Class: XII Session 2023-24
 SUBJECT: PHYSICS(THEORY)
 MARKING SCHEME
 SECTION A

A1: c 1M
A2: $\mathbf{c} \quad q=\tau /[(2 a) \mathrm{E} \sin \theta]=\frac{4}{2 \times 10^{-2} \times 2 \times 10^{5} \sin 30^{\circ}}$ $=2 \times 10^{-3} \mathrm{C}=2 \mathrm{mC}$
A3: d
Higher the frequency, greater is the stopping potential
A4: c
A5: b
A6: d
A7: b

$$
\begin{aligned}
& 9 \times S=1 \times 0.81 \\
& S=\frac{0.81}{9}=0.09 \Omega
\end{aligned}
$$

A8: a
A9: d
A10: a
A11: d

$$
\begin{aligned}
& e=\frac{\Delta \Phi}{\Delta t}, I=\frac{1}{R} \frac{\Delta \Phi}{\Delta t} \\
& I \Delta t=\frac{\Delta \Phi}{R}=\text { Area under } I-t \text { graph, } R=100 \mathrm{ohm} \\
& \therefore \quad \Delta \Phi=100 \times \frac{1}{2} \times 10 \times 0.5=250 \mathrm{~Wb} .
\end{aligned}
$$

A12: b
A13: a 1M
A14: a 1M
A15: c 1M
Q16: c

SECTION B

A17: (a) Rectifier
(b) Circuit diagram of full wave rectifier

(a)

A18: As $\lambda=h / m v \quad, \quad v=h / m \lambda$
Energy of photon $E=h c / \lambda$
\& Kinetic energy of electron $K=1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{mh}^{2} / \mathrm{m}^{2} \lambda^{2}$
(ii)

Simplifying equation i \& ii we get $\mathrm{E} / \mathrm{K}=2 \lambda \mathrm{mc} / \mathrm{h}$
A19: Here angle of prism $A=60^{\circ}$, angle of incidence $i=$ angle of emergence e and under this condition angle of deviation is minimum
$\therefore \quad i=e=\frac{3}{4} \mathrm{~A}=\frac{3}{4} \times 60^{\circ}=45^{\circ}$ and $i+e=\mathrm{A}+\mathrm{D}$,
hence $\mathrm{D}_{m}=2 i-\mathrm{A}=2 \times 45^{\circ}-60^{\circ}=30^{\circ}$
$\therefore \quad$ Refractive index of glass prism

$$
n=\frac{\sin \left(\frac{A+D_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)}=\frac{\sin \left(\frac{60^{\circ}+30^{\circ}}{2}\right)}{\sin \left(\frac{60^{\circ}}{2}\right)}=\frac{\sin 45^{\circ}}{\sin 30^{\circ}}=\frac{1 / \sqrt{2}}{1 / 2}=\sqrt{2}
$$

A20:Given: $\mathrm{V}=230 \mathrm{~V}, \mathrm{I}_{0}=3.2 \mathrm{~A}, \quad \mathrm{I}=2.8 \mathrm{~A}, T_{0}=27^{\circ} \mathrm{C}, \quad \alpha=1.70 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$.
Using equation $R=R_{0}(1+\alpha \Delta T) \quad 1 / 2 M$
i.e $V / I=\left\{V / I_{0}\right\}[1+\alpha \Delta T] \quad 1 / 2 \mathrm{M}$
and solving $\Delta T=840$, i.e. $T=840+27=867^{\circ} \mathrm{C} \quad 1 \mathrm{M}$
A21: Let d be the least distance between object and image for a real image formation.

$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}, \quad \frac{1}{f}=\frac{1}{x}+\frac{1}{d-x}=\frac{d}{x(d-x)}$
$f d=x d-x^{2}, \quad x^{2}-d x+f d=0, x=\frac{d \pm \sqrt{d^{2}-4 f d}}{2} \quad 1 / 2 \mathrm{M}$
For real roots of $x, \quad d^{2}-4 f d \geq 0 \quad 1 / 2 \mathrm{M}$

$$
d \geq 4 f
$$

OR

Let f_{0} and f_{e} be the focal length of the objective and eyepiece respectively.
For normal adjustment the distance from objective to eyepiece is $f_{o}+f_{e}$.
Taking the line on the objective as object and eyepiece as lens

$$
\begin{aligned}
& u=-\left(f_{0}+f_{e}\right) \quad \text { and } \quad f=f_{e} \\
& \frac{1}{v}-\frac{1}{[-\{f o+f e\}]}=\frac{1}{f e} \Rightarrow v=\left(\frac{f_{o}+f_{e}}{f_{o}}\right) f_{e}
\end{aligned}
$$

Linear magnification (eyepiece) $=\frac{v}{u}=\frac{\text { Image size }}{\text { Object size }}=\frac{f_{e}}{f_{o}}=\frac{l}{L}$
$\therefore \quad$ Angular magnification of telescope

$$
\mathrm{M}=\frac{f_{0}}{f_{e}}=\frac{L}{l}
$$

SECTION C

A22: Number of atoms in 3 gram of Cu coin $=\left(6.023 \times 10^{23} \times 3\right) / 63=2.86 \times 10^{22} \quad 1 / 2 \mathrm{M}$ Each atom has 29 Protons \& 34 Neutrons

Thus Mass defect $\Delta \mathrm{m}=29 \mathrm{X} 1.00783+34 \mathrm{X} 1.00867-62.92960 \mathrm{u}=0.59225 \mathrm{u}$
Nuclear energy required for one atom $=0.59225 \times 931.5 \mathrm{MeV}$
Nuclear energy required for 3 gram of $\mathrm{Cu}=0.59225 \times 931.5 \times 2.86 \mathrm{X} 10^{22} \mathrm{MeV}$

$$
=1.58 \times 10^{25} \mathrm{MeV}
$$

A23:

$V_{c}=0$,
$\mathrm{V}_{\mathrm{D}}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q}{3 \mathrm{~L}}-\frac{q}{\mathrm{~L}}\right]=\frac{-q}{6 \pi \varepsilon_{0} \mathrm{~L}}$
$\mathrm{W}=\mathrm{Q}\left[\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{C}}\right]=\frac{-Q q}{6 \pi \varepsilon_{0} \mathrm{~L}}$

A24: formula $K=-E$, $U=-2 K$
(a) $\mathrm{K}=3.4 \mathrm{eV}$ \& (b) $\mathrm{U}=-6.8 \mathrm{eV}$ 1M
(c) The kinetic energy of the electron will not change. The value of potential energy and consequently, the value of total energy of the electron will change.

A25:

As the points B and P are at the same potential, $\frac{1}{1}=\frac{\frac{(1+x)}{(2+x)}}{(1-x)} \Rightarrow x=(\sqrt{2}-1)$ ohm

A26:

(a) Consider the case $r>a$. The Amperian loop, labelled 2, is a circle concentric with the cross-section. For this loop, $L=2 \pi r$

Using Ampere circuital Law, we can write,

$$
B(2 \pi r)=\mu_{0} I, \quad B=\frac{\mu_{0} I}{2 \pi r}, \quad B \propto \frac{1}{r} \quad(r>a)
$$

1.5 M

(b)Consider the case $r<a$. The Amperian loop is a circle labelled 1. For this loop, taking the radius of the circle to be $r, \quad L=2 \pi r$
Now the current enclosed I_{e} is not l, but is less than this value. Since the current distribution is uniform, the current enclosed is,

$$
\begin{array}{ll}
I_{e}=I\left(\frac{\pi r^{2}}{\pi a^{2}}\right)=\frac{I r^{2}}{a^{2}} & \text { Using Ampere's law, } B(2 \pi r)=\mu_{0} \frac{I r^{2}}{a^{2}} \\
B=\left(\frac{\mu_{0} I}{2 \pi a^{2}}\right) r & B \propto r \quad(r<a)
\end{array}
$$

A27: (a) Infrared
(b) Ultraviolet
(c) X rays
$1 / 2+1 / 2+1 / 2 M$
Any one method of the production of each one
$1 / 2+1 / 2+1 / 2 M$

A28 (a): Definition and S.I. Unit.
(b)

Let a current I_{p} flow through the circular loop of radius R. The magnetic induction at the centre of the loop is

$$
B_{P}=\frac{\mu_{0} I_{P}}{2 R}
$$

As, $r \ll R$, the magnetic induction B_{p} may be considered to be constant over the entire cross sectional area of inner loop of radius r. Hence magnetic flux linked with the smaller loop will be

Also,

$$
\phi_{S}=B_{P} A_{S}=\frac{\mu_{0} I_{p}}{2 R} \pi r^{2} \quad 1 / 2 \mathbf{M}
$$

$$
\phi_{5}=M I_{p}
$$

$$
M=\frac{\Phi_{S}}{I_{P}}=\frac{\mu_{0} \pi r^{2}}{2 R}
$$

OR
The magnetic induction B_{1} set up by the current I_{1} flowing in first conductor at a point somewhere in the middle of second conductor is

$$
\begin{equation*}
\mathrm{B}_{1}=\frac{\mu_{0} \mathrm{I}_{1}}{2 \pi a} \tag{1}
\end{equation*}
$$

$$
1 / 2 \quad M
$$

The magnetic force acting on the portion $\mathrm{P}_{2} \mathrm{Q}_{2}$ of length ℓ_{2} of second conductor is

$$
\begin{equation*}
\mathrm{F}_{2}=\mathrm{I}_{2} \ell_{2} \mathrm{~B}_{1} \sin 90^{\circ} \tag{2}
\end{equation*}
$$

From equation (1) and (2),

$$
\begin{align*}
& \mathrm{F}_{2}=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} \ell_{2}}{2 \pi a} \text {, towards first conductor } \\
& \frac{\mathrm{F}_{2}}{\ell_{2}}=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi a} \tag{3}
\end{align*}
$$

The magnetic induction B_{2} set up by the current I_{2} flowing in second conductor at a point somewhere in the middle of first conductor is

$$
\begin{equation*}
\mathrm{B}_{2}=\frac{\mu_{0} \mathrm{I}_{2}}{2 \pi a} \tag{4}
\end{equation*}
$$

$1 / 2 \mathrm{M}$
The magnetic force acting on the portion $\mathrm{P}_{1} \mathrm{Q}_{1}$ of length ℓ_{1} of first conductor is

$$
\begin{equation*}
\mathrm{F}_{1}=\mathrm{I}_{1} \ell_{1} \mathrm{~B}_{2} \sin 90^{\circ} \tag{5}
\end{equation*}
$$

From equation (3) and (5)

$$
\begin{align*}
& \mathrm{F}_{1}=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} \ell_{1}}{2 \pi a} \text {, towards second conductor } \\
& \frac{F_{1}}{\ell_{1}}=\frac{\mu_{0} I_{1} I_{2}}{2 \pi a} \tag{6}
\end{align*}
$$

The standard definition of 1 A
If $I_{1}=I_{2}=1 \mathrm{~A}$
$\ell_{1}=\ell_{2}=1 \mathrm{~m}$
$a=1 \mathrm{~m}$ in V / A then

$$
\frac{F_{1}}{\ell_{1}}=\frac{F_{2}}{\ell_{2}}=\frac{\mu_{0} \times 1 \times 1}{2 \pi \times 1}=2 \times 10^{-7} \mathrm{~N} / \mathrm{m}
$$

\therefore One ampere is that electric current which when flows in each one of the two infinitely long straight parallel conductors placed 1 m apart in vacuum causes each one of them to experience a force of $2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$.

SECTION D

A29
(i) d (ii) c (iii) c ORb (iv) d

A30:
(i) a (ii) b (iii) b
(iv) d OR c

SECTION E

A31: i. DIAGRAM/S : 1 M
 DERIVATION: 2 M
 NUMERICAL : 2 M

Lens maker's Formula

When a ray refracts from a lens (double convex), in above figure, then its image formation can be seen in term of two steps :
Step 1: The first refracting surface forms the image I_{1} of the object 0

Step 2: The image of object O for first surface acts like a virtual object for the second surface. Now for the first surface $A B C$, ray will move from rarer to denser medium, then

$$
\begin{equation*}
\frac{n_{2}}{B I_{1}}+\frac{n_{1}}{O B}=\frac{n_{2}-n_{1}}{B C_{1}} \tag{i}
\end{equation*}
$$

$1 / 2 \mathrm{M}$

Similarly for the second interface, ADC we can write.

$$
\begin{equation*}
\frac{n_{1}}{D I}-\frac{n_{2}}{D I_{1}}=\frac{n_{2}-n_{1}}{D C_{2}} \tag{ii}
\end{equation*}
$$

$\mathrm{D} /_{1}$ is negative as distance is measured against the direction of incident light.
Adding equation (1) and equation (2), we get
or $\quad \frac{n_{1}}{D I}+\frac{n_{1}}{O B}=\left(n_{2}-n_{1}\right)\left(\frac{1}{B C_{1}}+\frac{1}{D C_{2}}\right)$

$$
\frac{n_{2}}{B I_{1}}+\frac{n_{1}}{O B}+\frac{n_{1}}{D I}-\frac{n_{2}}{D I_{1}}=\frac{n_{2}-n_{1}}{B C_{1}}+\frac{n_{2}-n_{1}}{D C_{2}}
$$

...(iii) $\left(\because\right.$ for thin lens $\left.B I_{1}=D I_{1}\right)$

Now, if we assume the object to be at infinity i.e. $O B \rightarrow \infty$, then its image will form at focus F (with focal length f f, i.e.
$D I=f$, thus equation (iii) can be rewritten as

$$
\begin{array}{ll}
& \frac{n_{1}}{f}+\frac{n_{1}}{\infty}=\left(n_{2}-n_{1}\right)\left(\frac{1}{B C_{1}}+\frac{1}{D C_{2}}\right) \\
\text { or } \quad & \frac{n_{1}}{f}=\left(n_{2}-n_{1}\right)\left(\frac{1}{B C_{1}}+\frac{1}{D C_{2}}\right) \tag{iv}
\end{array}
$$

Now according to the sign conventions

$$
\begin{equation*}
B C_{1}=+R_{1} \text { and } D C_{2}=-R_{2} \tag{v}
\end{equation*}
$$

Substituting equation (v) in equation (iv), we get

$$
\begin{aligned}
& \frac{n_{1}}{f}=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \frac{1}{f}=\left(n_{21}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

(ii) $\frac{1}{f_{a}}=(1.6-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

$$
\begin{equation*}
\frac{1}{f_{\ell}}=\left[\frac{1.6}{1.3}-1\right]\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{1}
\end{equation*}
$$

From equation (1) and (2)

$$
\frac{f_{\ell}}{f_{a}}=\left[\frac{0.6}{0.3} \times 1.3\right] \Rightarrow f_{\ell}=2.6 \times 10 \mathrm{~cm} \Rightarrow f_{\ell}=26 \mathrm{~cm}
$$

OR

(i) A wavefront is defined as a surface of constant phase.
(a) The ray indicates the direction of propagation of wave while the wavefront is the surface of constant phase.
(b) The ray at each point of a wavefront is normal to the wavefront at that point.
(ii) AB : Incident Plane Wave Front \& CE is Refracted Wave front.

Sin $i=B C / A C \quad \& \operatorname{Sin} r=A E / A C$
Sini $/ \operatorname{Sinr}=B C / A E=v_{1} / v_{2}=$ constant

(iii) $\Theta=\lambda / a \quad$ i.e. $\quad a=\frac{\lambda}{\theta}=\frac{6 \times 10^{-7}}{0.1 \times \frac{\pi}{180}}=3.4 \times 10^{-4} \mathrm{~m}$
(iv) Two differences between interference pattern and diffraction pattern

A32: (i) Derivation of the expression for the capacitance

Let the two plates be kept parallel to each other separated by a distance d and cross-sectional area of each plate is A. Electric field by a single thin plate $E=\sigma / 2 \epsilon_{o}$

Total electric field between the plates $E=\sigma / \epsilon_{0}=Q / A \epsilon_{0}$
Potential difference between the plates $V=E d=\left[O / A \epsilon_{o}\right] d$.
Capacitance $\mathrm{C}=\mathrm{Q} / \mathrm{V}=\mathrm{A}$ o / d
(ii)

The equivalent capacitance $=\frac{200}{3} \mathrm{pF}$
charge on $\mathrm{C}_{4}=\frac{200}{3} \times 10^{-12} \times 300=2 \times 10^{-8} \mathrm{C}$,
potential difference across $\mathrm{C}_{4}=\frac{200 \times 10^{-12} \times 300}{3 \times 100 \times 10^{-12}}=200 \mathrm{~V}$
potential difference across $\mathrm{C}_{1}=300-200=100 \mathrm{~V}$
charge on $\mathrm{C}_{1}=100 \times 10^{-12} \times 100=1 \times 10^{-8} \mathrm{C}$
potential difference across C_{2} and C_{3} series combination $=100 \mathrm{~V}$
potential difference across C_{2} and C_{3} each $=50 \mathrm{~V}$
charge on C_{2} and C_{3} each $=200 \times 10^{-12} \times 50=1 \times 10^{-8} \mathrm{C}$
OR
(i) Derivation of the expression for capacitance with dielectric slab $(t<d)$

Before the connection of switch S,

$$
\text { Initial energy } U_{i}=\frac{1}{2} C_{1} V_{0}^{2}+\frac{1}{2} C_{2} O^{2}=\frac{1}{2} C_{1} V_{0}^{2}
$$

After the connection of switch S

$$
\text { common potential } V=\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}}=\frac{C_{1} V_{0}}{C_{1}+C_{2}}
$$

Final energy $=U_{f}=\frac{1}{2}\left(C_{1}+C_{2}\right) \frac{\left(C_{1} V_{0}\right)^{2}}{\left(C_{1}+C_{2}\right)^{2}}=\frac{1}{2} \frac{C_{1}^{2} V_{0}^{2}}{\left(C_{1}+C_{2}\right)}$
$\mathrm{U}_{\mathrm{f}}: \mathrm{U}_{\mathrm{i}}=\mathrm{C}_{1} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
A33:
(a)

(a)

(b)
(b)

(c)(i) In device X , Current lags behind the voltage by $\pi / 2, \mathrm{X}$ is an inductor

In device Y , Current in phase with the applied voltage, Y is resistor
(ii) We are given that
$0.25=220 / X_{L}, X_{L}=880 \Omega$, Also $0.25=220 / R, R=880 \Omega$
For the series combination of X and Y,
Equivalent impedance $Z=880 \mathrm{~V} 2 \Omega, \quad I=0.177 \mathrm{~A}$

OR
a.

$E=E_{0} \sin \omega t$ is applied to a series LCR circuit. Since all three of them are connected in series the current through them is same. But the voltage across each element has a different phase relation with current. The potential difference V_{L}, V_{C} and V_{R} across L, C and R at any instant is given by $V_{L}=I X_{L}, V_{C}=I X_{C}$ and $V_{R}=I R$, where I is the current at that instant.
V_{R} is in phase with I. V_{L} leads I by 90° and V_{C} lags behind I by 90° so the phasor diagram will be as shown Assuming $V_{L}>V_{C}$, the applied emf E which is equal to resultant of potential drop across $R, L \& C$ is given as $E^{2}=I^{2}\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right]$
Or $I=\frac{E}{\sqrt{\left[R^{2}+\left(X_{L}-X_{C}\right)^{2}\right]}}=\frac{E}{Z}$, where Z is Impedance.
Emf leads current by a phase angle φ as $\tan \varphi=\frac{V_{L}-V_{C}}{R}=\frac{X_{L}-X_{C}}{R}$
b. The curve (i) is for R_{1} and the curve (ii) is for R_{2}

