Class –XII

PHYSICS (Theory)

SQP Marking Scheme 2020-21

Sr.	VALUE POINTS	Marks
No. 1	Magnetic dipole moment	1
2	Any one use of micro waves	1
	OR	
	1:1	
3		1
5		'
4	Remains same	1
	OR	
	7.707A, 50Hz	1/2+1/2
F		1
5	n/211	
6	4eV	1
7	Antinutrino	1
	OR	
	Electron	
8	Decreases	1
	OR	
	25Hz	
9	Dynamic resistance =change in voltage/change in current=10hm	1
10	Photodiode	1
11	a) Both A and R are true and R is the correct explanation of A	1
12	b)Both A and R are true and R is the correct explanation of A	1
13	c)A is true but R is false	1

14	b) Both A and R are true but R is NOT the correct explanation of A	1
15	1.c) Copper	4x1 =
	2.a) car	4
	3.c) zero	
	4.a) -q	
	5 b)1.9×10 ⁵ Nm ² /C leaving the surface	
	(any 4 parts to be attempted)	
16	1. b) Its critical angle with reference to air is too small	4x1=4
	2. a) 2.42	
	3. c) high refractive index	
	4. d) increase	
	5. d) less than first	
	(any 4 parts to be attempted)	
17	Explanation by showing magnetic field directions in all three regions Concluding left of region 1	1 1
18	Plot of Intensity distribution of diffraction with proper labeling	2
	OR	
	nλ/d=2λ/a	
	n=2d/a ,where d is separation between slit and a width of slit	
19	Derivation including both terms electrostatic energy in system and in external field	1+1
	OR	
	Derivation of relation E=-dV/dr	1+1
	Diagram of equipotential surfaces	

20	Circuit diagram showing biasing of LED in F.B	1/2 1
	For emission in visible range least band energy required is1.8eV	1/2
21	Calculation of magnetic flux Φ =BA cos θ , where θ =30° = $\sqrt{3}/2^{10^{-11}}$ Wb Calculation of induced emf E=A cos θ dB/dt=0.5V	1 1
22	Path difference= $3\lambda/2$ Putting value we will get λ = 3 cm	1 1
23	Well labeled energy band diagram of n-type semiconductor n-type semiconductor electrons-majority charge carriers	1 1⁄2 1⁄2
24	Definition of each term Diagram showing relation OR $Bv/B_H=tan\theta$ Putting values, $\theta=30^0$	1/2+1/2 1 1 1
25	Two characteristics- virtual and enlarged image and same side of object. As u and v both negative, we get 1/v=1/u-1/f Interpret y=mx+c ,plot of the graph	1

28	De-Broglie reasoned out that nature was symmetrical and two basic physical entities –mass and radiation must be symmetrical.If radiation shows shows dual aspect than matter should do so.	1
	De-Broglie equation- $\lambda=h/P$ For photon – P=hv/C Therefore,h/P=C/v= λ As $\lambda=h/\sqrt{2mk}$	1
	So,alpha particle will be having shortest de-Broglie wavelength compared to deutrons.	1
	OR	
	Main implications- 1. kinetic energy of emitted electrons depends upon frequency,but not on intensisty of radiation	1
	2.there exist a frequency of radiation below which no photoemission takes place, how high intensity of radiation may be.	1
	Explanation wave nature of radiation fails to explain photoelectric effect	1
29	Derivation of frequency of radiation emitted when a hydrogen atom de excites from level n to level (n-1).	2
	$v = me^4 (2n-1) / (4\Pi)^3 (h/2\Pi)^3 n^2 (n-1)^2$ Comparing for large values of n, with classical freuency $v = v / 2\Pi r$	1
30	One difference between nuclear fission and nuclear fusion	1
	Calculating $Q=((m) \text{ Fe-2}(m) \text{ Al})C^2 = 26.90 \text{ MeV}$ Justification not possible	1 1
31	(a) Statement of Gauss law	1
	Proof of outward flux due to a point charge Q ,in vacuum within gaussian surface, is independent of its size and shape	2
	(b) Net electric field towards left= σ/ϵ left	1
	Net electric field towards right= σ/ϵ right	1

	OR	
	Definitionof ideal dipole +example	1⁄2+ 1⁄2
	Derivation of torque	2
	Putting values in correct formula and solving,value of charge and potential energy	1
	Q=8×10 ⁻³ C U=-8J	1
32	(a) Derivation of instantaneous current i=i ₀ sin (ω t + Π /2)	1
	Reactance $X_c=1/\omega C$	1
	Phasor diagram showing v and i relation in pure C	1
	(b) Explanation that adding R it will behave RC series ac circuit Calcuation of current and phase angie	1+1
	OR	
	(a)Principle of ac generator	1
	(b)Well labelled diagram	1
	Brief working and emf expression	2
	(c) reason	1
33	(a) Definition of wavefront	1
	(b) Ray diagram showing shapes of wavefront	
	Insident plane wavefront (a) Transmitted plan wavefront	1
	Convex iens	1
	(c) Proof of Snell's law	2

OR	
(a) choice of objective	1
(b) ray diagram of reflecting type telescope Formula of magnifying power	2+1
(c) stating two advantages	2