The image formed by reflecting type telescope is brighter than that formed by refracting telescope. \\
(b) The image formed by the reflecting type telescope is more magnified than that formed by the refracting type telescope.
\end{tabular} & 1
1 \\
\hline 35(i) & LEDs are made up of compound semiconductors and not by the elemental conductor because the band gap in the elemental conductor has a value that can detect the light of a wavelength which lies in the infrared (IR) region. & 1 \\
\hline (iii) & \begin{tabular}{l}
LED is reversed biased that is why it is not glowing. \\
OR
\end{tabular} & 2 \\
\hline & V-I Characteristic curves of pn junction diode in forward biasing and reverse biasing. & \(1+1\) \\
\hline
\end{tabular}```

